86-81

P1-86-809 +

Б.Словинский, Д.Чижевска¹, Г.Енджеец,² В.Чай³, Р.Висьневский⁴

ПРОДОЛЬНОЕ РАСПРЕДЕЛЕНИЕ ИОНИЗАЦИОННЫХ ПОТЕРЬ В ЭЛЕКТРОННО-ФОТОННЫХ ЛИВНЯХ, ВЫЗВАННЫХ ГАММА-КВАНТАМИ С ЭНЕРГИЕЙ Е у = 200:3500 МэВ

- Институт ядерных проблем, Варшава
- ²Институт атомной энергии, Варшава
- ³Варшавский политехнический институт
- ⁴Институт физики Варшавского политехнического института

1986

1. ВВЕДЕНИЕ

Экспериментальная информация о структуре электронно-фотонных ливней (ЭФЛ), вызываемых гамма-квантами (ГК) высоких энергий ($E_{\gamma} \ge 100$ МэВ) в достаточно плотных поглотителях, представляет в настоящее время большой интерес, главным образом с методической точки зрения, так как в ряде физических и прикладных задач возникает необходимость все более точно определять энергию жесткого электромагнитного излучения. При этом далеко не всегда можно получить дополнительную информацию об источнике регистрируемых ГК (как, например, в случае распада π° - и η° -мезонов на 2 ГК), или же провести калибровочные измерения. Вместе с тем экспериментальные данные об ЭФЛ целесообразно иметь в компактном виде, пригодном для практических применений, в особенности, в виде достаточно простых и надежных аппроксимирующих формул, содержащих минимальное число параметров, зависимость которых от энергии E_{γ} прослеживается достаточно четко в достаточно широком энергетическом интервале.

В наших более ранних работах $^{/1-3/}$ были получены формулы такого рода, описывающие продольное и поперечное развитие ливней. Было установлено, в частности, что средние ионизационные потери энергии (СИП) ливневых электронов и позитронов (далее: электронов), выделяемые в слое вещества толщиной Δt , вдоль оси развития ливня (OP)*, удовлетворительно отображаются гауссо-подобным распределением:

$$\frac{\Delta \Sigma E(E_{\gamma}, E_0, t)}{\Delta t} = A_0 t^{A_1} \exp \left\{-\left[t - A_3\right]^2 / A_2\right\}, \qquad (1)$$

где численные значения коэффициентов A_i (i = 0 ÷ 3) определяются из экспериментальных данных. Энергия обрезания ливневых электронов, E₀ = 0 ÷1,5 МэВ, равна пороговой энергии их регистрации; глубина t развития ЭФЛ отсчитывается от точки конверсии первичного ГК. Другими авторами рассматривались в качестве формул, аппроксимирующих СИП, распределение гамма ^{/4/} и распределение Вейбула ^{/5/}, причем

^{*} ОР направлена вдоль вектора импульса ГК, инициирующего ливень.

С Объединенный институт ядерных исследований Дубна, 1986.

Таблица 1

в первом случае ^{/4/} описывались результаты численного моделирования на ЭВМ электромагнитного каскадного процесса.

В настоящей работе приведены экспериментальные данные, касающиеся зависимости от глубины t средних ионизационных потерь энергии ливневых электронов в ЭФЛ, образованных гамма-квантами с энергией E_{γ} = 200÷3500 МэВ. Измерения выполнены на снимках 180-литровой ксеноновой пузырьковой камеры (КПК) ИТЭФ /⁶/, облученной в пучке π^- -мезонов с импульсом 3,5 ГэВ/с. Методика КПК дает возможность не только достаточно детально проследить пространственное распределение ионизационных потерь энергии электронов в отдельных, зарегистрированных камерой случаях ЭФЛ, но и выполнить соответствующие измерения. Кроме этого, 180 л КПК ИТЭФ, размеры регистрирующего объема которой равны 103 * 44 * 40 см³ (т.е. ~ 25,7 * 11 * 10 радиационных единиц³ — рад. ед.), в сравнении с ранее использованной нами 26 л КПК ОИЯИ ^{77/} (размеры регистрирующей области: ~ 12,5 * * 7,5 * 4 рад.ед.³), позволяет существенно ограничить возможные искажения реальной картины ЭФЛ, связанные с конечными размерами детектора.

2. МЕТОД ИССЛЕДОВАНИЯ

При просмотре 150 тыс. стереофотографий 180 л КПК ИТЭФ, облученной π^- -мезонами с импульсом 3,5 ГэВ/с, было отобрано по соответствующим критериям 415 случаев ЭФЛ, суммарные пробеги Σ R ливневых электронов которых содержались в шести интервалах, указанных в табл. 1. Там же приведены числа N_γ ливней, попавших в каждый из этих интервалов, а также средние значения энергии E_{γ} и ширины ΔE_{γ} интервалов, причем принято, что ^{8,9/}:

$$\mathbf{E}_{\mathbf{v}} = \mathbf{0}, \mathbf{6} \cdot \boldsymbol{\Sigma} \mathbf{R} \tag{2}$$

во всей изучаемой области энергий Е_у.

В каждом случае отобранного ли́вня измерялись в плоскости проекции снимка: потенциальная длина развития L_{pot} , т.е. длина, отсчитываемая от точки конверсии первичного ГК, вдоль ОР, до конца регистрирующего объема камеры, и длина частичных суммарных пробегов $\Delta\Sigma r~(E_{\gamma},t)/\Delta t$ ливневых электронов, наблюдаемых внутри интервала (t,t + Δt).

