

P1-86-370

Г.Н.Агакишиев¹, С.Бацкович², В.Болдеа³, С.Дица³, В.Г.Гришин, Т.Канарек, Е.Н.Кладницкая, Л.Симич⁴

АНАЛИЗ ПОВЕДЕНИЯ 77 - МЕЗОНОВ И ПРОТОНОВ, РОЖДЕННЫХ В ЯДРО-ЯДЕРНЫХ ВЗАИМОДЕЙСТВИЯХ ПРИ ИМПУЛЬСЕ 4,2 ГэВ/с НА НУКЛОН В ЗАВИСИМОСТИ ОТ ЧИСЛА ПРОТОНОВ, ПРИНЯВШИХ УЧАСТИЕ ВО ВЗАИМОДЕЙСТВИИ

Направлено в журнал "Ядерная физика"

Институт физики АН АзССР, Баку
Институт математики и физики, Титоград
Центральный институт физики, Бухарест
Институт физики, Белград

введение

Изучение ядро-ядерных взаимодействий, которое интенсивно развивается в последние годы, может явиться источником интересной информации о гдубинных овойствах материи. Эти столкновения позволяют создеть такие условия, при которых в небольшом объеме одновременно взаимодействует большое количество частиц, что может привести к образованию таких экзотических состояний материи, как пионный конденсат, кварк-глюонная плазма и т.п.

.

Так как число нуклонов, принявших участие в ядро-ядерном взаимодействии, изменяется в довольно широких пределах не только для различных, но и для одной и той ке пары ядер, то эта величина становится важным параметром при анализе столкновений ядер о ядрами. Прямое измерение числа взаимодействующих нуклонов не представляется возможным. Ранее было предложено несколько путей косвенного определения этого числа на основе экопериментально измеряемых величин / 10-15/. В качестве такой величины можно использовать суммарный заряд события Q, который определяется как разность между числом наблюденных полокительных, за исключением опектаторов, и отрицательных частиц в событии.

В настоящей работе изучаются зависимости оредних значений множественности 77 – мезонов, импульсных и угловых характеристик 77 – мезонов и протонов от числа взаимодействующих протонов во взаимодействиях легких ядер d, не,С с углеродом при импульсе 4,2 ГеВ/с на нуклон.Так как появления нетривиальных эффектов вероятнее всего охидать в многонуклонных взаимодействиях, то в цальнейшем анализе использовалась информация о специально отобранных многонуклонных СС – взаимодействиях, которые в дальнейшем будут обозначаться как ССмн. Критерии отбора таких событий опновны в работе /18/.

Экопериментельные результаты сравнивалиов о предоказаниями дубненокой каскадно-иопарительной модели (ДСМ) /16/, включающей первичные нуклон-нуклонные взаимодействия, отолкновения образовавшихоя в этих взаимодействиях частиц о нуклонами остаточных фрагментов ядер (каскад) и образование дейтронов и тритонов из нуклонов в конечном состоянии. Модель не учитывает отолкновений вторичных частиц друг с другом.

Множественности, импульсные и угловые характеристики *П*-мевонов, рожденных в неупругих (d , He, C) С-и многонуклонных СС-веемодействиях, были опубликованы ранее /17,18/.

> Объсявненный институт часных исследования БИБЛИСТЕНА

ЭКСПЕРИМЕНТАЛЬНЫЙ МАТЕРИАЛ

Экопериментальные данные были получены с помощью двухметровой пропановой пузырьковой камеры, помещенной в магнитное поле со средней величиной магнитной индукции I,5 Т и экопонированной в пучках ядер d ,Не и С с импульсом 4,2 ГэВ/о на нуклон на оинхрофазотроне ЛВЭ ОИНИ. Все взаимодейотвия ядер с пропаном, зарегиотрированные в эффективном объеме камеры, измерялись на полуавтоматах САМЬТ и обочитывались по программе ГЕОФИТ.

