

P1-86-477

· P1-86-477

AMUKUHZ, M.X. NEP.

ЭКСПЕРИМЕНТАЛЬНЫЕ ДАННЫЕ ПО СРЕДНЕМУ ЧИСЛУ ПРОВЗАИМОДЕЙСТВОВАВШИХ ПРОТОНОВ В НЕУПРУГИХ И ЦЕНТРА́ЛЬНЫХ ЯДРО-ЯДЕРНЫХ ВЗАИМОДЕЙСТВИЯХ ПРИ ЭНЕРГИИ 3,6 ГэВ/нуклон

Коллаборация СКМ-200

Направлено в журнал "Ядерная физика"

М.Х.Аникина, А.У.Абдурахимов, С.А.Авраменко, В.Д.Аксиненко, Г.Л.Варденга, В.Д.Володин, Н.С.Глаголева, А.И.Голохвастов, А.Г.Грачев, Е.А.Дементьев, К.Йовчев, Н.И.Каминский, Е.С.Кузнецова, Ю.Лукстиньш, А.Т.Матюшин, В.Т.Матюшин, Ж.Ж.Мусульманбеков, Э.О.Оконов, Т.Г.Останевич, С.А.Хорозов Объединенный институт ядерных исследований, Дубна

О.Балеа, Н.Никорович, Т.Понта Центральный институт физики, Бухарест, СРР

К.Бешлиу, В.Топор Бухарестский университет, СРР

М.Газдзицкий, Е.Скжипчак, Т.Тименецка, Р.Швед Институт экспериментальной физики Варшавского университета,ПНР

Т.Д.Джобава, И.И.Тулиани, Л.В.Чхаидзе Тбилисский государственный университет

Н.Н.Нургожин, Е.К.Хусаинов ИФВЭ АН КазССР, Алма-Ата

Ю.С.Поль, Г.Г.Таран ФИАН им.П.Н.Лебедева, Москва

1. ВВЕДЕНИЕ

Нашими последними работами ^{/1,2/} были подытожены исследования на стримерном спектрометре СКМ-200 пионообразования в неупругих и центральных ядро-ядерных столкновениях. Цель настоящей статьи - представить средние множественности провзаимодействовавших протонов, охватив практически весь набор использованных на СКМ-200 ядер-снарядов и мишеней.

Представленные данные включают также и весь набор триггеров, позволяющий систематически исследовать зависимость полученных величин от "степени центральности" и, следовательно, от диапазона прицельных параметров, сужающегося по мере ужестчения критериев отбора центральных столкновений.

Эта информация может быть полезной, например, в связи со все усиливающимся в последнее время интересом к предсказываемым теорией необычным состояниям ядерной материи /кварк-глюонная плазма/, поскольку поиск таких состояний и их эффективно регистрируемых проявлений требует детального анализа всех характеристик ядро-ядерных столкновений, и в частности – характеристик множественного рождения. Сказанное в особенности относится к центральным столкновениям, в которых, по сравнению с неупругими, ядру-мишени в среднем передается существенно большая доля энергии снаряда и, соответственно, больше вероятность осуществления ожидаемых фазовых переходов ^{/3/}.

В разделе 2 описывается методика эксперимента. В разделе 3 излагается процедура получения результатоз и обсуждаются возможные систематические смещения. Весь набор полученных данных представлен в виде таблиц /и частично - рисунков/ в разделе 4. Таблицы включают средние значения: полной множественности заряженных частиц (<M>), числа провзаимодействовавших протонов сталкивающихся ядер (<Q>), числа провзаимодействовавших протонов сталкивающихся ядер (<Q>), числа провзаимодействовавших протонов ядра-снаряда (<Q_p) и числа провзаимодействовавших нуклонов ядра-мишени (< $\nu_{\rm T}$); а также исследованное в ряде моделей отношение среднего числа отрицательных пионов к среднему числу провзаимодействовавших протонов ядены таблицы, содержащие параметры аппроксимации степенным законом зависимости от $A_{\rm T}$ величин <Q> и < $\nu_{\rm T}$ > при фиксированных $A_{\rm p}(4$ Не и 12 С) и триггере, и зависимости от $A_{\rm p}/A_{\rm T}$ отношения R

Часть приводимых данных и их анализ были опубликованы ранее в работах ^{/4,5/}. Анализ всей совокупности результатов, представленных в настоящей работе, будет оп<u>убликован в ближайше</u>е время.

Объсяниечный	RHCTETYT	1
RODE AMERICA	eadbanam	
ELAE MUM	TUUA	ł.

2. МЕТОДИКА ЭКСПЕРИМЕНТА

Экспериментальные данные получены на основе фотоматериала 2м стримерного спектрометра СКМ-200^{/6/}, экспонированного в пучке ядер, ускоренных на синхрофазотроне ОИЯИ до энергии 3,6 ГэВ/нуклон. Камера, наполненная чистым неоном при атмосферном давлении, помещалась в магнитное поле напряженностью 0,8 Тл. Твердые мишени в виде тонких дисков толщиной 0,2÷0,5 г/см² устанавливались внутри эффективного объема камеры. Газ, заполняющий камеру, также служил мишенью.

