

P1-86-626

1986

Б.А.Шахбазян, А.О.Кечечян, А.М.Тарасов

УКАЗАНИЕ НА СУЩЕСТВОВАНИЕ ВОЗМОЖНОГО СТАБИЛЬНОГО ДИБАРИОНА

Направлено в журнал "Zeitschrift für Physik C".

1. ВВЕДЕНИЕ

В настоящее время предполагается, что барионы и мезоны составлены из цветных кварков и антикварков. Но пока еще теория удержания кварков не может считаться завершенной. Поэтому приходится довольствоваться феноменологическими кварковыми моделями, например, моделью мешков МИТ, которая с помощью нескольких свободных параметров довольно успешно воспроизводит спектр масс известных адронов.

Концепция цветных кварков и глюонов допускает существование мультикварковых адронов со структурой $Q^n Q^m$, $n + m \ge 4$. Массы этих адронов вычисляются с помощью аппарата и набора параметров, используемых для обычных адронов.

Для систем из трех ароматов (u, d, s) все эти состояния, за одним лишь исключением, нестабильны по отношению к быстрым распадам. Однако есть надежда, что наиболее долгоживущие из них проявятся в виде узких мультикварковых резонансов в соответствующих спектрах инвариантных масс. В этом смысле ожидается, что мультикварковые состояния с отрицательной странностью образуют более узкие резонансы, чем нестранные. Эти надежды связаны с формой цветомагнитного взаимодействия, мотивированного КХД, которое используется в моделях мешков. Цветомагнитное взаимодействие достигает максимума для представления минимальной размерности по ароматам при нулевом полном спине. Оптимум соответствует s-волновому дибариону, синглетному и по аромату и по цвету, состава $u^2 d^2 s^2$, стабильного к быстрым распадам.

Стабильный дибарион, H- дигиперон, впервые был предсказан Джаффе $^{\prime 1/}$ с М $_{\rm H}=2150$ МэВ/с 2 , что ниже наинизшего порога для быстрых распадов, 2М $_{\Lambda}$.

Расчеты группы де-Сварта /2.3/ привели к массе 2164 МэВ/с 2 , что опять-таки меньше 2М $_{\Lambda}.$

Джаффе и Лоу ^{/4/} показали, что масса адрона, М^(P), вычисленная в модели мешков ("примитивы" по их терминологии), не соответствует полюсу S -матрицы, но является полюсом P -матрицы. Наблюдаемая масса (в общем случае комплексная) может быть получена, если связать примитив с имеющимися реальными или виртуальными каналами распадов.

Оценка массы примитива $M_{H}^{(P)}$ для стабильного дибариона иногда превышает $2M_{\Lambda}^{/5/}$ Учет поправок на пионное облако $^{/6/}$ или движение центра масс $^{/7/}$ также приводит к повышению $M_{H}^{(P)}$ и даже к превышению над порогом $2M_{\Lambda}$ тогна как связь с каналами $\Lambda\Lambda$, ΞN ,

пасрина исслаланай

ΣΣ, согласно Кербикову ^{/8/}, снижает $M_{\rm H}^{(\rm P)}$ на ΔM = (150-200) МэВ/с². Если $M_{\rm H}^{(\rm P)}$ превосходит $2M_{\Lambda}$, ΔM убывает, оставаясь положительным до тех пор, пока $M_{\rm H}^{(\rm P)} < 2M_{\Sigma}^{/8}$.Недавно было показано^{/9},что учет связи с каналами $\Lambda\Lambda$, ΞΝ,ΣΣ по Кербикову ^{/8/} приводит к стабильному дибариону в каждом из упомянутых случаев ^{/1-7/}.

Согласно $^{/10/}$, когда число ароматов равно $n_f = 4$, то допускается существование двадцати шести стабильных дибарионов, если, как замечают авторы, модель мешков применима к очарованным мультикварковым системам.

Рост энергии связи из-за повышения симметрии прослеживается также и в других моделях. Балачандран и др. $^{/11/}$ показали, что в киральной солитонной модели с тремя и более ароматами возникают топологические возбуждения, которые могут быть интерпретированы как дибарионные состояния. Квантовые числа этих решений соответствуют шестикварковым состояниям, найденным Джаффе в кварковой модели. Для B = 2 можно построить стабильные или метастабильные солитонные решения.

Хотя солитонная теория не в состоянии воспроизвести спектр масс известных адронов с точностью, присущей моделям мешков, предполагается, что масса Н-дибариона все же может быть оценена достаточно разумно. Масса Н-дибариона, предсказанная моделями типа скирмовой, находится в пределах $M_{\rm H}^{(\rm P)} = (1,5-2,2)$ ГэВ/с²/12-15/, т.е. Н стабилен к быстрым распадам.

Согласно Хрипловичу и Шуряку ^{/16/}, неравенство $M_{\rm H} < 2M_{\rm n}$, где $M_{\rm n}$ - масса нейтрона, исключается стабильностью обычных ядер, если только $M_{\rm H}$ не лежит в пределах энергии связи двух нуклонов, т.е. около 10 МэВ/с ². Таким образом, $2M_{\rm n}$ кажется разумным нижним пределом $M_{\rm H}$.

ним пределом M_H. Большее значение для нижнего предела M_H следует из физики двойных гиперядер. Наблюдение двух возможных двойных гиперядер /17, 18/ было использовано в качестве аргумента против существования H. Кербиков ^{/8/} показал, что если масса H на несколько десятков MэB/с² ниже 2M_Λ, то время жизни двойного гиперядра по отношению к распаду

 $\Lambda \Lambda^{6} He \rightarrow H + a \tag{1}$

порядка (10⁻¹⁸-10⁻²⁰) с. Только в том случае, если масса H находится в пределах 2219 МэВ/с ² \leq М_H \leq 2М_Λ, наблюденные время жизни (10⁻¹⁰ с) и моды распада двойных гиперядер не являются несовместимыми с альтернативной модой (1).

Недавно Маккензи и Такер^{/19/} с помощью КХД-расчетов на решетке пришли к нестабильному Н: М_Н > 2М_ЛОднако они не считают такой результат надежным и утверждают, что для выяснения вопроса необходима еще большая работа. Хотя аргументы в пользу стабильного дибариона, по-видимому, и перевешивают, теоретическая ситуация все еще остается противоречивой. Очевидно, что экспериментальное обнаружение стабильного дибариона Н имеет решающее значение для всей концепции цветных кварков и КХД, хотя бы потому ,что потенциальные модели неспособны предсказать существования стабильного мультикваркового состояния. Одного этого мотива было бы достаточно, чтобы инициировать интенсивные поиски дибариона.