Численное значение величины интервала Δt было выбрано, как и ранее ^{/1/}, таким, чтобы среднее значение относительной ошибки в определении $\Delta \Sigma r(\mathbf{E}_{\gamma}, t)$ было не хуже 20%. Оно равно $\Delta t \simeq 0,6$ рад.ед., при среднем увеличении проекции ливня в плоскости экрана 0,9392 (здесь принято, что 1 рад.ед. для жидкого ксенона равна 4 см, в соответствии с экспериментальным данными ^{/10/}). Числа N_γ отобранных случаев ЭФЛ с суммарным пробегом ливневых электронов ΣR. Е_γ и Δ E_γ — энергия и величина интервала энергии первичных гамма-квантов (ГК), вызвавших лавины. L^{*}_{pot} — минимальная допустимая потенциальная длина развития ливней, N^{*}_γ — числа случаев ЭВЛ, для которых потенциальная длина развития L_{pot} \geq L^{*}_{pot}. Ē_γ — среднее по выборке случаев ЭФЛ значение энергии первичных ГК.

ΣR (мм)	316-383	466-566	834-1017	1666-2084	3334-3750	5416-5834
$\frac{E_{\gamma} \pm \Delta E_{\gamma}}{(M \ni B)}$	210±20	310±30	555±55	1125 ± 125	2125±125	3375±125
Nγ	35	36	97	158	52	38
L* pot (рад.ед.)	12	16	20	20	· 21	24
Ν * γ	33	32	49	75	20	8
$\overline{\tilde{E}}_{\gamma}(M \Im B)$	217±2	320±4	573±5	1161±14	2223±14	3458±31

2.1. Распределение потенциальных длин развития ливней

Чтобы исключить эффект, связанный с ограниченностью размеров детектора, было построено для всей выборки 415 отобранных при просмотре ливней двумерное распределение (L_{pot} , t_{max}), где t_{max} означает максимальную наблюдаемую на снимке длину развития ливня. Пример такого распределения для четырех интервалов E_{γ} приведен на рис. 1. Для каждого из шести энергетических интервалов было определено наибольшее по данной выборке значение t^*_{max} . Считая выборки в достаточной мере репрезентативными и случайными, можно утверждать, что выборки ливней, которые удовлетворяют неравенству

$$L_{\text{pot}}(E_{\gamma}) \gtrsim t_{\max}^{*}(E_{\gamma}), \qquad (3)$$

будут меньше всего подвержены эффекту, обусловленному конечной величиной продольных размеров КПК. Числа N^{*} случаев таких ливней и средние значения энергии \overline{E}_{y} вызвавших их ГК для каждого из шести интервалов приведены в табл. 1. Вывод о минимальных возможных

2

Рис. 1. Двумерные распределения случаев ЭФЛ, вызванных гамма-квантами с энергией E_{γ} , по максимальной наблюдаемой длине развития t_{max} и потенциальной длине развития L_{pot} . Прямая соответстует равенству $t_{max} = L_{pot}$.

искажениях, вносимых детектором, когда удовлетворено условие (3), подтверждается результатами моделирования на ЭВМ электромагнитных ливней, вызванных фотонами с энергией (100÷5000) МэВ^{/4/}. В этом случае, естественно, обсуждаемый эффект полностью отсутствует. В дальнейшем для анализа продольного развития ЭФЛ приняты лишь те случаи ливней, для которых справедливо условие (3).

2.2. Связь между $\Delta \Sigma t(\mathbf{E}_{\gamma}, t) / \Delta t$ и ионизационными потерями

Вследствие энергетической зависимости ионизационных потерь энергии электронов (ИП), а также тормозного излучения и многократного кулоновского рассеяния, проекция длины пробега ливневого электрона на плоскость снимка лишь приближенно отражает ИП если, как это имеет место на практике, неизвестна энергия электрона а каждой точке проекции его траектории. Итак, по мере убывания энергии ультрарелятивистских электронов, т.е. в среднем статистически, с увеличением глубины ^t развития ливня уменьшаются, хотя и медленно (логарифмически), их ИП на единице длины пробега. Таким образом, если предположить, что имеет место приблизительное равенство между длиной проекции электрона, Δr , в слое поглотителя толщиной Δt и потерями ΔE энергии на ионизацию в этом слое, т.е.

$$\frac{\Delta \mathbf{E}}{\Delta \mathbf{t}} = \eta \cdot \frac{\Delta \mathbf{r}}{\Delta \mathbf{t}} , \qquad (4)$$

где η — постоянная величина, то при более низких энергиях, следовательно, в конце ливня, будет иметь место переоценка ИП. По аналогичным причинам в начале траектории электрона, т.е. в среднем статистически, в начале ЭФЛ произойдет недооценка ИП ливневых электронов. Если к тому же учесть многократное кулоновское рассеяние, которое становится особенно существенным при более низких значениях энергии электронов, то окажется, что соотношение (4) приводит к недооценке ИП в конце их траекторий и, следовательно, в среднем статистически, главным образом в конце ЭФЛ по глубине ^t развития ливня, а также по мере удаления от ОР лавины. Можно, таким образом, сделать вывод, что логарифмический рост ИП и уменьшение многократного куловновского рассеяния электронов в среде с увеличением их энергии действуют в противоположные стороны, и простое соотношение (4), весьма удобное на практике, может оказаться справедливым с достаточно хорошей точностью.