Система запуска состояла из двух групп сцинтилляционных счетчиков, одна из которых располагалась перед камерой, а другая – за камерой. Телескоп счетчиков, расположенных перед камерой, выделял пучковую частицу, а счетчики, расположенные за камерой, работали в антисовпадательном режиме.

Экспериментальная установка и логика запуска представлены на рис.1. Было использовано две триггерных системы:

- система, отбирающая неупругие столкновения /?-9/;
- триггер отбора центральных столкновений /1,8,9/.

Триггер отбора центральных столкновений /в дальнейшем - ЦС/ выделял события, в которых в пределах угла запрета $\theta_{\rm ch} = 2,4^{\rm O}$ или 2,9^O отсутствовали заряженные фрагменты-спектаторы ядра-снаряда (P/Z > 3 ГэВ/с; эффективность регистрации одной заряженной частицы ~99%/. В последних экспозициях в антисовпадательную часть был включен и нейтронный детектор, перекрывающий угол $\theta_{\rm n} = 1,8^{\rm O}$ или 2,8^O /эффективность регистрации одного спектаторного нейтрона ядра-снаряда ~80%/. Поскольку было реализовано несколько комбинаций $\theta_{\rm ch}$ и $\theta_{\rm n}$, вариант триггера для данного ансамбля событий обозначен через $T(\theta_{\rm ch}, \theta_{\rm n})$, где $\theta_{\rm ch}$ и $\theta_{\rm n}$ округлены до градуса. Таким образом, неупругим столкновениям соответствует T(0,0). Для каждого варианта триггера были получены сечения; подробное изложение процедуры измерения сечений и введения коррекций содержится в работах ^{/1,8,15/}.

Фотографии со стримерной камеры были просмотрены дважды. При этом регистрировалось число отрицательных пионов n_, а на части статистики - и полная множественность M всех заряженных частиц /исключая идентифицированные e⁺ и e⁻/. Третий контрольный просмотр проводился только для событий, где результаты первых двух не совпали.

Из каждого ансамбля ЦС, отобранных "центральным триггером", в ходе просмотра были выделены два подансамбля событий, в которых отсутствуют вторичные положительные релятивистские частицы с P/Z > 3 ГзВ/с, глубинным углом, меньшим 14° ,и проекционным углом' $\theta^{\rm np}_{\rm ch}$, меньшим чем: а/ 4° и б/ 14° . Анализ зависимости сечений от минимального допустимого угла вылета фрагмента-спектатора ядра-снаряда показывает, что проекционному углу запрета $\theta^{\rm np}_{\rm ch} = 4^{\circ}$ по жесткости отбора примерно соответствует запрет на угол вылета $\theta_{\rm ch} = 5^{\circ}$ /при фиксированном $\theta_{\rm n} = 0^{\circ} \div 3^{\circ}$ /. Поэтому

в дальнейшем ансамбли событий, отобранных по критерию $\theta_{cb}^{np} > 4^{\circ}$, будут обозначены "триггером" T(5, θ_{c}).

При отборе центральных столкновений ядер ⁴Не в качестве исходного ансамбля были взяты неупругие столкновения /в дальнейшем -НС/, и на основе измерений всех вторичных заряженных частиц были выделены подансамбли ЦС, не содержащие заряженных релятивистских фрагментов ядра-снаряда /с P/Z > 3 ГэВ/с и с углом вылета, меньшим чем 2°, 5° и 14°/.

Исходные ансамбли взаимодействий ²⁰ Ne ч Ne, Zr были получены при "ослабленном" триггере на ЦС $T(1,0) / \theta_{eh} = 0,6^{\circ}/.$ При дальнейшем ужестчении критериев центральности в ходе просмотра, для ЦС ²⁰ Ne + Ne было сделано единственное исключение: требовалось, чтобы полное число заряженных частиц M удовлетворяло условию M > CM >= 20 (этот подансамбль обозначен T(M > 20)). Объяс-

няется это сравнительной малостью исходного ансамбля и малой величиной сечения ЦС, составляющего для симметричной пары ²⁰ Ne + Ne приугле запрета $\theta_{ch} = 4^{\circ}$ меньше 1% от сечения НС (σ_{in}).

Исходные ансамбли и подансамбли, проанализированные для данной задачи, включают от 50 до 800 событий /обычно 200-400 событий/.

3. ПРОЦЕДУРА ОПРЕДЕЛЕНИЯ ВЕЛИЧИН <Q>, <Q_ $_n$ > И < $\nu_{_T}$ > И ВОЗМОЖНЫЕ СИСТЕМАТИЧЕСКИЕ ОШИБКИ

Среднее число <Q> провзаимодействовавших протонов ядра-снаряда А, и мишени А, определяется соотношением

$$" = - 2 < n_{-} > - < n_{a} > - < n_{h} > ,"$$
 /1/

где <M> - среднее число всех наблюдаемых заряженных частиц /исключая идентифицированные e⁺ и e⁻/, <n_> - среднее число отрицательных пионов, < n_s > и < n_h >- средние числа заряженных фрагментов-спектаторов ядра-снаряда и мишени соответственно. Рассмотрим процедуру получения перечисленных величин и возможные при этом систематические ошибки.