Взаимодействия с ядром углерода были выделены из общего числе взаимодействий пучковых ядер с пропаном (C₃H₈) с помощью критерияв, основанных на определении суммарного заряда вторичных частиц,числа идентифицированных протонов, числа протонов, испущенных в задною полусферу, и т.п. Этот метод подробно описан в /19/, он позволяет выделить 70-80% от общего числа неупругих взаимодействий данного ядра А с углеродом. АС-взаимодействия, не удовлетворяющие критериям отбора, вместе с неупругими Ар-взаимодействиями соотавляют групцу неразделенных событий. Они могут быть разделены с помощью дополнительного критерия, накладываемого на масоу мишени /20/. В этом случае эффективность отбора возрастает до 97-98%; по критериям отбора многонуклонных взаимодействий выбираются только взаимодействия с углеропом.Для анализа использовалось 4700, 1900 и 3300 неупругих d С;НеСи СС;, а также 1394 ССмн -взаимодействий.

Магнитное поле даёт возможность разделить вторичные частицы по заряду. Вся отрицательные частицы с P > 70 МэВ/с, за исключениям идентифицированных электронов, очитались π^- -мезонами. Примесь неидентифицированных электронов практически отсутствует, а примесь отрицательных отранных частиц не превышает 1% /21/.

Протоны с P \leq 0,5 ГэВ/с идентифицировались по плотности ионизации треков. Для выделения протонов с P > 500 МэВ/с из опектров всек положительных частиц вычиталоя спектр m^- -мезонов с P > 0,5 ГэВ/с. Распределения m^+ -и m^- – мезонов должны совпадать в силу изотопической симметрии оталкивающихся ядер.

Фрагменти налатающего ядра с Z> 2 корошо идентифицируются по плотности ионизации, а аналогичные фрагменты мишени в основном имают пробеги меньше 3 мм и не рагистрируются в камера. Все однозарядные барионы, протоны, дейтроны, тритоны не разделялись и очитались протонами.

Разделение m^+ — мезонов и протонов с Р > 0,5 ГуВ/с по плотности иснизации не всегда возможно, поэтому в дельнейшем энализе используются денные только с мнокественности m^+ — мезонов. Для контроля все приводимые делее распределения были получены и для m^+ -мезонов с импульсом 0,1 < P < 0,5 ГэВ/с.Характер зависимостей при этом не изменялся.

ЭКСПЕРИМЕНТАЛЬНЫЕ РЕЗУЛЬТАТЫ

Число взаимодействующих нуклонов

Введем величину Q, определяемую как $Q = n_{+} - n_{-} - (n_{p}^{5} + n_{t}^{5})$, где $n_{+}(n_{-})$ – число положительно (отрицательно) заряженных частиц, n_{p}^{5} – число фрагментов – спектаторов от налетающего ядра, n_{t}^{5} – число опектаторных фрагментов ядра-мишени. Фрагментами ядра-онаряда считаются одно – или многозарядные частицы с импульсом P > 3 ГэВ/с и углом вылета $\theta < 4^{\circ}$. Фрагментами мишени считаются все заряженные барионы, имеющие пробег в камере меньше 4 см (P< <300 МэВ/с для протонов).

Как оледует из закона сохранения заряда, независимо от того, каким именно образом взаимодействуют нуклоны налетающего ядра с нуклонами ядра-мишени, суммарный заряд вторичных частиц, за исключением спектаторов, должен равняться числу протонов, принявших участие во взаимодействии. Следовательно, Q равняется числу взаимодействующих протонов.

В таблице предотавлены оредние числа взаимодействующих протонов в столкновениях лёгких яцер d'. Не, С с углеродом, взятие из работи /20/, и многонуклонных СС – взаимодействиях. Здесь же приведено среднее число протонов – участников, полученное в рамках ДКМ с учётом экспериментальных условий наблюдения.

Воледствие того, что оталкивеющиеся ядра имеют одинаковсе число протонов и нейтронов, среднее число взаимодействующих нуклонов $\langle v \rangle$ равно 2 $\langle Q \rangle$.В таблице показаны $\langle v \rangle$ для различных налетающих ядер.

Зависимость множественности 77 - мезонов от числа взаимодействующих протонов

В ядро-яцерных взаимодействиях Q изменяетоя в пределах $0 \le Q \le Z_p + Z_t$. Таким образом, события можно разбить на группы, в которых участвуют Q протонов ст снаряда и мишени, а число нейтронов – участников колеблетоя от 0 до $n_p + n_t$. В области $0 \le Q \le I$, очевидно, доминируют взаимодействия нейтронов. А при больших Q, когда во взаимодейотвии участвуют почти все протоны, вероятность того, что при этом будут взаимодействовать и все нейтроны, очень мала. Поэтому в этой области среднее число взаимодействующих протонов долхно превышать ореднее число нейтронов, принявших участие во взаимодействии.