Для количественной оценки точности соотношения (4) было промоделировано на ЭВМ 400 траекторий электронов с энергией 1000 МэВ в жидком ксеноне. Учитывались при этом: средние ионизационные потери энергии, средние потери энергии на тормозное излучение и многократное кулоновское рассеяние. Вычислялась зависимость от энергии Е коэффициента

$$\eta'(E) = \left(\frac{\Delta E}{\Delta R}\right)_{\text{ion}} \cdot \left(\frac{1}{\cos \gamma(E)}\right),$$
 (4')

где ($\Delta E / \Delta R$) ion — средние ионизационные потери энергии электрона с энергией Е на отрезке ΔR его траектории, соз $\gamma(E) = \Delta r(E) / \Delta R(E)$, $\Delta r(E)$ — проекция ΔR на плоскость снимка, скобки < > означают усреднение по функции распределения угла $\gamma(E)$. При моделировании было принято, что $\Delta R = 0,05$ рад. ед. при E > 30 МэВ и 0,025 рад.ед., когда $E = 1,5 \div 30$ МэВ. Результат показан на рис. 2. Полученную зависимость $\eta' = \eta'(E)$ можно также интерпретировать следующим образом:

Рис. 2. Зависимость среднего значения ионизационных потерь $\eta'(E)$, приходящихся на единицу длины проекции траектории электрона на плоскость снимка.

в ЭФЛ, вызванном гамма-квантом с энергией Е _у ≤ Е , наблюдаемые ливневые электроны обладают

энергией $\mathbf{E} \in (\mathbf{E}_0, \mathbf{E}_{\gamma})$, и для каждого из них определена величина коэффициента $\eta'(\mathbf{E}')$. Можно оценить, как меняется величина $\eta'(\mathbf{E}_{\gamma})$, усредненная по всем электронам ЭФЛ, с энергией \mathbf{E}_{γ} . С этой целью вычислим так называемый коэффициент вариации:

$$\frac{\sigma_{\eta'}}{\eta'_{\ni\varphi}} = \frac{1}{\eta'_{\ni\varphi}} \left\{ \int_{E_0}^{E_{\gamma}} \rho(E_{\gamma}, E) \left(\eta' - \eta'_{\ni\varphi}\right)^2 dE \right\}^{1/2},$$
(5)

4

$$\begin{aligned} & \Pi_{2e} = \sum_{E_{0}}^{F} \rho(E_{\gamma}, E) \cdot \eta'(E) dE, \\ & \rho(E_{\gamma}, E) = f_{e}(E_{\gamma}, E) / \int_{E_{0}}^{E} f_{e}(E_{\gamma}, E) dE, \end{aligned}$$

$$(6)$$

f_e(E_v, E) — так называемый равновесный спектр ливневых электронов, вид которого практически не зависит от Е. Нами принято, что /11/

$$\mathbf{f}_{e} (\mathbf{E}_{\gamma}, \mathbf{E}) \sim \exp[-0.12\mathbf{E}]. \tag{7}$$

Поскольку коэффициент η в соотношении (4) равен

$$\eta = \eta' \cdot \eta'', \qquad (8)$$

где η'' — постоянная величина, зависящая от условий эксперимента, в частности, от энергии обрезания ливневых электронов, и определяется условием (2), то

$$\sigma_{\eta} / \eta_{\vartheta \varphi} = \sigma_{\eta'} / \eta'_{\vartheta \varphi} \quad . \tag{9}$$

Для конкретных расчетов зависимость $\eta' = \eta'(E)$ (рис. 2) аппроксимировалась функцией $\eta'(E) = (0.018 \pm 0.004) \ln E + (0.376 \pm 0.010)$. Результаты приведены в табл. 2.

Таблииа 2

Значения средних эффективных ионизационных потерь ливневых электронов, $\eta_{3\Phi}$, определенных соотношениями (6) и (8), и коэффициент вариации этих потерь, $\sigma_{\eta} / \eta_{3\phi}$ (формула (9)), соответствующие двум значениям энергии E_{γ} гамма-квантов, инициирующих ливни

_	Ė _γ (МэВ)	η _{эф} (МэВ/мм)	$\sigma_{\eta} {}^{\prime} \eta_{\Im \Phi}$	
	60	0,590	0,030	7
	1000	0,595	0,025	

Из полученных данных (табл. 2) вытекает, что линейная зависимость (4), примененная к проекции длин пробегов ливневых электронов в ЭФЛ, вызываемых ГК с энергией E_v = 60÷1000 МэВ, выполняется, в среднем статистически, с точностью не хуже чем 3%, если принять в качестве энергетического спектра всех наблюдаемых электронов лавины равновесный спектр в виде (7).

Однако при исследовании продольного (и поперечного) распределения ионизационных потерь энергии электронов в ЭФЛ путем регистрации проекции их длин пробега необходимо знать энергетическое распределение этих электронов внутри интервалов $(t, t + \Delta t)(u (p, p + \Delta p)$ в случае поперечного развития ливня). Тогда в предполагаемом линейном соотношении

$$\frac{\Delta \Sigma E(E_{\gamma}, t)}{\Delta t} = \eta_{t} \cdot \frac{\Delta \Sigma r(E_{\gamma}, t)}{\Delta t}, \qquad (10)$$

где $\Delta\Sigma E(E_{\nu}, t) / \Delta t$ — соответствующие ионизационные потери энергии ливневых электронов в интервале (t, t + Δt), необходимо определить зависимость от глубины t развития ЭФЛ коэффициента η_t , усредненного по энергетическому спектру ливневых электронов в слое (t, t $+\Delta t$). С этой целью было промоделировано на ЭВМ по 5 случаев электромагнитных каскадных процессов, инициируемых ГК с энергией Е, = 500; 1000; 1500; 2000; 2500 и 3000 МэВ в жидком ксеноне.