Интерес к стабильному дибариону еще более усилился благодаря недавним работам ^{/20,21/}, в которых проводится мысль о том, что истинным основным состоянием сильных взаимодействий является не обычное ядерное вещество, а "странная материя", в которой число странных кварков приблизительно равно его барионному числу. В этом контексте H-частица может попросту оказаться легчайшей из семейства адронов с $|S| \simeq B$. Кроме того, странное вещество, если оно действительно существует, должно повлечь за собой интригующие космологические, да и не только космологические последствия.

Задавшись целью выяснить роль барионного числа В, странности S и гиперзаряда Y в сильных взаимодействиях, мы исследовали спектры инвариантных масс сорока девяти адронных систем, варьируя **У.В.** В пределах: $0 \le B \le 6$, $-2 \le S \le 1$, $0 \le Y \le 6$. Оказалось, что резонансные пики проявляются только в спектрах масс систем с Y ≤ 1. В области экзотических резонансов обнаружено по три кандидата в Q⁶ – Λp – и Q⁴Q¹ – $\Lambda \pi \pi$ -состояния, а также по одному в Q⁶ – $\Lambda p \pi$, ΛΛ и Q⁹ - $ΛΛp^{/22-28/}$ Помня, что инвариантные массы относятся к свободным системам, всю эту совокупность фактов можно охватить при помощи правила отбора: "Гиперзаряд свободных адронов (включая мультикварковые) не может превосходить единицы: $Y \leq 1$. Возможно, что это правило - проявление неизвестного ранее принципа симметрии. Здесь Y = B + s + c + b. Поскольку экзотические резонансы, как правило, узкие и удовлетворяют правилу отбора, можно, вероятно, ожидать, что стабильность системы должна возрастать с убыванием гиперзаряда вплоть до образования связанных мультикварковых состояний. Экспериментально этого можно достичь, если расширить ассортимент ароматов n, путем включения кварков с минимальным гиперзарядом - 2/3, т.е. s-, с-, b-кварков, или путем обогащения содержания системы кварками одного из этих сортов, например, s - кварками.

Последний способ особенно актуален в области энергий до 10 ГэВ. Предварительный результат был опубликован ранее /29/.

2. ЭКСПЕРИМЕНТ

Как уже упоминалось, возможно, нижний предел массы H-дибариона более или менее хорошо обоснован. Это значит, что необходимо исследовать всю область масс $M_H > 2M_n$. Обстоятельные обзоры способов образования дибарионов H со странностью s = -2 можно найти

у Дауера ^{/9/} и Франклина ^{/30/}. Следует упомянуть еще об одном предложении ^{/31/}. Оно основано на поиске H по моде медленного распада $H \rightarrow \Sigma^- + p$.

Мы решили искать H-частицу с помощью пропановой пузырьковой камеры, т.к. она позволяет исследовать: 1) область $M_H > 2M_\Lambda$, путем изучения спектров инвариантных масс $\Lambda\Lambda$; 2) область $M_{\Sigma^-p} < M_H < 2M_\Lambda$ по медленному распаду $H \rightarrow \Sigma^- + p$; 3) сильные взаимодействия H в ядерном веществе путем идентификации реакции конверсии HN \rightarrow YYN.

Ничего пока неизвестно о механизме рождения Н-дигиперона. Одной из важных причин неудачи детектирования его в рр-взаимодействиях /32/ могла быть низкая энергия - вблизи порога рождения в рр-взаимодействиях, при которой велся эксперимент. Это обстоятельство может быть преодолено путем: а) увеличения импульса первичных протонов; б) применения ядерных мишеней; в) применения ядерснарядов и ядер-мишеней; г) есть некоторые надежды на то, что удастся идентифицировать реакцию рождения Н, использованную Кэрролом и др. /32/ Наконец, пузырьковая камера обоснованно заслуживает названия 4*п* -детектора и адэкватна задаче поиска Н в области промежуточных энергий. Все эти меры внушают надежду на увеличение шансов образования Н: 1) в прямых взаимодействиях всех вторичных частиц с отрицательной странностью со связанными в том же ядре нуклонами, ди- и мультибарионными флуктонами. Выходы этих вторичных частиц растут как с ростом импульса первичных протонов, так и с применением ядерных мишеней; 2) во взаимодействиях протонов с ядерными флуктонами; 3) во взаимодействиях релятивистских ядер с ядерными мишенями.

Во исполнение (хотя бы частичного) этих надежд, 2-метровая пропановая камера ОИЯИ была облучена: а) в пучке релятивистских ионов ¹²С с импульсом 50,4 ГэВ/с (4,2 ГэВ/с на нуклон); б) протонами максимального импульса на дубненском синхрофазотроне. Снимки просматривались на предмет поиска V°-распадов, связанных с взаимодействием первичных протонов или вторичных заряженных и нейтральных частиц с ядрами водорода, углерода и тантала (мишень, состоящая, в зависимости от облучения, из 1-3 пластинок ^{18 1}Та, помещалась в начальной части камеры).

Обмерялись все треки звезды, ассоциированной V°-частицы и е⁺е⁻-пар конвертировавших γ -квантов, если таковые имелись. Методы идентификации V°- и заряженных частиц приведены в /33/. Здесь следует упомянуть, что каждый V°-распад проверялся на К°-, Λ -, $\overline{\Lambda}$ -, H-гипотезы.Предварительная верхняя граница для "хороших" К°-, Λ - $\overline{\Lambda}$, H-гипотез была принята равной χ^2_3 (lim) = 20,0. Суммарное распределение χ^2 , полученное в этом эксперименте

Суммарное распределение χ^2 , полученное в этом эксперименте для принятых Λ - и К°- гипотез (рис. 1), обрабатывалось следующим образом. Прежде всего, масштабный множитель был зафиксирован значением a = 1, а число степеней свободы принято равным $n_D = 3$.

Рис. 1. Гистограмма χ^2 распределений для кинематических фитов Λ-и К^огипотез (пояснения в тексте).

Наилучшим образом подобранная гистограмма χ_3^2 получена при $\chi_{12}^2 = 7,198$ и показана на рис.1 крестиками. Далее выполнена еще одна аппроксимация гистограммы со свободными параметрами a и при Наилучшие подогнанные параметры оказались равными $a = 1,0109 \pm 0,0960$ и $n_D = 2,9648 \pm 0,2345$ при $\chi_9^2 = 6,838$. Соответствующая гистограмма показана на рис.1 кружочками. Таким образом, в этом эксперименте при оценке вероятностей двухчастичных распадов можно пользоваться теоретическим χ_3^2 -распределением, не вводя какихлибо поправок.