<M> и <n_> были определены по результатам просмотра. Мы воздержимся здесь от обсуждения причин, которые могут приводить к искажению характеристик множественного рождения, поскольку в нашей недавней работе /1/ проведен их детальный анализ. Там показано, в частности, что суммарная поправка к <n_> для разных пар A_{p} - A_{T} и разных вариантов триггера составляет в среднем /2±1,5/%. И хотя указанные средние значения поправки и ее неопределенности были получены для <n >, они достаточно хорошо характеризуют и масштабы систематических погрешностей при определении средней полной множественности <M>, ошибка которой дает основной вклад в статистическую ошибку результатов по <Q>. Заметим, однако, что ошибка в величине <Q> может оказаться и меньше, чем ошибка <M>, т.к. в соотношении /1/ некоторые систематические смещения вычитаются, - например, нерегистрируемые из-за поглощения в веществе мишени или из-за слишком малой длины треков медленные испарительные фрагменты ядра-мишени равным образом уменьшают как $< n_h >$, так и < M >.

В соотношении /1/ член 2 <n_ > дает среднее число π^+ и π^- -мезонов, поскольку $< n_{\pi^+} \simeq < n_{\pi^-} > .$ Это приближенное равенство выполняется хорошо, если соблюдена протон-нейтронная симметрия как для обоих взаимодействующих ядер (Z = A/2), так и для триггера $(\theta_{ch} = \theta_n)$, т.е. в среднем реализуется равное число pp - и и nn-элементарных актов. Для тяжелых мишеней (Z < A/2) при смещенном триггере ($heta_{
m ch} > heta_{
m n}$) происходит частичная компенсация разницы между <n_{#+}> и <n_#-, поскольку "изотопические сдвиги", обусловленные этими двумя неравенствами, направлены противоположно. Как показывают оценки, систематическая ошибка в <Q>, связанная с указанными асимметриями, не превышает 2,5%.

Членом <n,> в /1/ отсекается испарительная часть спектра заряженных фрагментов, испущенных ядром-мишенью. Ввиду условности самого определения испарительной частицы и для проверки устойчивости результатов, для всех мишеней были установлены два уровня обрезания: P/Z = 240 и 310 МэВ/с /что для протонов соответствует Екин = 30 и 50 МэВ/. Первый уровень совпадает с общепринятой в эмульсионных работах границей энергетического спектра b-частиц. Отметим, что b-частицы идентифицировались достаточно надежно, т.к. при р < 310 МэВ/с протоны и положительные пионы заметно различаются по ионизации. В то же время смещение < Q>, вызванное поглощением в веществе мишени протонов с энергией выше указанных границ, как показали проведенные оценки, незначительно /толщина мишеней 0,2÷0,5 г/см²/.

Границы, определяющие так называемые стриппинговые частицы /фрагменты-спектаторы ядра-снаряда/, - а именно: угол вылета θ < 4^o и P/Z > 3 ГэB/с - в системе покоя ядра-снаряда примерно соответствуют верхней границе по энергии / Е кин = 50 МэВ/ для b-частиц, испускаемых ядром-мишенью. Примесь испарительных /или стриппинговых/ частиц с Z > 1 не сказывается на $\langle Q \rangle$, т.к. в /1/ они с равным весом входят и в <M> и в <n_b> /или в <n_s>/.

Полученные таким образом из соотношения /1/ значения <Q> соответствуют среднему числу провзаимодействовавших протонов с некоторой примесью более тяжелых частиц.

Оценки примеси однозаряных тяжелых фрагментов были сделаны по данным работ /10.11/, выполненных при нашей энергии 3.6 ГэВ/нуклон. Согласно оценкам, доля дейтонов в <Q> составляет от 10% для C+Cдо 20% для C + Pb, а доля тритонов соответственно от 1% до 5%. Систематическое смещение <Q> определяется, однако, лишь примесью двухзарядных фрагментов. Соответствующая оценка была сделана путем экстрополяции к нашей энергии данных работы /12/, в которой доля ³ Не и ⁴ Не была измерена в интервале 0,4: ÷2.1 ГэВ/нуклон. Систематическая ошибка в <Q> составила <1% для C+C и <3% для C+Pb.Поскольку статистические ошибки полученных значений <Q>, как правило, выше 5%, а все рассмотренные систематические смещения не превышают 3%, поправки на эти смещения в приводимые ниже результаты по <Q> не вводились.

Чтобы из <Q> выделить среднее число-протонов, выбитых из ядра-мишени <Q_T>, необходимо знать <Q_p> - среднее число провзаимо-действовавших протонов снаряда (<Q> = <Q_p> + <Q_T>). В случае триггеров $T(5, \theta_n)$ и $T(14, \theta_n) < Q_p > = Z_p$ по определению. Для триггера Т(2,0) нами по ходу просмотра была оценена примесь в зоне стриппинга фрагментов с Z > 1 для ЦС ${}^{12}C+C$, и было установлено, что вырезаемый триггером угол запрета $\theta_{ch} = 2,4^{O}$ обеспечивает достаточно полное "рассыпание" ядра-снаряда: указанная примесь не превышала 10%. Поскольку С - самая легкая из использованных для данной задачи мишеней, ясно, что для остальных пар А.-А. при Т(2,0) эта примесь будет еще меньше. Указанная 10%-я неопределенность в $<n_s>$ при определении $<Q_p> = Z_p - <n_s>$ учитывалась наряду со статистическими.