Моделирование было выполнено в двух упрощенных вариантах. Первый вариант основан на следующих предположениях:

1. Каскадный электромагнитный процесс состоит из трех явлений: образование пар е⁺е⁻, тормозное излучение и ионизационные потери.

2. Каждый фотон с энергией $E_{\gamma} \ge 10$ МэВ конвертирует в пару e⁺e⁻ на длине пробега х, разыгрываемой из распределения

$$\phi(\mathbf{x}) = \frac{1}{\overline{\lambda}} \cdot \exp\left(-\frac{\mathbf{x}}{\overline{\lambda}}\right), \qquad (11)$$

где

$$\bar{\lambda} = 5.2(1 + 13 \cdot E_{\gamma}^{-0.7706}) \text{ cm}^{/12/}$$

3. Каждый электрон с энергией Е > 1 МэВ рассеивается, пройдя расстояние $\Delta \mathbf{R} = 0,05$ рад.ед., и испускает вторичный фотон с энергией Е. согласно формулам /13/:

$$\left(\frac{\Delta E}{\Delta R}\right)_{\tau. n.} = \begin{cases} 5 \cdot 10^{-22} n_e E[\ln(3.91E) - 0.333], & E \le 18; \\ 1.98 \cdot 10^{-24} n_e E, & E > 18, \end{cases}$$
(12)

где п_е = 5,4 · 10²³ электронов/см³. 4. Средние ионизационные потери энергии ливневого электрона с энергией Е имеют вид /13/ :

$$\left(\frac{\Delta E}{\Delta R}\right)_{10n} = 1.03 \cdot 10^{-24} n_{e} \frac{1}{1 - A^{2}} \left\{ \ln \left(5 \cdot 10^{5} \frac{1 - A^{2}}{A^{2}} E\right) + A^{2} - \ln 2(2A - A^{2}) \right\}, (13)$$
rge A = 0.511/E.

5. Полярный θ и азимутальный ϕ углы рассеяния ливневого электрона с энергией E разыгрываются из нормального N(0, $\frac{1}{2} \vec{\theta}^2$) и равно-мерного $\phi \in [0, 2\pi]$ распределений, соответственно, причем /14/

$$\bar{\theta}^2 = 0,157 \cdot \frac{z(z+1)}{A} \frac{B}{C^2} \Delta z \cdot \ln \{1,13 \cdot 10^4 \frac{z^{4/3}}{A} \cdot \frac{B}{C} \Delta z \}, \qquad (14)$$

rge z = 54, A = 131, B = $(E + 0.511)^2$, C = E(E + 1.022), $\Delta z = \Delta R \cdot \langle \cos \theta \rangle$.

6. В пунктах рассеяния электрона и испускания фотона сохраняется полная энергия и импульс.

Второй вариант модели ЭФЛ отличается от первого тем, что ливневый электрон рассеивается в точке испускания ГК, энергия которого разыгрывается из распределения Бете — Гайтлера для сечения процесса радиационных потерь энергии на ядро (например, /15/), а длина пробега электрона до рассеяния вычисляется по формуле (12) (пункт 3). Во втором варианте энергетический спектр ливневых фотонов жестче, чем в первом варианте.

В процессе моделирования вычислялись значения величины

$$\eta_{t,p}(\mathbf{E}_{\gamma}, \mathbf{t}, \mathbf{p}) = \frac{\Sigma \mathbf{E}(\mathbf{E}_{\gamma}, \mathbf{t}, \mathbf{p})}{\Sigma \mathbf{r}(\mathbf{E}_{\gamma}, \mathbf{t}, \mathbf{p})},$$
(15)

относящиеся к клеткам с координатами (t, t + Δ t) и (p, p + Δ p) в плоскости проекции. Очевидно, что коэффициент η_t в соотношении (10) можно получить из (15) путем усреднения по параметру р :

$$\eta_{t} = \langle \eta_{t,p} (E_{\gamma}, t, p) \rangle_{p}$$
(16)

Было установлено, что при достигнутой статистической точности результатов величина $\eta_{t,p}$, определенная равенством (15), практически не зависит ни от энергии Е_v, ни от координат (t, p). Численные значения коэффициента η_t , отнормированные аналогично как $\eta_{s\phi}$, с учетом множителя k, определяющего условия эксперимента, т.е.

$$\eta_{t}^{\diamond \varphi} = k \cdot \eta_{t} , \qquad (17)$$

приведены в табл. 3 (k = 1,71) для интервала значений t < 4,2 рад.ед. и шести значений энергии Е.

На основании полученных данных можно сделать следующие выводы: во-первых, коэффициент η_{+} в уравнении (10) не проявляет зависимости ни от глубины t развития ливней, ни от энергии Е_у ГК, вызвавших эти лавины, и, следовательно, может считаться постоянной величиной; во-вторых, численные значения коэффициента $\eta_{t,p}$ в (15) и, тем более, коэффициента η_t не зависят от конкретного варианта модели электромагнитного каскадного процесса, по которой выполняются расчеты.