Средние значения измеренных масс отобранных таким образом Λ - и К°-частиц оказались равными М_К°= (498,65 ± 1,72) МэВ/с² и М_Λ°= (1115,87 ± 0,41) МэВ/с² при стандартных отклонениях S_К°= 21,91 и S_Λ = 7,76 МэВ/с соответственно, в хорошем согласии с табличными значениями.

2.1. Поиск в области выше порога $M_{\rm H}$ > 2М $_{\Lambda}$

Мы приступили к поиску Н-частицы в 1978 году, использовав для этого 69 К фотографий 2-метровой пропановой камеры, облучен-

ной в пучке ионов ¹²С с импульсом 4,2 ГэВ/с на нуклон. Не удалось найти ни одного Алсобытия. Таким образом, надежды на релятивистские столкновения 12Ср, 12С, 12С, 12С 18 ГТа в качестве обильных источников странных частиц, в особенности событий с двумя и более Λ-гиперонами, не оправдались. Верхний предел для рождения ΛΛ-событий в этом эксперименте оценивается на 90%-ном доверительном уровне в 1 мкб.

Рис. 2. Спектр инвариантных масс $\Lambda\Lambda$ из п ¹²С и π^{-12} С-взаимодействий при 7,0 и 4,0 ГэВ/с, g ЛЛ вес і го события (пояснения в тексте).

Для последующего важно кратко напомнить два из наших ранних результатов.

Семнадцать и сорок ЛЛ-событий были найдены в π^- и нейтронпропановых взаимодействиях при р $_{\pi}$ = 4,0 и < p $_{\rm n}$ > = 7,0 ГэВ/с соответственно. Суммарный спектр инвариантных масс $\Lambda\Lambda$ показан на рис.2 гистограммой из сплошных линий. При массе 2365 МэВ/с² наблюдается пик. Приведены также две предельные версии возможного фона. Пологая гистограмма (точечная линия) изображает распределение фазовых объемов для реакций:

$$n + {}^{12}C \rightarrow \Lambda + \Lambda + K + K + mp + \ell \pi + {}^{N}A, \pi^{-} + {}^{12}C \rightarrow \Lambda + \Lambda + K + K + mp + \ell \pi + {}^{N-1}Z - {}^{1}A,$$
, $m, \ell = 0, 1, 2, ..., 6, (2)$

Фон, наиболее "опасный" для пика - суммарное распределение фазовых объемов реакций

 $\ell = 0, 1, 2, ..., 6$. (3) $n + N \rightarrow \Lambda + \Lambda + K + K + \ell \pi;$

Подобное распределение для реакций, индуцированных пионами, уже, его "опасный" правый край сдвинут влево сильнее, чем (3). Фон от внутриядерного каскада пологий ^{/25/} и не может имитировать пик. Эти два вида фона не показаны на рис. 2.

Подгонка спектра масс суммой полного фона и брейт-вигнеровского ЛЛ-резонанса привела к следующим параметрам:

$$M_{\Lambda\Lambda^{=}} (2365,3 \pm 9,6) \text{ M}_{9}\text{B/c}^{2}$$
, (4)

$$\Gamma_{\Lambda\Lambda}^{=} (47,2 \pm 15,1) \text{ M} \Rightarrow \text{B/c}^2 .$$
 (5)

Сечения рождения ЛЛ-резонанса в n¹²C-и п⁻¹²C-взаимодействиях при 7,0 и 4,0 ГэВ/с оцениваются в 24,2 ± 7,0 и 10,0 ± 4,0 мкб и на ядро углерода соответственно. Значимость пика определяется (4,2 ± 1,4) стандартными отклонениями.

Коэффициент асимметрии

a

$$a = \frac{F - B}{F + B}$$
 (6)
и средняя поляризация

$$\beta = \frac{P - E}{P + E} \tag{7}$$

в пределах погрешностей совместимы с нулем.

Здесь F и B - числа Л -гиперонов, испущенных вперед и назад в системе покоя $\Lambda\Lambda$ соответственно; Р и Е - числа Λ -гиперонов, испущенных в полярной ($|\cos\theta|_{\mu, M.}| > 0.5$) и экваториальной ($|\cos\theta|_{\mu, M.}| < 0.5$) зонах системы покоя $\Lambda\Lambda$. Важно отметить, что возможность имитации пика кинематическими отражениями а) Лр -резонансов и б) Альпика (вклад его в спектр масс Ал показан на рис.2 заштрихованной гистограммой) - исключена /23-25/.

Предполагается, что пик ЛА =2365 МэВ/с ² является кандидатом в предсказанный резонанс $D(0,2^+,2414)^{/2,3/}$. Мы полагаем, что вероятнее всего этот резонанс образуется во внутриядерных гиперон-

нуклонных взаимодействиях $YN \rightarrow \Lambda\Lambda(\pi, K), Y = \Xi, \Sigma, \Lambda$. Поскольку эти процессы, за исключением $\Xi N \rightarrow \Lambda \Lambda$, являются эндоэнергетическими, можно показать, что применение быстрых и, в особенности, тяжелых снарядов и легких (не тяжелее ¹² С) мишеней благоприятствует образованию внутри ядра быстрых гиперонов, а значит, и быстрых резонансов, которые успевают покинуть ядро и распасться вне его. В этом (и в нашем) случае резонанс проявляется в спектре инвариантных масс $\Lambda\Lambda$, В противоположность этому, опять-таки можно показать, что использование К -мезонных пучков, даже быстрых, и тяжелых мишеней, Br и Pt /34, 35/ сужает спектр внутриядерных реакций, дающих вклад в образование гиперонов, и приводит к образованию мед-ленных гиперонов и резонансов, больщая часть которых не успевает покинуть тяжелое, т.е. протяженное ядро, и распадается в его пределах. Вероятность внутриядерных взаимодействий по крайней мере одного распадного Л-гиперона достаточно велика для полного размытия пика в спектре инвариантных масс $\Lambda\Lambda$.

 $M_{AAP} = 3568,3 \ Y = 1 \ I = \frac{1}{2}$

3969.5

Рис. 3. Спектр инвариантных масс $\Lambda\Lambda_p$ Заштрихованная гистограмма содержит события из $\Lambda\Lambda$ -пика при 2365 МэВ/с ² (пояснения в тексте).