Наибольшие трудности для определения <Q_p> представляют неупругие столкновения, т.к. необходимо знать распределение стриппинговых фрагментов по заряду W(Z):

$$\langle Q_{p} \rangle = Z_{p} - \langle n_{s} \rangle \cdot \langle Z_{s} \rangle = Z_{p} - \langle n_{s} \rangle \sum_{Z=1}^{2p} ZW(Z),$$
 /2/

а наша методика эксперимента не позволяет определить Z частицы, если Z > 2. Для HC ⁴He+A мы использовали результаты нашей работы по фрагментации снаряда^{/14/}, где W(Z) было получено с хорошей точностью на основании измерений. Грубая оценка $\langle Q_p \rangle$ для HC ¹²C+A была сделана следующим образом. Поскольку реакция C+C при T(0,0) симметрична для снаряда и мишени, $\langle Q_p \rangle_{CC} = \langle Q \rangle_{CC} / 2$. Для всех остальных использованных мишеней /A_T > 12/ эта величина может служить нижней границей:

$$\langle \mathbf{Q}_{\mathbf{p}} \rangle \frac{\min}{\mathbf{CA}} = \langle \mathbf{Q}_{\mathbf{p}} \rangle_{\mathbf{CC}}$$
 (3)

Верхняя граница задается условием

$$\langle \mathbf{Q}_{\mathbf{p}} \rangle_{\mathbf{CA}}^{\mathbf{max}} = \min[(\mathbf{Z}_{\mathbf{p}} - \langle \mathbf{n}_{\mathbf{g}} \rangle_{\mathbf{CA}}), (\langle \mathbf{Q} \rangle_{\mathbf{CA}} / 2)].$$
 /4/

Для полученных усреднением /3/ и /4/ значений <Q_p>_{CA} за систематическую ошибку усреднения была взята половина интерполяционного интервала ($\Delta = (\langle Q_p \rangle_{CA}^{max} - \langle Q_p \rangle_{CA}^{min})/2)$, и эта ошибка учитывалась наряду со статистической.

Таким образом, зная <Q_p>, мы можем определить число выбитых из мишени нуклонов:

$$\langle \nu_{\rm T} \rangle = (\langle Q \rangle - \langle Q_{\rm p} \rangle) A_{\rm T} / Z_{\rm T} .$$
 (5/

Примесь дейтонов и тритонов в <Q>, как мы полагаем, не должна смещать значение < $\nu_{\rm T}$ >, определенное формулой /5/, т.к. хорошее согласие с предсказаниями модели коалесценции, установленное в работах /11,13/ путем сравнения с инклюзивными спектрами протонов спектров дейтонов, а в ^{/12/} – и спектров более тяжелых фрагментов, дает основание считать, что на стадии разлета, по-видимому, реализуется предполагаемый этой моделью механизм слипания свободных нуклонов с близкими импульсами и углами вылета, и, следовательно, указанная примесь не должна искажать истинного числа провзаимодействовавших протонов или нуклонов.

4. ПРЕДСТАВЛЕНИЕ РЕЗУЛЬТАТОВ

Как уже отмечалось, с помощью описанной в разделе 3 процедуры было получено два набора величины $<Q>,<Q_p>$ и $<\nu_T>$, соответствующих двум максимальным импульсам для b-частиц: P/Z = 240и 310 МэВ/с. Поскольку разница в результатах, полученных при двух указанных границах, как правило, не превышала статистическую ошибку /см.⁴⁴, где приведены оба набора данных для HC ⁴He+A/,

9 0,02 0,02 0,02 0,03 0,02 0,03 0,04 0,03 0,04 0,05 0,03 0,03 0,03 0,03 Е=3,6 ГэВ/с/нуклон +| +| +| +| +| +| +| +| +1+1+1 + + + +1 12-42 Габлица I 0,26 0,26 0,<u>1</u>8 0,28 0,28 0,350,330,320,360,28 0,28 0,27 0,32 8,8 8,9 9,4 9,6 г, з 5,3 ± 0,6 8,7 ± 1,2 9,7 ± 1,5 10,8± 1,9 9,4 ± 1,1 13,9± 1,1 0,6 0,4 0,6 1,0 0,6 +1 +I H +1 + + + + + + + +| 20,8 32,6 37,9 I4,5 I5,4 \checkmark 7,3 3,5 6,0 6,2 идп столкновениях × × + 0,05 × × + 0,06 ± 0,06 ± 0,05 ± 0,I 0,05 0,06 \mathbf{A} 0,3 0,1 0,I 0,2 Q +1+1 22 22 +! +! + + + 0 I,20 I,25 I,6± I,I4 I,67 I,35 I,86 1,6 1,8 2,1 4,2 ядро-ядерных Ø ++ ++ 4,2 щ 0,5 0,6 0,8 0,2 Характеристики множественного рождения 0,4 0,2 $0,2 \\ 0,2$ Σ +1 × +1 +1 10'0I IO,I II,3 I2,2 IO,5 I3,9 I4,3 I4,8 17,2 21,5 24,2 27,5 17,8 19,0 I0,4 8,0 II50 ± 50 663 ± 50 548 ± 50 380 ± 40 720 ± 30 345 ± 30 240 ± 25 150 ± 20 2400<u>+</u>170 1840<u>+</u>160 6I5 ± 40 က်စစ် I300±200 Ē ++ ++ + 780 38 2,3 450 180 121 65 ኇ T(0,0)T(2,0)T(2,0)T(14,0)T(0,0)T(2,0)T(2,0)T(14,0)T(14,0)T(0,0) T(2,0) T(5,0) T(14,0) T(0,0) T(2,0) T(5,0) T(14,0) T(0,0) T(2,0) T(5,0) 20+0 20+0 20+0 Продолжение