 $0,59 \pm 0,01$ $0,60 \pm 0,02$ 0,61±0,01 Среднее , ңаблюопределена в жидком 0,05 0,54± 0,05 $0,62\pm 0,05$ de 6-7 0,58+ 5 $(t, t + \Delta t)$ в ЭФЛ, вызванных гамма-квантами с энергией Е. получены путем моделирования ЭФЛ на ЭВМ. Величина $\eta_t^{9\Phi}$ электронов, $0,62 \pm 0,03$ 0,68±0,05 $0,56\pm0,03$ 5-0 0-0 ионизационных потерь ливневых $0,66 \pm 0,06$ $0,60 \pm 0,02$ $0,65\pm 0,04$ 4-5 $0,56 \pm 0,04$ $0,68 \pm 0,05$ $0,61 \pm 0,02$ 3-4 $0,60 \pm 0,04$ $0,56 \pm 0,05$ $0,56 \pm 0,03$ 2-3 эффективных , (15)-(17) 0.54 ± 0.05 $0,60 \pm 0,01$ $0,57\pm 0,04$ 1-2ксеноне. Результаты соотношениями (10) значения даемых в интервале ±0,03 $0,59 \pm 0,02$ $0,62 \pm 0,02$ Численные 0,57 E_{γ} (M₃B) 500 1000 1500 рад.ед.

0,6t

Ta6nuya 3

.±0,02

0,61

±0,04

0,62

 $0,66\pm 0,09$

± 0,05

0,68

±0,04

0,54

0,05

+1

0,56

0,05

0,55±

 $0,65 \pm 0,04$

2000

0,02

 $0,61\pm$

±0,03

0,62

0,05

0,65±

0,04

+1

0,61

±0,04

0,55

±0,02

0,58

0,03

0,60±

0,66±0,05

2500

0,02

0,60±

±0,03

0,61

0,07

+1 0,61

0,01

+1

0,59

±0,03

0,59

0,02

+1

0,58:

0,02

0,62±

0,08

0,68±

3000

8

Эти результаты, несомненно благополучные с методической точки зрения, являются следствием того факта, что, по крайней мере, вид равновесного спектра ливневых электронов нечувствителен к энергии ГК, инициирующего ливень, и кроме этого, величина $\eta_{t,p}(E_{\gamma},t,p)$ усредняется по достаточно большой поверхности элемента растра: $\Delta t * \Delta p \cong 0.6 * * 0.3$ (рад.ед.)².

3. ПРОДОЛЬНОЕ РАСПРЕДЕЛЕНИЕ ИОНИЗАЦИОННЫХ ПОТЕРЬ

3.1. Дифференциальные распределения

На рис. 3. приведено распределение ионизационных потерь ливневых электронов, вызванных ГК с энергией $E_{\gamma} = 210$; 310; 555; 1125; 2125 и 3375 МэВ в жидком ксеноне, в зависимости от глубины t развития ливней, выраженной в радиационных единицах. Там же нанесены кривые, полученные в результате статистического описания экспериментальных данных формулами (1),

$$\frac{\Delta \Sigma E(E_{\gamma}, t)}{\Delta t} = A_0 \cdot \frac{A_1}{A_2} \cdot \left(\frac{t}{A_2}\right)^{A_1 - 1} \cdot \exp\left\{-\left(\frac{t}{A_2}\right)^{A_2}\right\}$$
(18)
$$\frac{\Delta \Sigma E(E_{\gamma}, t)}{\Delta t} = A_0 t^{A_1} \exp\left\{-A_2 t\right\},$$
(19)

где параметры A_i (i = 0,1,2) вычислялись при статистическом оценивании^{/16/}. Кроме этого, была также рассмотрена функция^{/1/} $\Delta\Sigma E(E_{\gamma},t) = A_0 t^{A_1} \exp\{-A_2 t^2\}$, (20)

Численные значения параметров А_i эмпирических формул (1), (18)-(20) и соответствующие им

Рис. 3. Дифференциальное распределение средних ионизационных потерь ливневых электронов в ЭФЛ, вызванных гамма-квантами с энергией E_{γ} в жидком ксеноне. Кривые соответствуют аппроксимирующим функциям: кривая 1 — функции (1), кривая 2 — функции (18), кривая 3 — функции (19). Для экспериментальных данных при $E_{\gamma} = 210$; 310 и 555 МэВ указана только аппроксимация распределением (18).

значения тестовой статистики $\chi_{\rm fl}^2$ при ⁿ степенях свободы даны в табл.4 и 5 (i = 0,...,3 в формуле (1) и 0,1,2 — в формулах (18)-(20)).

Таблица 4

Численные значения параметров A_i (i = 0,...,3) формулы (1), описывающей продольное распределение ионизационных потерь ливневых электронов в лавинах, вызванных гамма-квантами с энергией E_y в жидком ксеноне. Указаны соответствующие значения тестовой статистики χ_n^2/n при n степенях свободы. Глубина t развития ливня выражена в единицах 0,6 рад.ед.

Е _у (МэВ)	A ₀	A ₁ * 10	A ₂	A ₃	χ_n^2/n
210 ±20	$(1,6\pm2,4)\cdot10^4$	$2,8 \pm 1,8$	54,2±90,7	-24,2 ±50,9	80/15
310 ± 30	$(5,9\pm8,1)\cdot10^4$	4,9±1,6	78,4±113,2	-32,1±56,6	80/21
555 <u>+</u> 55	$(4,6\pm 2,2)\cdot 10^4$	7,0±0,7	76,1±41,0	-29,5 ±20,0	27/28
1125 ±125	$(2,7\pm3,3)\cdot10^3$	9,5±0,5	50,8±11,0	-16,4 ±5,4	63/30
2125 ±125	386 ±207	10,3±0,9	35,5±6,2	-6,9 ±3,0	33/30
3375 ±125	160 ± 18	8,9±1,1	26,4±3,8	0,06 ±1,67	34/35

Все рассмотренные функции: (1), (18)-(20), аппроксимирующие продольное распределение средних ионизационных потерь ливневых электронов

$$f(E_{\gamma}, t) = \frac{\Delta \Sigma E(E_{\gamma}, t)}{\Delta t}, \qquad (21)$$

отнормированы таким образом, чтобы

$$\int_{0}^{\infty} f(E_{\gamma}, t) dt = E_{\gamma} .$$
(22)

Роль нормирующего множителя в этих формулах выполняет коэффициент А₀.