При наших энергиях множественность π^+ – мезонов в pp-взаимодействиях значительно выше, чем в пл – столкновениях, а π^- -мезонов – ниже. Это позволяет судить о соотношении числа pp – и пл – взаимодействий на основе отношений множественностей π^+ – и π^- -мезонов. На рис. I показана зависимость средней множественности идентифицированных π^+ - и π^- - мезонов от Q. Видно, что в области доминирования ил – столкновений (0 $\leq Q \leq I$) множественность π^- -мезонов значительно превышает множественность π^+ – мезонов. При больших Q картина меняется на обратную. Наряду с этим во всех взаимодействиях имеется область изменения Q, где $< n_{\pi^-}(Q) >$ равно

 $\langle n_{\pi^+}(Q) \rangle$ и, следовательно, ореднее число протонов, принявших участие во взаимодействии, равно ореднему числу провзаимодействовавших нейтронов. С увеличением асимметрии по атомному весу оталкивающихся ядер эта область сужается и различие между $\langle n_{J^-}(Q) \rangle$ и $\langle n_{\pi^+}(Q) \rangle$ возрастает.

Зависимость среднего значения множественности **7**-мезонов от Q для различных налетающих ядер показана на рис.2.Для различных ния длапазона изменения массы налетающего ядра та же зависимость показана и для рС-взаимодействий. Отоюда можно оделать следующие выводы:

- для взаимодейотрий с $Q \ge 2$ оредняя множественнооть линейно растет и доотигает плато при значениях $Q \ge \langle N \rangle$. Область линейной зависимости расширяется о увеличением массы ядра-снаряда. Так, для СС-и ССмн – взаимодействий наблюдается практически только линейная зависимость $\langle n_{x}, (Q) \rangle$ от Q. Линейная зависимость $\langle n_{x}, (Q) \rangle$ от Q

уже была зарегистрирована в столкновениях ядер с равными массами Яг + КСС при Е/А=I,8 ГоВ /22/;

- при данном $Q < n_n$. (Q) > возрастаят с ростом атомного веса снаряда. Такое поведение можно объяснить возрастанием числа взаимодействующих нуклонов налатающего ядра. Подтверядением этой гипотезы может служить и оравнение множественностей $< n_{37}$. (Q) > в неупругих СС – столкновениях и в ССмн – взаимодействиях, в которых критерии отбора увеличивают число провзаимодействоваещих нуклонов от налатающего ядра.

Зависимость $\langle n_{3}$ -(9) от Q сравнивается с предсказанием ДКМ на рис.З. Для всех типов взаимодействий ДКМ удовлетеорительно воспроизводит зависимость $\langle n_{3}$ -(9) от Q , хотя и несколько переоценивает значения $\langle n_{3}$ -(9) при больших Q .

Поведение средней множественности идентифицированных 77-мезонов в зависимости от *Q* показано на рис.4. В отличие от 77-ме-

ТАБЛИЦА

Средние значения и дисперсии распределений по числу взаимодействующих протонов Q и нуклонов V в неупругих (d', He, C) C и многонуклонных СС-взаимодействиях

Тип взаимо- действия	d C	НвС	CC	ССмн
< ۵>	1,95±0,08	3,06±0,10	4,32±0,07	8,92±0,05
اکم	1,30±0,02	1,78±0,02	2,88±0,04	I,67±0,03
< ۵>	1,91	2,87	4,26	8,84
< ۷>	3,90±0,16	6,12±0,20	8,64±0,14	I7,84±0,I0

Рис.І. Зависимость < n_π-(Q)> и < n_π+(Q)> от Q в d C-, НеС-, СС- и ССмн – взаимодействиях.

Рис.2. Зависимость средней множественности *П*-мезонов от *Q* для неупругих (р, *d*, Не, С) С и многонуклонных СС-взаимодействий. Линии проведены от руки.

4

зонов, вое экспериментальные точки для π^+ – мезонов хорошо "ложатся" на одну прямую, не зависящую от налетающего ядра. Такое различие зависимостей средних множественностей π^+ – и π^- мезонов от Q связано, по-видимому, с тем, что при больших Q доминируют рр-соударения, в которых вероятность образования π^+ – мезонов оущественно выше, чем π^- . Средняя множественнооть π^- -мезонов растет только до тех пор, пока растёт число протонов, принимавших участие в переичном взаимодействии, т.е. до $Q \approx 1,5$ Ар, а оредняя множественнооть π^+ -мезонов растёт во всем интервале изменения Q.