12 _{C+1e}	Ţ(0,0)	I040 ± 60	I3,3 <u>+</u> 0,3	5,I±0,4	$2,3 \pm 0,3$	$5, 6 \pm 1, 0$	0.41 ± 0.03
12C+Ne	T(2,0)	96 <u>+</u> 8	$22,0 \pm 0,4$	IO,I <u>+</u> 0,5	$4, I \pm 0, 2$	I2,0 ± I,0	$0,44 \pm 0,03$
12 _{C+Ne}	$T(5,0)^{*}$	$34,4 \pm 3.5$	23.0 ± 0.5	$11,7\pm0,7$	$5,4 \pm 0,2$	I2,5 ± I,4	0.41 ± 0.03
12 _{C+S1}	T(0,0)	1130 ± 80	$13,5 \pm 0,3$	6,0±0,3	$2,6 \pm 0,5$	6,9 ± I,I	0,37 ± 0,03
12 _{C+Cu}	T(0,0)	1700 ± 90	$18,3 \pm 0,7$	9 ,0 ± 0,8	2,9±0,8	$I2,9 \pm 2,5$	$0,33 \pm 0,03$
12 _{C+Cu}	T(2,0)	356 ± 50	$34,9 \pm 0,5$	19,6 <u>+</u> 0,9	5,5±0,2	$3I,0 \pm 2,0$	0,35±0,02
12 _{C+Cu}	T(5,0)	$I00 \pm I5$	39,9 ± 0,8	22, I 1 1, I	9	35,3 ± 2,3	0,36±0,02
12 ₀₊₀ u	T(I4,0)	3I ± 5	$40,8 \pm I,I$	$22, 6\pm 1, 3$	9	36,4 ± 2,8	0,37 ± 0,03
12 ₀₊₀ u	T(3,3)	170 ± 50	$37,4 \pm 0,4$	20,3 ±0, 9	5,6±0,4	32,2 ± 2,0	0,38 ± 0,03
12 _{C+Cu}	T(5, 3)	72 ± 25	$39,0 \pm 0,5$	$22, I_{\pm}I, 0$	9	35,2 ± 2,2	0.37 ± 0.03
12 _{C+Cu}	T(I4,3)	33 ± 12	$40,0 \pm 0,6$	$22, 6\pm 1, 2$	9	36,4 ± 2,6	0.37 ± 0.03
12 _{C+Zr}	T(0,Ò)	2025 ± 120	I9,8 <u>+</u> 0,7	9,8 <u>+</u> 0,8	2,9±0,8	$15,8 \pm 2,6$	$0,34 \pm 0,04$
¹² C+2r	T(2,0)	530 ± 50	$40,3 \pm 0,5$	22,0±0,9	4,9 ± 0,2	38,9 <u>+</u> 2,I	$0,34 \pm 0.02$
12 _{C+Zr}	T(5,0)	$I60 \pm 25$	46, 3 <u>+</u> 0, 6	25,7±I,2	6	$45,0 \pm 2,5$	$0, 33 \pm 0.02$
¹² C+Zr	T(I4,0)	55 ± IO.	48,8 ± I,0	26,8±I,4	9	$47,5 \pm 3,2$	$0,34 \pm 0,02$
12 _{C+2r}	T(5, 2)	160 ± 50	46,5 ± I,9	25,4±2,0	6	44,2 ± 4,5	0,35±0,04
12 _{C+2} r	T(I4,2)	80 ± 40	$47,9 \pm 2,I$	26,0+2,2	9	45,6±5,0	0,35±0,04
12 _{C+Pb}	T(2,0)	950 <u>+</u> 80	57,8 ± C,3	34,8 <u>+</u> I,3	5,3±0,2	73,9 ± 2,8	$0,24 \pm 0,01$
¹² C+Pb	T(5,0)	440 ± 40	$69,4 \pm 1,5$	43,9±2,0	9	96,0±5,0	0,22 ± 0,0I
12 _{C+Pb}	T(I4,U)	280 + 35	72,7 + 2,I	48,3+2,2	9	I07,0+ 5,6	0,2I + 0,0I
16 _{0+Же}	T(2,0)	53,5 <u>+</u> 7	26,9 <u>+</u> 0,5	11,7 <u>+</u> 0,6	$5,3 \pm 0,7$	I2,7 ± 1,5	0.50 ± 0.04
16 _{0+Ne}	T(5,0) [#]	I2,7 <u>+</u> I,5	28,6±0,9	I3, $7\pm$ I,3	7,4±0,6	I2,6 ± 2,9	$0,45 \pm 0,05$