На основании данных, представленных в табл. 4 и 5, можно сделать вывод, что с увеличением энергии Е_γ СИП на больших глубинах ^t развития ЭФЛ удовлетворительно описываются асимптотическим нормальным распределением. Интересно при этом отметить, что распределение

Таблица 5

То же, что в таблице 4, но для формул (18) - (20)

		•			
 Е _у (МэВ)	формула	A ₀	A ₁	A ₂	χ_n^2/n
	(18)	210 ± 8	$1,24 \pm 0,04$	$2,18 \pm 0,07$	11/16
210 ± 20	(19)	87,9±7,9	$0,48 \pm 0,08$	0,73 ±0,05	8/16
	(20)	64,2±3,1	-0,07±0,05	0,07±0,01	24/16
310 ± 30	(18)	315 ± 12	1,34±0,04	$2,93 \pm 0,08$	13/22
	(19)	90,5±6,3	$0,62\pm0,07$	0,60±0,04	9/22
	(20)	76,3±3,4	0,14 ±0,05	0,054±0,004	25/22
	(18)	570 ± 13	$1,47 \pm 0,02$	4,06±0,06	29/29
555 ±55	(19)	100,0±3,5	0,80 ±0,04	$0,49 \pm 0,02$	30/29
	(20)	90,5±2,3	0,33±0,03	0,036±0, 0 02	52/29
• 1125 ±1,25	(18)	1155 ± 18	1,66±0,02	$4,90 \pm 0,05$	70/31
	(19)	$138,1 \pm 3,3$	$1,18 \pm 0,03$	0,50 ±'0,10	85/31
	(20)	$125,6\pm 2,6$	0,58±0,02	0,031±0,001	104/31
2125 ±125	(18)	2175 ±53	1,80±0,02	$5,90 \pm 0,08$	36/31
	(19)	161,9±7,1	1,58±0,06	0,51±0,01	69/31
	(20)	$152,7\pm 5,8$	0,74±0,03	0,024±0,001	46/31
3375 ±125	(18)	3566 ±109	1,92±0,10	7,01±0,10	34/36
	(19)	147,3±13,1	1,89±0,10	0,49±0,02	88/36
	(20)	$160,0 \pm 10,1$	$0,90 \pm 0,04$	0,019±0,001	34/36

Вейбула (18), которое имеет более общий вид, чем (20), стремится с ростом E_{γ} к распределению (20), так как коэффициенты и их комбинации в распределении (18) стремятся при возрастании E_{γ} к соответствующим коэффициентам функции (20):

(см. табл. 5). Такое поведение продольного распределения СИП объяснялось нами ранее $^{/1/}$ исходя из соображений статистического характера. Тем не менее, в интервале меньших значений E_{γ} , т.е. когда в каскадном электромагнитном процессе участвует относительно немного частиц, описание СИП при помощи асимптотически нормального распределения, хотя в принципе возможно, становится скорее всего формальным (табл. 4, и 5, формулы (1) и (20)). Более предпочтительными при этих энергиях ГК являются гамма-распределение (19) и функция Вейбула (18). Но, как следует из табл. 5, гамма-распределение не описывает экспериментальных данных при $E_{\gamma} \gtrsim 1000$ МэВ.

Уместно при этом напомнить, что функция (19) применялась для описания результатов численного моделирования на ЭВМ каскадного электромагнитного процесса. Естественно, что в этом случае отсутствуют какие-либо ограничения, связанные с конечными размерами детектора, регистрирующего ливни. С другой стороны, из выполненного нами методического анализа (П.1, табл. 1) вытекает, что на выборке экспериментально измеренных случаев ЭФЛ, зарегистрированных на снимках 180 л КПК и удовлетворяющих условию (3), при этих энергиях лишь в незначительной степени может сказаться то обстоятельство, что продольные размеры 180 л КПК ограничены ($\leq 25,7$ рад.ед.).

В дальнейшем мы будем рассматривать только распределение Вейбула, которое удовлетворительно описывает экспериментальные данные во всем изучаемом интервале значений энергии Е_γ. К тому же, как было отмечено ^{/5/}, это распределение обладает весьма полезным с практической точки зрения свойством, а именно:

$$\int_{0}^{t} f(E_{\gamma}, t') dt' = A_{0} \frac{A_{1}}{A_{2}} \int_{0}^{t} (\frac{t'}{A_{2}})^{A_{1}-1} \exp\{-(\frac{t'}{A_{2}})^{A_{1}}\} dt' = E_{\gamma}\{1 - \exp[-(\frac{t}{A_{2}})^{A_{1}}]\},$$
(23)

13

где учтено, что $A_0 = E_\gamma$, в полном согласии с экспериментальными данными (табл. 1 и 5). Соотношение (23) дает возможность легко получить оценку энергии E_γ ГК, когда детектором зарегистрирована в толщине поглотителя, равной t, лишь часть ($A \ge 0.5$) ионизационных потерь электронов в ливне, вызванном ГК с энергией E_γ .