2769,5 2969,5 3169,5 3369,5 3569,5 3769,5 М_{ЛЛР} (МэВ/с²) Пятьдесят событий из статистики $\Lambda\Lambda$ кроме пионов и каонов, содержат также от одного до четырех протонов, образуя всего 79 комбинаций. Спектр инвариантных масс $\Lambda\Lambda$ рпоказан на рис.3. Заштрихованная гистограмма построена из событий в области пика 2365 МэВ/с². Окончательный спектр после вычитания этих событий показан в правой половине рис.3. Наблюдается пик при массе 3568,3 МэВ/с² с шириной $\Gamma < 60$ МэВ/с². Мы рассматриваем этот пик как указание на возможный трибарионный резонанс $\Lambda\Lambda$ р. Его масса очень близка к массе предсказанного трибарионного резонанса с массой 3570 с квантовыми числами $\mathbf{J}^{\mathbf{p}} = \frac{5}{2}^{+}$. Сечение образования оценивается в $\sigma = (16, 1 \pm 5, 2)$ мкб на ядро углерода /25/.

2.2 Поиск в области масс ниже порога 2М

Область масс $M_{\Sigma^{-p}} < M_{H} < 2M_{\Lambda}$ исследуется путем поиска медленной моды распада $H \rightarrow \Sigma^{-} + p$.

На фотографиях 2-метровой пропановой камеры, облученной пучком ионов ¹²С с импульсом 4,2 ГэВ/с на нуклон, не обнаружено ни одного подобного события. Верхний предел сечения образования Н на 90%-ном доверительном уровне равен 1 мкб.

Рис. 4. Две стереопроекции кандидата в стабильные дибарионы, распадающегося по моде $H \rightarrow \Sigma^- + p$.

8

Σgi

40 <u>МэВ</u>

20

15

íD

3169.5

2369,5

2569,5

Таблица 1

Углы $\mu(\vec{k}, \vec{P}_{V}), \phi(\vec{k}, \vec{S})$, поперечные импульсы $P_{\Sigma^{-}}^{\perp}$ и P_{p}^{\perp} (M3B/c), угол разлета ψ , расстояние $\hat{\mathcal{L}}$ (см) между вершинами рождения и распада V°, усредненные по девяти измерениям. σ - погрешность среднего. S - стандартное отклонение

	μ,	φ	P_{Σ}^{\perp} -	P [⊥] _p	ψ	2
σ S	10'50" 02'08" 06'24"	03'42'' 03'54'' [`] 11'41''	115,8 2,1 6,4	113,8 1,0 3,0	03 ⁰ 27'52" 35" 1'46"	7,314 0,005 0,016

Фотографии 55-см пропановой пузырьковой камеры, облученной отрицательными пионами и нейтронами при 4,0 и 7,0 ГэВ/с соответственно, не просматривались на предмет поиска этой моды распада.

Между тем 350 К фотографий 2-м пропановой камеры, облученной протонами с импульсом 10 ГэВ/с, в настоящее время просматриваются на предмет поиска распадов подобной топологии.

Систематическая идентификация V°- событий была начата в мае 1983 года. С тех пор отбирались и обрабатывались возможные кандидаты в Н. Один из них, найденный на 40 К фотографиях в сентябре 1983 года, представлен здесь. Фотографии двух стереоскопических проекций события показаны на рис.4. В точке расположенной на расстоянии, равном примерно 3/4 длины камеры, первичный протон образует двухлучевую звезду, с которой ассоциируется V°- частица. Оба следа звезды принадлежат положительно заряженным частицам, причем сильно ионизирующая частица идентифицируется как протон.

Уже первое измерение и предварительный анализ этого события надежно отвергли К°-, Л- и Л-гипотезы. Успех сопутствовал Н-гипотезе. Для исключения возможных случайных ошибок событие измерялось много раз несколькими операторами на разных измерительных приборах. Значения некоторых параметров, усредненных по девяти лучшим измерениям, приведены в табл.1. Важные заключения следуют из этих результатов. Определим единичный вектор 🖇 вдоль прямой, соединяющей точки взаимодействия и распада, и единичный вектор S вдоль проекции суммарного импульса $\vec{P}_{vo} = \vec{P}_{\perp} + \vec{P}_{+}$ на плоскость распада V° - частицы. Из табл.1 следует, что как угол $\mu(\hat{\mathbf{r}}, \hat{\mathbf{P}}_{\mathbf{v}}\circ)$, так и угол $\phi(\hat{\mathbf{r}}, \hat{\mathbf{S}})$ совместимы с нулем. Разности поперечных импульсов $\Delta = P_1^- - P_1^+$ в четырех измерениях оказались положительными, а в пяти - отрицательными. Отметим также близость P_{\perp} и P_{\perp}^+ и малость стандартных отклонений $S(P_{\perp}^-)$ и $S(P_{\perp}^+)$. Все эти факторы заставляют думать, что наблюденная V°-частица либо претерпевает двухчастичный распад, либо то, что суммарный вектор импульса всех нейтральных частиц распада коллинеарен вектору \vec{P}_{vo} или должен быть равен нулю в пределах погрешностей в системе покоя V° частицы. Исследовалась возможность имитации события фоновыми процессами в виде цепочек одно- и двухступенчатых реакций, вызванных сильными взаимодействиями (с не более одной нейтральной частицей в конечных состояниях), а также распадами, вызванными слабыми взаимодействиями.

2.2.1. Реакции по каналам сильных взаимодействий

Значимые гипотезы о быстрых реакциях, способных имитировать найденное событие, уровни значимости кинематических подгонок двухступенчатых реакций и ожидаемые выходы на 80 К фотографиях приведены в табл.2. Ожидаемые выходы имитирующих событий оценивались двумя способами. Во-первых, данные из работ /36-41/ были использованы для вычисления выходов на просмотренных фотографиях. Во-вторых, была получена независимая оценка выходов в рамках модели одночастичного обмена /42/. В табл.2 приводится наибольшая из двух оценок.

Таблица 2

Значимые двухступенчатые быстрые реакции, способные имитировать наблюденное событие, уровни значимости С.L. (%) их кинематических подгонок и ожидаемые выходы на 80 К фотографиях

Первая ступень	Вторая ступень	C.L.	Ожидаемые выходы на 80 К фотографи- ях
$pp \rightarrow pn \pi^+ \pi^0$	$\begin{array}{c} nn \rightarrow pn \pi^{-} \\ n \ ^{12}C \rightarrow p \pi^{-} \ ^{12}C \end{array}$	3,77 3,77	8,0 · 10 -5
$pp \rightarrow p\Lambda K^+ \pi^\circ$	$\begin{array}{rcl} \Lambda n & \rightarrow & \Lambda p \pi^{-}, & \Lambda & \rightarrow n \pi \\ \Lambda n & \rightarrow & \Sigma^{-} n \pi^{+} \\ \Lambda^{12} C & \rightarrow & \Sigma^{-} \pi^{+} & ^{12} C \end{array}$	π [°] 10,00 9,86 2,76	2,0 10 ⁻⁶

Для данного события реакция $\Sigma n \rightarrow \Sigma^- p$ в качестве второй ступени исключается законом сохранения энергии-импульса.