,

6.9

1

٠

						Продоп	жение
160+Pb	T(2,0)	950 ± 100	$70,6 \pm 1,2$	43,I <u>+</u> 2,0	$7,2 \pm 0,3$	90,6 ± 4,3	$0,26 \pm 0,01$
160+Pb	T(5,0)	390 Ŧ 50	79,4 ± I,6	$47, 6\pm 2, 3$	ω	IO0,0±5,0	0,26 ± 0,0I
¹⁶ 0+Pb	T(I4,C)	215 ± 30	84,6±2,2	50, 9 <u>+</u> 2, 6	ω	I08,0 <u>+</u> 7,0	0,25±0,02
20 Re+Ne	T(1, \)		20,5 ± 0,8	8,41,2			0,39±0,05
20 Hethe	T(20)		27,6±0,6	I2,2±0,7	6,6±0,8	II,2 ± 2,9	0,4I ± 0,05
20 He+Zr	T(I,0)		· 33,9±I,7	I6,9 ±1, 8	7,2 ± 2,9	22,I±4,3	0,35±0,05
²⁰ Ne+Zr	T(3,C)*		55,I ± 2,5	28,5 <u>+</u> 2,7	9,4 ± 1,2	43,6±6,5	0,40 ± 0,05

* Ансамбли отобраны в ходе просмотра при несколько ослабленных критериях центральности, допус-кающих вылет одного фрагмента-спектатора ядра-снаряда / $P/Z > 3 \ \Gamma 3B/c/$ под углом $\theta < heta_{ch}$. 9

•

.

•

.

-

Рис.2. Зависимость величины $\langle \nu_{\rm T} \rangle$ /сплошные линии/ и $\langle {\bf Q} \rangle$ /пунктир/ от P^{ch} в реакциях ⁴He +Cu /кружки/ и ¹²C +Cu /треугольники/. Зачерненные треугольники соответствуют триггеру T($\theta_{\rm ch}$, $\theta_{\rm n}$), где $\theta_{\rm n}$ = 2,8° - угол запрета на вылет нейтральных фрагментов-спектаторов ядраснаряда.

в дальнейшем, чтобы не перегружать таблицы и рисунки, мы приводим усредненные значения, которые, таким образом, соответствуют границе обрезания Р/Z ≃ 280 МэВ/с /для протонов Е_{кин} ≃ 40 МэВ/.

Полученные результаты сведены в табл.1, в которую включены также средняя полная множественность <М>, отношение R = <n_>/<Q>, фи-1,0 P_T^{ch} ГаВ/с гурирующее в ряде моделей /<n_>средняя множественность отрица-

тельных пионов/ и сечение при данном триггере σ , из сравнения которого с сечением при "неупругом" триггере T(0,0) можно судить о жесткости отбора ЦС. /Описание процедуры измерения сечений и введения коррекций на систематические смещения см в^{/1,8,15}/.

Ошибки $\langle Q_p \rangle$ и $\langle \nu_T \rangle$ помимо статистических включают систематические неопределенности, связанные с процедурой определения этих величин при заданном значении $\langle Q \rangle$ /см.конец предыдущего раздела/. Значения $\langle n_- \rangle$, использованные для R, взяты из нашей работы ^{/1/}, где они были получены на большей статистике и с введением поправок на систематические смещения.

Мы приводим также четыре рисунка, иллюстрирующих основные закономерности в поведении исследуемых величин. Рис.2 показывает, как изменяются <Q> и < $\nu_{\rm T}$ > в соударениях ядер $^4{\rm He}$ и $^{12}{\rm C}$ с ядром меди по мере усиления "степени центральности", определяемой величинами $\theta_{\rm ch}, \theta_{\rm n}$. Чтобы представить наши данные вне зависимости от энергии пучка, углы запрета пересчитаны в

$$P_{T}^{ch} = P_{i} \cdot tg\theta_{ch} , \qquad /6/$$

где $\mathbf{P}_i = 4,5$ ГэВ/с; т.е. отложенный по оси абсцисс \mathbf{P}_T^{ch} - минимальный допустимый при данном триггере поперечный импульс положительной частицы, определенной как релятивистский фрагмент ядра-снаряда / P/Z>3 ГэВ/с/. На рис.3 и 4 показана зависимость от $A_{\rm T}$ соответственно
 $<\!\nu_{\rm T}\!>$ и <Q> в реакциях $^4{\rm He},^{12}{\rm C}+A_{\rm T}$ при разных триггерах. Параметры аппроксимаций данных эмпирической зависимостью СА_{\rm T}^a представлены в табл.II и III.

Рис.4. Зависимость среднего числа провзаимодействовавших протонов сталкивающихся ядер <Q> от A_T в реакциях ⁴He, ¹²C + A. Обозначения те же, что и на рис.3.