3.2. Интегральные распределения

С методической точки зрения, при определении энергии ГК, образовавшего ливень, представляет интерес зависимость от глубины t развития лавины средней доли \overline{A} полной энергии E_{γ} , зарегистрированной, например, в виде ИП, т.е.

$$\overline{A}(t) = \frac{1}{E_{\gamma}} \cdot \int_{0}^{t} f(E_{\gamma}, t') \cdot dt'.$$
(24)

Экспериментальное распределение отнормированных к единице интегральных распределений СИП для всех шести изученных интервалов энергий E_{ν} приведено на рис. 4. Там же нанесены соответствующие

Рис. 4. Интегральное распределение средних ионизационных потерь ливневых электронов в ЭФЛ, инициированных ГК с энергией E_{γ} в жидком ксеноне. Все распределения отнормированы к единице. Кривая соответствует аппроксимирующей функции (23) с численными значениями коэффициентов, указанными в таблице 5.

кривые, вычисленные по формуле (23) для распределения (18) с численными значениями коэффициентов A_i (i = 0,1,2), указанными в табл.5.

 $0 \int_{0}^{t} \frac{1}{5} \frac{1}{10} \int_{1}^{t} \frac{1}{t_{A}}$ (рад.ед.) Полученные интегральные распределения СИП можно представить в более компактном виде, если глубину t развития ливня заменить безразмерной величиной $\mathbf{x} = t / \langle t_{E_{\gamma}} \rangle$, где $\langle t_{E_{\gamma}} \rangle$ — среднее значение глубины t, зависящее от энергии \mathbf{E}_{γ} первичного ГК:

. 1

 $\langle \mathbf{t}_{\mathrm{E}} \rangle = \Sigma \mathbf{t}_{i} \left(\frac{\Delta \Sigma \mathbf{E} (\mathbf{E}_{\gamma}, \mathbf{t})}{(\mathbf{E}_{\gamma}, \mathbf{t})} \right)_{i} \Delta \mathbf{t}_{i}$

$$\langle t_{E_{\gamma}} \rangle = \sum_{i} t_{i} \left(\frac{\gamma}{\Delta t} \right)_{i} \Delta t_{i}$$
 (25)

Для распределения Вейбула (18) эта величина равна

$$< t_{E_{\gamma}} > = A_0 A_2 \Gamma[(A_1 + 1)/A_1].$$
 (26)

Рис. 5. То же, что на рис. 4, но глубина t развития ливня заменена безразмерным параметром $\mathbf{x} = \mathbf{t}/\langle \mathbf{t_E}_{\mathcal{V}} \rangle$, где $\langle \mathbf{t_E}_{\mathcal{V}} \rangle$ — среднее значение , определенное соотношениями (25) и (26) для экспериментальных распределений и аппроксимирующей функции, соответственно.

На рис. 5 представлены интегральные распределения СИП, выраженные через безразмерные величины: долю \overline{A} полной энергии ЭФЛ ($0 \le \overline{A} \le 1$) и $x = \overline{t}/\langle \mathbf{t}_{E_{\mathcal{Y}}} \rangle$. Сплошные кривые соответствуют аппроксимирующему распределению (23) с учетом (26) для двух крайних значений из рассматриваемого нами интервала энергий $E_{\mathcal{Y}}$:

210 и 3375 МэВ. Можно сказать, что при изменении энергии E_{γ} кривая, описывающая интегральное распределение СИП, как бы поворачивается вокруг точки $\mathbf{x} \approx 1,1$ при практически неизменном значении $\overline{\mathbf{A}}(\mathbf{x}=0)=0$. Более того, в переменных (A, x) с ростом энергии E_{γ} ливни становятся все более компактными. Так, при $E_{\gamma} = 3375$ МэВ $\overline{\mathbf{A}} = 0,975$ при $\mathbf{x} \approx 2,1$, в то время как для $E_{\gamma} = 210$ МэВ то же значение $\overline{\mathbf{A}}$ достигается при $\mathbf{x} \approx 3$ (рис. 5).

В табл. 6 даны численные значения средних глубин <t _{Еу}> развития ливней, оцененные по выборке проанализированных случаев ЭФЛ, удовлетворяющих условию (3).

Таблица 6

Средние значения глубины развития ливней, <t_ ${\rm E}_{\gamma}$ >, вычисленные по выборке проанализированных случаев ЭФЛ, удовлетворяющих условию (3). Е $_{\gamma}$ — энергия гамма-кванта, создавшего ливень

Е _у , (МэВ) 210±20	310 ± 20	555±55	1125 ± 125	2125 ±125	3375±125
$< t_{E_{\gamma}}^{>},$ рад.ед. 2,1±0,3	2,7±0,4	3,7±0,3	$4,4\pm 0,3$	5,3± 0,7	6,4 ±1,5

3.3.Зависимость параметров аппроксимирующей функции от Е_v

На рис. 6 приведены значения коэффициентов A_1 и A_2 функции (18), описывающей СИП, в зависимости от энергии E_{γ} ГК, образовавшего ливень. Соответствующие численные значения даны в таблице 5. Зависимость $A_1 = A_1(E_{\gamma})$ и $A_2 = A_2(E_{\gamma})$ удобно представить в виде простых аппроксимирующих формул

 $A_1 = \alpha_1 + \beta_1 \cdot \ln E_{\gamma} , \qquad (27)$

$$\mathbf{A}_{2} = \mathbf{a}_{2} + \boldsymbol{\beta}_{2} \cdot \ln \mathbf{E}_{2} , \qquad (28)$$

где $a_1 = -0.065 \pm 0.089$, $\beta_1 = 0.244 \pm 0.013$, $\chi^2_{4/4} = 1.7/4$, $a_2 = -7.03 \pm \pm 0.66$ и $\beta_2 = 1.725 \pm 0.098$, $\chi^2_{4/4} = 6/4$.