Успешной оказалась гипотеза о рождении H -дигиперона на внутриядерном флуктоне дейтериевой массы в реакции pd \rightarrow HK⁺ K ° p ($\chi_{1^2}^2 = 1,67, C.L.= 20,0\%$), причем K° в конечном состоянии распадается либо по моде Kg $\rightarrow \pi^{\circ}\pi^{\circ}$, либо по одной из мод долгоживущего состояния K[°]_L. К сожалению выход H неизвестен, но следует ожидать, что он очень мал. Подчеркнем, что и рождение и фоновые процессы возможны на более массивных, трибарионных, тетрабарионных и т.п. флуктонах. Однако, к сожалению, кинематическая проверка возможна только для мишени минимальной массы - дибарионной, как это и выполнено выше. Поэтому мы ограничиваемся лишь указанием на этот дополнительный источник как эффекта, так и фона.

2.2.2. Распады по каналам слабых взаимодействий

Испытывались гипотезы о двухчастичных модах слабых распадов всех известных нейтральных частиц. Все они оказались незначимыми (табл.3). Гипотезы о модах распадов $K_{S}^{\circ} \rightarrow e^{+} e^{-}$ и $\mu^{+}\mu^{-}$ даже не испытывались ввиду неравенств M $_{e^+e^-} < M_{\mu^+\mu^-} < M_{\pi^+\pi^-} < M_K^\circ$ и несо-стоятельности гипотезы $K_S^\circ \to \pi^+\pi^-$.

Инвариантные массы V° - частиц и χ^2_3 для различных двухчастичных мод распада, усредненные по девяти измерениям. σ - погрешность среднего, S - стандартное отклонение

	Μ _π	+π-	x ² _K	М _р <i>π</i> -		x^2_{Λ}	$x^2_{\Xi^{\circ}}$	N	$\int \overline{p} \pi^+$	$\frac{\chi^2}{\Lambda}$	$\chi^2_{\tilde{\Xi}^{\circ}}$
	371,0 ±	±9,8	152,9	1572,0 ±	45,4	335,4	52,2	1219,2	±17,9	62,4	23,1
σ S	1,5 4,4	0,2 0,6	5,8 17,3	5,0 15,0	0,5 1,4	3,1 9,3	0,7 2,2	1,6 4,8	0,2 0,5	0,7 2,0	0,5 1,5

Далее следовало испытать гипотезы о трехчастичных распадах. Этот тест имеет смысл, если двухчастичная эффективная масса меньше массы известной частицы. Так, гипотезы обо всех полулептонных расспадах $\Lambda, \Xi^{\circ}, \overline{\Lambda}, \overline{\Xi}^{\circ}$ в предположении $p_{\nu} = 0$ в соответствующих системах покоя, приводят к В ℓ - или $\overline{B}\overline{\ell}$ -эффективным массам, которые значительно выше масс предполагаемых частиц и должны быть отвергнуты (например, M_{pe} = 1546 ± 48, $M_{\overline{p}e}$ = 1202 ± 13, M_{Σ} - e⁺ = =1965 ±50, $M_{\Sigma^+e^-} = (1943 \pm 45) \text{ M}_{3}\text{B/c}^{2}$ и т.д.).

Из табл.3 следует, что только для гипотезы $V^{\circ} \rightarrow \pi^{+}\pi^{-}$ имеет место $M_{V^{\circ}} < M_{K_{S}^{\circ}}$. Таким образом, необходимо проверить гипотезу $K_{S}^{\circ} \rightarrow \pi^{+}\pi^{-}\gamma$ в предположении, что вектор импульса γ -кванта коллинеарен вектору Р

Процесс радиационного распада К[°]_S → π⁺π⁻γ тщательно изучал-ся в нескольких экспериментах, особенно в ^{/43,44/}. Было показано, что измеренный спектр хорошо согласуется со спектром внутреннего тормозного излучения.

Подставляя измеренные величины и их погрешности в формулу дифференциального отношения радиационного распада каона с у-кван-

Подогнанные .260 2 7 +1 333 60 81 σ N а₁ - углы средненные отклонение d) Η 434 7 20 Измеренные +1 $\begin{array}{l} \text{импульсы, } \alpha \\ \rightarrow \Sigma^{-} + p, \text{ усре} \\ \text{стандартное от} \end{array}$ 30 70 79 ЧU · H Подогнанные 146 1 3 p, NN ea +1 і (рад) і гипоте еднего, 866 13 40 2 (M9B/c), $\operatorname{tg} \alpha_{i}, \beta_{i}$ $i = \Sigma^{-}, p, H)_{ДЛЯ}$ - погрешность ср Δ. Измеренные 184 +1 0 - 0 00 -- M 28 ۰, ульсы р е углы, ниям. pel р лы Меј Подогнанные 5 M J и подогнанные , $eta_{\rm i}$ – азимутал независимым изм 2 +1

2

- 4

5074 50 149

376 6 17

803

505: 5(168

4 5 S

41

W

Измеренные

Измеренные погружения, по девяти н

4

Таблица

1.

,013 ,3.10⁻⁵ ,9.10⁻⁵ 008 •10 0,4 % 700 077 ~+1-**7** € +|-7-7 1.1 1.1 ,0318 ,3.10 ,3.10 ,5583 ,4.10 04---4 $\sim m$ 44 1.1 129 •10 177 •10 000 000 070 0-0 mε mt-1+ +11 1 1.1 ,5586 ,0.10-0,0333 1 1,0.10 3,0.10 - 1 2 $\begin{array}{c} 0,0022\\ 1,0\cdot10^{-4}\\ 3,0\cdot10^{-5} \end{array}$ ųψ 014 0 M M 0 ~ ~ キレオーオ +1-7-7 1,5200 ± 1,2.10-4 3,5.10-4 372 •10-0.4 -0 22 <u></u> 1 1 20 ,0022 ,0.10⁻ 401 00 3 ± 0-0 010 +1-7-7 600 000 ,0372 ,4.10 6 - - -6.27 -- m 100 ഗഗ 4 55 50 ,0016 ,3.10-.0.10-.3.10-.6.10-രഗ്-310 N t-I+ +1-7-7 287 •10-798 •10-000 ν<u>–</u> ν 100 ----M տտ мъл 0,0016 1,3.10-5 4,0.10-5 7,0.10-6 2,1.10-6 m t-i+ キレーナーナ 287-1 •10-1 •10-3 798 •10⁻¹ •10⁻¹

aj0,02 7,0. 2,0.