Таблица II

Результаты аппроксимации зависимости от А_тсредней множественности провзаимодействовавших протонов сталкивающихся ядер <Q>

$A_{p} + A_{T}$. ^т (еђ, О	n), C	X	X ² /NDF
⁴ He + A	T(0,0) T(2,0) T(5,0) T(I4,0)	0,96 ± 0,16 1,79 ± 0,19 1,80 ± 0,24 1,51 ± 0,29	$\begin{array}{c} 0,43 \pm 0,04 \\ 0,38 \pm 0,03 \\ 0,41 \pm 0,04 \\ 0,46 \pm 0,04 \end{array}$	0,2 I,4 I,6 2,8
¹² C + A	T(0,0) T(2,0) T(5,0)	I,42'± 0,21 2,16 ± 0,15 2,45 ± 0,27	$0,43 \pm 0,04$. $0,52 \pm 0,02$ $0,53 \pm 0,03$	0,I 0,7 I,4

Таблица III

Результаты аппроксимации зависимости от А , средней множественности провзаимодействовавших нуклонов ядра-мишени <v->

$A_p + A_T$	T (Qch, Q)	C	X	x ² /NDF
4 _{He} + A	T(0,0)	0,69 ± 0,I6	0,63 ± 0,06	0,2
	T(2,0)	I,35 <u>+</u> 0,20	0,58 ± 0,04	I,5
	T(5,0)	I,22 ± 0,24	0,63 ± 0,05	2,0
	T(I4,0)	0,95 ± 0,27	0,70 ± 0,06	2,2
T O	T(0,0)	0,83 <u>+</u> 0,18	0,65 ± 0,07	0,1
$^{12}C + A$	T(2,0)	I,I4 ± 0,07	0,78 ± 0,02	0,6
	T(5,0)	0,92 ± 0,19	0,87 <u>+</u> 0,05	0,3

На рис.5 показана зависимостъ R от отношения A_p/A_T для всех пар ядер при фиксированном триггере. Параметры аппроксимаций этих данных выражением $R = C(A_p/A_T)^{\alpha}$ представлены в табл. IV.

Таблица IV

Результаты аппроксимации зависимости от $A_p \, / A_T$ отношения средней множественности π^- -мезонов к средней множественности провзаимодействовавших протонов для ⁴ He, ¹² C, ¹⁶ O, ²⁰ Ne + А —взаимодействий

T(0. 0)	C	X	X2/NDF
T(0,0) T(2,0)	$0,44 \pm 0,02$	$0,20 \pm 0,03$ 0,25 + 0,02	0,6
T(5,0)	$0,30 \pm 0,02$ $0,48 \pm 0,02$	$0,25 \pm 0,02$ $0,25 \pm 0,02$	2,6

Как указывалось выше, анализ полученных данных будет опубликован в ближайшее время. Однако мы считаем, что наши результаты, в том виде, как они представлены в табл.I÷IV и рис.2÷5, также могут быть полезны как для проверки предсказаний теоретических моделей, так и для планирования будущих экспериментов.

ЛИТЕРАТУРА

- 1. Anikina M. et al. JINR Report, E1-84-785, 1984.
- 2. Anikina M. et al. Phys.Rev., 1986, C33, p.895.
- 3. Quark Matter Formation and Heavy Ion Collisions, eds. Jacob M. and J.Tran Thanh Van, Phys.rep., 1982, 88, p.321. и ссылки там же.
- 4. Аникина М.Х. и др. ЯФ, 1981, 33, с.1568.
- 5. Аникина М.Х. и др. ЯФ, 1983, 38, с.1480.
- 6. Аникина М.Х. и др. ЯФ, 1978, 27, с.724.
- 7. Aksinenko V. et al. Nucl. Phys., 1979, A324, p.266.
- 8. Aksinenko V. et al. Nucl.Phys., 1980, A348, p.518.
- 9. Abdurakhimov A. et al. Nucl. Phys., 1981, A362, p.376.
- 10. a) Adyasevich B. et al. IAE-3973/2, Moscow, 1984;
 b) Adyasevich B. et al. IAE-4148/2, Moscow, 1985.
- 11. Аникина М.Х. и др. ОИЯИ, Р1-85-208, Дубна, 1985.
- 12. Nagamia S. et al. Phys.Rev., 1981, C24, p.971.
- 13. Advasevich B. et al. IAE-3972/2, Moscow, 1984.
- 14. Abdyrakhimov A. et al. JINR Report, E1-12730, 1979.
- 15. Аникина М.Х. и др. ЯФ, 1983, 38, с.149.

Рукопись поступила в издательский отдел 11 июля 1986 года.

ТЕМАТИЧЕСКИЕ КАТЕГОРИИ ПУБЛИКАЦИЙ ОБЪЕДИНЕННОГО ИНСТИТУТА ЯДЕРНЫХ ИССЛЕДОВАНИЙ

Индекс	Тематика
1.	Экспериментальная физика высоких энергий
2	Теоретическая физика высоких энергий
2.	Экспериментальная нейтронная физика
у. Ц	Теоретическая физика низких энергий
ч. 5	
5.	Ялерная спектроскопия и радиохимия
7. R	
0.	Криотеника
9.	
10.	автоматизация обработки экспериментальных данных
11.	Вычислительная математика и техника
12.	Химия
13.	Техника физического эксперимента
14.	Исследования твердых тел и жидкостей ядерными методами
15.	Экспериментальная физика ядерных реакций при низких энергиях
16.	Дозиметрия и физика защиты
17.	Теория конденсированного состояния
18.	Использование результатов и методов фундаментальных физических исследований в смежных областях науки и техники
19.	Биофизика

НЕТ ЛИ ПРОБЕЛОВ В ВАШЕЙ БИБЛИОТЕКЕ?