Таким образом, дифференциальное распределение СИП вдоль оси развития ливня можно описать функцией Вейбула (18) с параметрами $A_0 = E_{\gamma}$, и A_1 и A_2 , зависимость которых от энергии E_{γ} дается формулами (27) и (28).

Рис. 6. Зависимость параметров $A_1 \, u \, A_2$ функции (18), аппроксимирующей средние ионизационные потери ливневых электронов, от энергии ГК, инициирующего ливня. Прямые линии соответствуют формулам (27) и (28).

4. ВЫВОДЫ

Полученные в настоящей работе результаты исследования ионизационных потерь ливневых электронов в электронно-фотонных лавинах, вызванных гамма-квантами с энергией $E_{\gamma} = 200 \div 3500$ МэВ в жидком ксеноне, можно суммировать следующим образом:

1. Распределение средних ионизационных потерь вдоль оси развития лавины удовлетворительно описывается функцией Вейбула (18).

2. Зависимость от энергии E_{γ} параметров функции (18) аппрокеимируют соотношения (27) и (28).

Кроме этого, путем моделирования на ЭВМ каскадного электромагнитного процесса было установлено, что эффективные ионизационные потери ливневых электронов $\eta_t^{s\phi}$ (17) на глубине t развития ливня можно считать не зависящими ни от энергии E_{γ} , ни от глубины t с точностью до нескольких процентов (табл. 3). Это обстоятельство создает исключительно благоприятные условия для экспериментального исследования структуры электронно-фотонных ливней при помощи тяжеложидкостных пузырьковых камер, так как на снимках с этих камер можно надежно измерять именно проекции траекторий ливневых электронов в плоскости экрана. Целесообразно при этом отметить, что интегральное соотношение (2) является следствием дифференциального аналога (10), или дважды дифференциального соотношения (15), когда размеры клетки растра (Δt , Δp) достаточно велики (не меньше, по порядку величины, чем ~ 0,1 рад.ед.⁸).

В заключение авторы выражают благодарность директору ЛВТА, члену-корреспонденту АН СССР М.Г.Мещерякову за постоянный интерес к работе и поддержку, а также Л.Н.Голубевой и З.Лонцкой за помощь в измерениях и кодировании экспериментальных данных.

ЛИТЕРАТУРА

- 1. Словинский Б., Чай В. Изв. АН СССР, сер. физ., 1981, т.45, вып. 7, с.1230.
- 2. Словинский Б. В кн.: Математическое моделирование в ядерно-физических исследованиях. ОИЯИ, Д10,11-81-622, Дубна, 1981, с.178.
- 3. Słowiński B. et al. JINR, E1-84-418, Dubna, 1984.
- 4. Longo E., Sestili J. Nucl. Instr. Meth. 1975, v.128, p.283.
- 5. Барылов В.Г. и др. Препринт ИТЭФ-181, М., 1984.
- 6. Кузнецов Е.В. и др. ПТЭ, 1970, 2, с.56.
- Kanarek T. et al. Intern. Conf. on High Energy Accelerat. and Instr., CERN, Geneva, 1958, p.508-510.
- 8. Коновалова Л.П. и др. ОИЯИ, Р-700, 1961; ПТЭ, 1961, 6, с.261.
- 9. Борковский М.Я., Круглов С.П. Препринт ЛИЯФ АН СССР, №184, Л., 1975.
- 10. Ничипорук Б. и др. ОИЯИ, Р-2808, Дубна, 1966.
- 11. Беленький С.З., Иваненко И.П. УФН, 1959, т.69, с.591.
- 12. Охрименко Л.С. и др. ОИЯИ, P13-3918, Дубна, 1968.
- 13. Росси Б. Частицы больших энергий. М: Гостехиздат, 1955.
- Люк К.Л., Юан, Ву Цзянь-Сюн. Принципы и методы регистрации элементарных частиц. М: Изд-во иностранной литературы, 1963.
- 15. Rossi B., Greisen K. Rev.Mod.Phys., 1941, v.13, p.240.
- 16. Силин И.Н. В кн.: Библиотека программ на ФОРТРАНе и автокоде МАДЛЕН для БЭСМ-6. Дубна, 1977. СМ-4-2007, с.265; ОИЯИ, П-8862, Дубна, 1967.

Рукопись поступила в издательский отдел 12 декабря 1986 года

ТЕМАТИЧЕСКИЕ КАТЕГОРИИ ПУБЛИКАЦИЙ ОБЪЕДИНЕННОГО ИНСТИТУТА ЯДЕРНЫХ ИССЛЕДОВАНИЙ

Индекс	Тематика
1	Экспериментальная физика высоких энергий
2	
2.	
2.	Экспериментальная неитронная физика
4.	Теоретическая физика низких энергии
5.	Математика
6.	Ядерная спектроскопия и радиохимия
7.	Физика тяжелых ионов
8.	Криогеника
9.	Ускорители
10.	Автоматизация обработки экспериментальных данных
11.	Вычислительная математика и техника
12.	Химия
13.	Техника физического эксперимента
14.	Исследования твердых тел и жидкостей ядерными методами
15.	Экспериментальная физика ядерных реакций при низких энергиях
16.	Дозиметрия и физика защиты
17.	Теория конденсированного состояния
18.	Использование результатов и методов фундаментальных физических исследований в смежных областях науки и техники
19.	Биофизика