N 0 2

N - 4

- - ~

805

99 - -

٠

12

том, испущенным в телесном угле, описанном около $P_{K_S^\circ}$ -вектора и определяемом погрешностями эксперимента, имеем $d\Gamma(K_S^\circ \to \pi^+\pi^-\gamma) \ / \ \Gamma(K_S^\circ \to \pi^+\pi^-) = 1.7 \cdot 10^{-8}$.

Выход К ${}^{\circ}_{S} \to \pi^{+}\pi^{-}\gamma$ -распадов на 80 К фотографиях менее 2 · 10 $^{-5}$. Подгонка кинематики радиационного распада под событие оказа-

Подгонка кинематики радиационного распада под событие оказалась успешной только для γ -кванта, испущенного назад (χ_2^2 = 1,31, C.L.=25,0%). Для гипотезы о γ -кванте, испущенном вперед, χ_2^2 =43,0.

Обратимся, наконец, к гипотезе о двухчастичном распаде $H \rightarrow \Sigma^- + p$. Измеренные и подогнанные импульсы для этой гипотезы, усредненные по девяти независимым измерениям, приведены в табл.4. Распад $\Sigma^- \rightarrow n + \pi^-$ не обнаруживается на фотографии (рис.4). Однако вероятность выжить Σ^- гиперону с импульсом 5073,9 МэВ/с на длине трека 40,92 см составляет 11,36%.

, Среднее значение наилучшей подобранной массы $M_{H^{=}}(2173,94\pm \pm 1,32)$ МэВ/с² имеет место при $\chi^2_{2\,min} = 0,143\pm 0,040$; С.L.=0,931 находится в согласии с измеренным средним значением (2172,82 $\pm 15,47$) МэВ/с² (табл.5), равно как и с предсказанными массами для H-дигиперона: 2150 МэВ/с^{2/1/}и 2164 МэВ/с^{2/2,3/}. Время жизни события составляет 0,668 $\cdot 10^{-10}$ с, т.е. порядка гиперонных времен жизни. Это также не противоречит предполагаемому времени жизни гипотетического H-дигиперона /1/.

Таблица 5

Измеренная и подогнанная массы (МэВ/с²) и χ_2^2 , усредненные по девяти измерениям. σ - погрешность среднего, S - стандартное отклонение, C.L. (%)

		Macca M _H	χ^2_2	C.L.
	Измеренная	Подогнанная		
	2172,82±15,47	2173,94	0,1432	
σ	1,80 0,52	1,32	0,0398	93,10
S	5,39 1,57	3,96	0,1194	

Если отождествить наблюденное событие с Н-дигипероном, приняв тем самым относительную вероятность моды распада $H \rightarrow \Sigma^- + p^{-/1}$, то с учетом эффективностей просмотра, измерения и детектирования формально вычисленное сечение рождения Н оценивается в 40 нб во взаимодействиях протон-пропан при 10 ГэВ/с. Заметим, что предварительная оценка сечения составляла 83 нб $^{/29/}$. На последующих 40 К фотографиях не было обнаружено ни одного кандидата в Н дибарионы. В этом - объяснение нашего нового результата. Поиск H с массой $M_H < 2M_{\Lambda}$ продолжается.

3. ПОИСК Н-ЧАСТИЦЫ ПО ОСОБЕННОСТЯМ ЕЕ СИЛЬНЫХ ВЗАИМОДЕЙСТВИЙ

Среди различных каналов сильных взаимодействий Н-дибариона должен существовать специфический процесс конверсии в два гиперона HN → YYN, присущий его сильным внутриядерным взаимодействиям. Этот процесс может быть использован для поиска Н.

Действительно, если зафиксировать массу Н при определенном значении, то можно осуществить подгонку кинематики этой реакции с одной степенью свободы. В нашем эксперименте такая процедура выполнима для канала Hp $\rightarrow \Lambda$ Ap. С этой целью упомянутые семьдесят девять Λ Ap комбинаций из π^- и нейтронной экспозиции 55-см пропановой пузырьковой камеры, а также несколько $\Lambda\Lambda$ событий из протонной экспозиции 2-м пропановой камеры при 10 ГэВ/с, были испытаны на гипотезу Hp $\rightarrow \Lambda$ Ap. Масса H дигиперона была зафиксирована при следующих трех значениях: 1) при нижнем пределе 1880,00 МэВ/с², 2) при значении массы кандидата в H, найденного в этом эксперименте M_H=2173,94 МэВ/с²; 3) при инвариантной массе $\Lambda\Lambda$ рассматриваемого события.

Рис. 5. Событие с двумя Λ -гиперонами, образованное в реакции п ${}^{12}C \rightarrow \Lambda\Lambda px$ (x - сопровождающие частицы), удовлетворяющее гипотезе **Нр** $\rightarrow \Lambda\Lambda p$.

лте Эне	, уровене знач. ргии-импульса	F (M3B)	ј и максимал	ОЛИИЛ ЕИ КВНО	чалаган тан	OLVAR OLOHOA	ъ Э.	
Лямбда	**	. Лямбд	a M 2	. Прото	H		І-дибарио	H
Измеренные	Подогнанные	Измеренные	Подогнанные	Измеренные	Подогнанные	Подогнанные	ц	x ² C.L.
p₁ 985,9 ±21,0	985,6±21,0	1322,0±63,0	1384,ð±62,0	384,9±8,6	384,6±8,6	2539,0±66,9		
tga ₁ 0,4393±0,003 Β ₁ 1,4653±0,003	2-0,4393±0,0032	$0,0663\pm0,0055$ $1,7917\pm0,0012$	0,0664±0,0055 1,7917±0,0012	$-0,1210\pm0,0063$ 1,9409±0,4183	-0,1209±0,0063 . 2,5463±0,0156	-0,1395±0,0067 1,7806±0,0042	1,6.10 ⁻¹⁰	2,09814,8

Таблица 6

Таблица

- углы дибарис

αi-H

импульсы, протона и

(рад) (**р_i**гиперонов

, tg a_{i} , β_{i}

(МэВ/с) е углы)

подог

Значения χ_8^2 для 3С-кинематических подгонок гипотез $\Lambda_{\rm H}$ К, соответствующие уровни значимости С.L. и максимальные из компонент четырехмерных векторов энергии - импульса F.