Вы	і можете получить по почте перечисленные ниже кн	иг и ,
	если они не были заказаны ранее.	
Д2-82-568	Труды совещания по исследованиям в области релятивистской ядерной физики. Дубна, 1982.	1 р. 75 к.
Д9-82-664	Труды совещания по коллективным методам ускорения. Дубна, 1982.	3 р. 30 к.
Д 3,4-82-704	Труды IV Международной школы по нейтронной физике. Дубна, 1982.	5 p. 00 x.
Д11-83-511	Труды совещания по системам и методам аналитических вычислений на ЗВМ и их применению в теоретической физике. Дубна, 1982.	2 n. 50 v
Д7-83-644	Труды Международной школы-семинара по физике гяжелых ионов. Алушта, 1983.	- р. 55 к.
Д2,13-83-689	Труды рабочего совещания по проблемам излучения и детектирования гравитационных волн. Дубна, 1983.	2 p. 00 ĸ.
Д13-84-63	Труды XI Международного симпозиума по ядерной электронике. Братислава, Чехословакия, 1983.	4 р. 50 к.
Д2-84-36 6	Труды 7 Международного совещания по проблемам квантовой теории поля. Алушта, 1984.	4 р. 30 к.
Д1,2-84-599	Труды VII Международного семинара по пробленам Физики высоких энергий. Дубна, 1984.	5 p. 50 ĸ.
417-84-850	Труды Ш Международного симпозиуна по избранным проблемам статистической механики. Дубна,1984. /2 тома/	7 р. 75 к.
Д10,11-84-B18	Труды V Международного совещания по про- блемам математического моделирования, про- граммированию и математическим методам реше- ния физических задач. Дубна, 1983	3 р. 50 к.
	Труды IX Всесоюзного совещания по ускорителям заряженных частиц. Дубна, 1984 /2 тома/	13 р.50 к.
Д4-85-851	Труды Международной школы по структуре ядра, Алушта, 1985.	3 р. 75 к.
Д11-85-791	Труды Международного совещания по аналитическим вычислениям на ЭВМ и их применению в теоретиче- ской физике. Дубна,1985.	4 р.
Д13-85-79 3	Труды XП Международного симпозиума по ядерной электронике. Дубна 1985.	4 р. 80 к.
Зака	азы на упомянутые книги могут быть направлены 101000 Москва, Главпочтамт, п/ж 79	по адресу:

Издательский отдел Объединенного института ядерных исследований

Аникина М.Х. и др.

P1-86-477

Экспериментальные данные по среднему числу провзаимодействовавших протонов в неупругих и центральных ядро-ядерных взаимодействиях при энергии 3,6 ГэВ/нуклон

Представлены полученные на неупругих и центральных ядро-ядерных столкновениях экспериментальные данные по средним множественностям:полной множественности <M> заряженных частиц, провзаимодействовавших протонов <Q>, провзаимодействовавших протонов ядра-снаряда <Q_ > провзаимодействовавших нуклонов ядра-мишени <v_T>, а также отношения <n/style="font-sty

Работа выполнена в Лаборатории высоких энергий ОИЯИ.

Препринт Объединенного института ядерных исследований. Дубна 1986

Перевод О.С.Виноградовой

Anikina M.Kh. et al. Experimental Data on Average Number of Interacted Protons in Inelastic and Central Nucleus-Nucleus Collisions at 3.6 GeV/Nucleon

The experimental data on mean multiplicities in inelastic and central nucleus-nucleus collisions are presented, namely: of full multiplicity of charged particles <M>, interacted protons <Q>, interacted projectile protons <Q>, of interacted nucleons of target - nucleus <ur> v_T > and also the ratio <n_>/<Q>,of interacted nucleons of target - nucleus <ur> v_T > and also the ratio <n_>/<Q>,where <n_> is the mean π^- -meson multiplicity. The data are obtained on the2-meter SKM-200 streamer chamber exposed in ⁴He,¹²C, ¹⁸O and ²⁰Ne beams at3.6 GeV per nucleon on C, Ne, Al, Si, Cu, Zr and Pb targets. The systematicstudy is carried out of the influence on the data obtained of the rigidityof central collision triggering, characterized by $T(\theta_{ch}, \theta_n)$, where θ_{ch} and θ_n - minimal allowed emission angles for charged and neutral spectator fragments of projectile nucleus, respectively. The cross section values are presented for each sample of events. The procedure of data processing is described. The sources of possible systematic errors are analysed and the corresponding uncertainties are estimated.

The investigation has been performed at the Laboratory of High Energies, JINR.

Preprint of the Joint Institute for Nuclear Research. Dubna 1986