			Ги	потезы		
٧°		Λ			K	
	x^2_{Λ}	C.L. (%)	F (МэВ)	$x_{\rm K}^2$	C.L. (%)	F (МэВ)
N1 N2	6,042 1,295	10,96 73,03	10^{-5} 10^{-9}	19,65 $31,31$	$2,0.10^{-2}$ < 1,0.10^{-3}	10^{-5} 10^{-4}

Кинематика реакции успешно подгоняется только под одно событие и только при $M_{\rm H} = 2173,94~{\rm M}{}_{9}{\rm B}/{\rm c}^2$. Это событие, рожденное в нейтрон - ${}^{12}{\rm C}$ взаимодействии, показано на рис.5. Два Λ -гиперона испущены из четырехлучевой звезды с одним останавливающимся в пропане протоном, образованной в п ${}^{12}{\rm C}$ -взаимодействии. Детали, касающиеся идентификации Λ -гиперонов, приведены в табл.6. Идентификация распадных частиц гиперонов по их ионизации оказалась выполнимой для обоих треков Λ -гиперона N1(p, π^-) и только для отрицательной распадной частицы гиперона N2(π^-). Импульс положительной распадной частицы гиперона N2(π^-). Импульс положительной распадной частицы этой V°-частицы равен 1265,2 МэВ/с, что превышает верхний предел импульсов для идентификации протонов в пропановых пузырьковых камерах. Для гипотез $\overline{\Lambda}$ и H значения χ^2_3 равны 6062,0;4084,0 для первой V°-частицы и 97,0 и 5195,0 - для второй частицы соответственно.

Таким образом, идентификация обеих V°-частиц как Λ-гиперонов, совершенно одназначна.

Измеренные и подогнанные параметры найденного события (рис.5) приведены в табл.7. Подгонка оказалась успешной с С.L. 4,8% только для массы 2173,94 МэВ/с², присущей событию, найденному по моде слабого распада $H \rightarrow \Sigma^- + p$. Сечение рождения события 228 нб, т.е. сечение двухступенчатой реакции рождение - конверсия не меньше сечения рождения Н-дибариона. Следовательно, сечение конверсии значительно больше сечения рождения.

События с двумя Λ -гиперонами вполне могут быть результатом внутриядерной конверсии $\Xi \ p \rightarrow \Lambda\Lambda$ или $\Xi^{\circ}n \rightarrow \Lambda\Lambda$, причем протон может быть выбит в других стадиях каскадного процесса. Кинематика этих процессов не удовлетворяет событию с $\chi_1^2 = 329,2$ и 329,3 соответственно.

Близость инвариантной массы $\Lambda\Lambda$ этого события 2344 МэВ/с² к наблюденному пику (рис.2) соблазняет нас думать, что конверсия

ĺ	7

протекает через образование $\Lambda\Lambda$ -резонанса с последующим быстрым распадом на два Λ -гиперона Hp \rightarrow Rp, R $\rightarrow \Lambda\Lambda$. В то же время инвариантная масса этого события, равная 3363 МэВ/с², далеко отстоит от найденного пика 3568 МэВ/с² (рис.3). Поэтому, вероятнее всего, наблюденное $\Lambda\Lambda$ p-конечное состояние не коррелирует с возможным $\Lambda\Lambda$ p-резонансом.

Таким образом, мы получили новое указание на существование стабильного дибариона. Поиск И-дибариона во всей разрешенной области масс М_н продолжается.

Авторы выражают глубокую благодарность А.М.Балдину за постоянный интерес и поддержку, М.И.Соловьеву за предоставление в наше распоряжение фотографий с 2-метровой пропановой пузырьковой камеры, С.Г.Аракелян, А.С.Мартынову, А.М.Рождественскому, А.И.Родионову и А.А.Тимониной за помощь.

ЛИТЕРАТУРА

- 1. Jaffe R.L. Phys.Rev.Lett., 1977, 38, p.195; 1977, 38, p.1617(E).
- 2. Aerts A.T.M., Mulders P.J.G., de Swart J.J. Phys. Rev., 1978, D17, p.260.
- 3. Mulders P.J.G., Aerts A.T.M., de Swart J.J. Phys. Rev., 1980, D21, p.2653.
- 4. Jaffe R.L., Low F.E. Phys.Rev., 1979, D19, p.2105.
- 5.Aerts A.T.M., Rafelski J. Phys.Lett., 1984, 148B, p.337. Cern/TH. 4160185.
- 6. Mulders P.J.G., Thomas A.W. J.Phys., 1983, G9, p.1159.
- 7. Liu K.F., Wong C.W. Phys.Lett., 1982, 113B, p.1.
- 8. Кербиков Б.О. ЯФ, 1984, 39, с.816.
- 9. Dover C.B. Nucl. Phys., 1986, A450, p.95.
- Hogaassen H., Sorba P. Proc.Int. Colloquium on Hadron Physics at High Energies (Ed. by C.Bourrely, J.W.Dash, I.Soffer), v.21, Marseille, France, 5-9 June, 1978.
- 11. Balachandran A.P. et al. Phys. Rev. Lett., 1984, 52, p.887.
- 12. Balachandran A.P.,Lizzi F., V.G.L.Rodgers and A.Stern. Nucl.Phys., 1985, B256, p.525.
- 13. Yost S.A., Nappi C.R. Princeton preprint (March 1985).
- 14. Jaffe R.L., Korpa C.L. MIT Preprint CTP 1233 (March 1985).
- 15. Balachandran A.P. Syracuse University preprint SU-4222-314. Lecturas at the Theroretical Advanced Study Instituty in Elementary Particle Physics, Yale University, June 9 - 5 July, 1985.
- 16. Хриплович И.Б., Шуряк Е.В. Препринт 85-117, ИЯФ СО АН СССР, Новосибирск, 1985.
- 17. Danysz M. et al. Nucl. Phys., 1963, 49, p.121.
- 18. Prowse D.J. Phys.Rev.Lett., 1966, 17, p.782.
- 19. Mackenzie P.B., Tacker H.B. Phys.Rev.Lett., 1985, 55, p.2539.
- 20. Witten E. Phys.Rev., 1984, D30, p.272.
- 21. Farhi E., Jaffe R.L. Phys. Rev., 1984, D30, p.2379.
- 22. Шахбазян Б.А. ЭЧАЯ, 1973, т.4, в.3, с.811.
- 23. Shahbazian B.A., Timonina A.A. Nucl. Phys., 1973, B53, p.19.
- 24. Shahbazian B.A., Timonina A.A., Kalinina N.A. Lett. al Nuovo Cimento, 1973, v.6, No.2, p.63.
- 25. Shahbazian B.A. Nucleonika, 1980, 25, p.345.

- 26. Shahbazian B.A., Temnikov P.P., Timonina A.A. Nucl.Phys., 1982, A274, p.73.
- 27. Shahbazian B.A. Proc. Int. Conf. on Hypernuclear and Kaon Physics (Ed. B.Povh), Heidelberg, FRG, June 20-24, 1982.
- 28. Shahbazian B.A. JINR Communications E1-81-776.
- 29. Shahbazian B.A., Kechechyan A.D. JINR Rapid Communications, No.3-84, 42.
- 30. Franklin G.V. Nucl. Phys., 1986, A450, p.117.
- 31. Sugimoto Y. KEK Report 84-20, February 1985, H.
- 32. Carroll A.S. et al. Phys.Rev.Lett., 1978, 41, p.777.
- 33. Аракелян С.Г. и др. ОИЯИ, 1-82 -683, Дубна, 1982.
- 34. Wilquet C. et al. Phys.Lett., 1975, 57B, p.97.
- 35. Guy J.G., Kadyk J. RL-77-054/A.
- 36. Dehene H.-C. et al. Il Nuovo Cim., 1968, 53A, No.1, p.232.
- 37. Almeida S.P. et al. Phys.Rev., 1968, 174, p.1638.
- 38. Alexander G. et al. Phys.Rev., 1968, 173, p.1322.
- 39. Ansorge R.E. et al. Nucl. Phys., 1973, B63, p.93.
- 40. Yekutieli G. et al. Nucl. Phys., 1972, B40, p.77.
- 41. Kayas G. et al. Nucl.Phys., 1968, B5, p.169.
- 42. Ferrari E., Selleri F. Il Nuovo Cim., 1963, 27, No.6, p.1450.
- 43. Burgun G. et al. Phys.Lett., 1973, 46B, p.481.
- 44. Taureg H. et al. Phys.Lett., 1976, 65B, p.92.

НЕТ ЛИ ПРОБЕЛОВ В ВАШЕЙ БИБЛИОТЕКЕ?

មម	можете пол	лучить г	ю почт	ге перечис	сленны е	ниже	книги,
	если	они не	были	заказаны	ранее.		

д <i>2-02-</i> 560	Груды совещания по исследованиям в области релятивистской ядерной физики. Дубна, 1982.	1 р. 75 к.
Д9-82-664	Труды совещания по коллективным методам ускорения. Дубна, 1982.	3 р. 30 к.
Д3,4-82-704	Труды IV Международной школы по нейтронной Физике. Дубна, 1982.	5 p. 00 ĸ.
Д11-83-511	Труды совещания по систенам и методам аналитических вычислений на ЭВМ и их применению в теоретической физика п.б.с. 1002	a c a
Д7-83-644	- торренической физике. дубна, 1962. Труды Международной школы-семинара по физике тяжелых ионов. Алушта, 1983.	4 р. 50 к. 6 р. 55 к.
Д2,13-83-689	Труды рабочего совещания по проблемам излучения и детектирования гравитационных волн. Дубна, 1983.	2 р. 00 к.
Д13-84-63	Труды X1 Международного симпозиума по ядерной электронике. Братислава, Чехословакия, 1983.	4 р. 50 к.
Д2-84-366	Труды 7 Международного совещания по проблемам квантовой теории поля. Алушта, 1984.	4 р. 30 к.
Д1,2-84-599	Труды VII Международного семинара по проблемам Физики высоких энергий. Дубна, 1984.	5 p. 50 ĸ.
д 17-84-8 50	Труды Ш Международного симпозиума по избранным проблемам статистической механики. Дубна,1984. /2 тома/	7 p. 75 ĸ.
д10,11-84-818	Труды V Международного совещания по про- блемам математического моделирования, про- граммированию и математическим методам реше- ния физических задач. Лубна, 1983 Труды IX Всесоюзного совещания по ускорителям	3 р. 50 к.
	заряженных частиц. Дубна, 1984 /2 тома/	13 р.50 к.
д4-85-851	Труды Международной школы по структуре ядра, Алушта, 1985.	3 р. 75 к.
Д11-85-791	Труды Международного совещания по аналитическим вычислениям на ЭВМ и их применению в теоретиче- ской физике. Дубна,1985.	4 p.
Д13-85-79 3	Труды XII Международного симпозиума по ядерной электронике. Дубна 1985.	4 р. 80 к.
Зака	зы на упомянутые книги могут быть направлены	по адресу:
Издател	101000 Москва, Главпочтамт, п/я 75 ъский отдел Объединенного института ядерных и) исследований

Шахбазян Б.А., Кечечян А.О., Тарасов А.М. Указание на существование возможного стабильного дибариона

Предпринят поиск H-дибариона в диапазоне масс: от удвоенной массы нейтрона до инвариантных масс $\Lambda\Lambda$.Во взаимодействиях протон-пропан при 10 ГэВ/с найдено одно V°-событие, удовлетворяющее только кинематике медленного распада $H \rightarrow \Sigma^- + p$. Масса равна (2173,94 ± 1,32) МэВ/с², время жизни 0,668 · 10⁻¹⁰ с, сечение образования 40 нб. Показано, что событие удовлетворяет кинематике реакции рождения на внутриядерном флуктоне дейтериевой массы pd \rightarrow Hp K⁺ K[°]. Во взаимодействиях нейтрон-пропан при 7,0 ГэВ/с найдено событие, удовлетворяющее кинематике конверсии дибариона с той же массой 2173,94 МэВ/с² в два Λ -гиперона: Hp $\rightarrow \Lambda\Lambda p$. Сечение двухступенчатой реакции рождение - конверсия H-дибариона оценивается в 228 нб. Это означает, что сечение конверсии значитетьно больше сечения рождения.

P1-86-626

Работа выполнена в Лаборатории высоких энергий ОИЯИ.

Препринт Объединенного института ядерных исследований. Дубна 1986-

Перевод О.С.Виноградовой

Shahbazian B.A., Kechechyan A.O., Tarasov A.M.P1-86-626An Evidence for A Possible Stable DibaryonP1-86-626

A search for H-dibaryon was undertaken in the mass range from a neutron double mass up to invariant masses $M_{\Lambda\Lambda}$. In the proton-propane interactions at 10 GeV/c one V°-particle has been found satisfying the kinematics of slow decay $H \rightarrow \Sigma^- + p$ only. The mass of the event treated as $H \rightarrow \Sigma^- + p$ appeared to be (2173.94 ± 1.32) MeV/c², its life-time being 0.668 \cdot 10⁻¹⁰ s, production cross section 40 nb. It is shown that this event satisfies the kinematics of production reaction on an intranuclear fluctuon of deuterium mass pd $\rightarrow HpK^+K^\circ$. In neutron-propane interactions at 7.0 GeV/c an event has been found satisfying the conversion kinematics of rhe H dibaryon of the same mass 2173.94 MeV/c² into two Λ -hyperons: Hp $\rightarrow \Lambda\Lambda p$. The effective cross-section of the two-step H-production - conversion reaction is estimated to be 228 nb. This means that the H-conversion cross section is much larger than the H-production one.

The investigation has been performed at the Laboratory of High Energies, JINR.

Preprint of the Joint Institute for Nuclear Research. Dubna 1986