Рис.3. Сравнение экспериментально полученной зависимости $\langle n_{\pi} \cdot (Q) \rangle$ от Q в d C-, HeC-, CCи ССмн – взаимодействиях с расчетами по ДКМ.

Рис.4. Средняя множественность **п**⁺-мезонов как функция **Q** для pC-, C-, HeC-, CC- и ССмн взаимодействий.

Зависимость средних импульсных и угловых характеристик *т*-мезонов и протонов от числа взаимодействующих протонов

На рис.5 и 6 представлены средние значения импульса < P>, продольной быстроты < Y> поперечного импульса < P> и угла вылета

< 0> п⁻-мезонов и протонов во взаимодействиях (d, He, C) С и ССмн как функции числа взаимодействующих протонов.Эти зависимости характеризуются следующими особенностями:

- в dC-и HeC - взаимодействиях $\langle P \rangle^{T}$ и $\langle P \rangle^{T}$ и $\langle P \rangle^{T}$ уменьшаются с возрастанизм Q, в то время как $\langle \Theta \rangle^{T}$ возрастает. Причем изменения для dC более значительные, чем для НеС;

- в СС - столкновениях оредние значения кинематических величин π⁻-мезонов не зависят от числа взаимодействующих протонов при Q≥2:

dC

Рис.5. Средние значения импульсов (а), биотрот (б), поперечных импульсов (в) и угла вылета (г) — мезонов, рожденных в (d, не, СС) С – неупругих и СС –многонуклонных езаимоцейотвиях в зависимости от числа взаимодействующих протонов в собнтии.

6

Рис. 6. Средние значения импульсов (а), быстрот (б), поперечных импульсов (в) и угла вылета (г) протонов, образованных в (d ,He,C) C - неупругих и CC - многонуклонных взаимопействиях в зависимости от чиола взаимодействующих протонов в осбытии.

- в многонуклонных СС -взаимодайствиях поведения $\langle P \rangle^{\overline{J}}, \langle Y \rangle^{\overline{J}}, \langle P \rangle^{\overline{J}}$ $\langle P \rangle^{\overline{J}}$ и $\langle \Theta \rangle^{\overline{J}}$ в зависимости от Q подобно их поведению в d С-и НаСстолкновениях:

- зависимости $\langle p \rangle$, $\langle Y \rangle$ и $\langle \theta \rangle$ протонов от Q ведут себя так же, как и для m^{-} мезонов; - $< p_{1} > p_{2}$ в отличие от $< p_{1} > p_{2}$ растёт с увеличением Q

пля всех тинов взаимонействий.

Гистограммами на рис.5 и 6 изображены результаты расчётов по ДКМ. Для всех типов взаимоцействий модель качественно описывает зависимости $\langle P \rangle$, $\langle Y \rangle$ и $\langle 9 \rangle \pi$ -мезонов и протонов от Q.Однако имеются некоторые раскождения между экспериментальными точками и вычисленными значениями, которые уменьшаются с возрастанием масон ядра-снаряда.

Наибольшие трудности модель испытывает при описании зависимости среднего поперечного импульса от Q .Для протоное не достигает-Ся даже качаственного согласия с экопериментом. Связано это, по-види-МОМУ, О ТЕМ. ЧТО В МОДЕЛИ НЕ УЧИТЫВАЮТСЯ ВЗАИМОЛЕЙСТВИЯ ЧАСТИЦ В В КОНЕЧНОМ СОСТОЯНИИ. В ЯДОО-ЯДЕРНЫХ ЕЗЗИМОДЕЙСТВИЯХ. КОГДА В ядерном объеме скапливается много движущихся нуклонов. этот процесс оказывает существенное влияние именно на поперечный импульс вторичных частиц.

JAKIIOYEHNE

~ II300 событий изучалось образования На общей статистике пионов и протонов в наупругих d C- ⁴HaC-. CC - и многонуклонных СС - взаимодейотвиях.Полученные эконериментальные результаты сравнивалиоь с расчётами по дубненской каскадно-иопарительной модели.

В рамках данного, полуинклюзивного, подхода существенное расхождение меклу пасчётами по ЛКМ и экопериментальными данными обнаружены только для зависимости ореднего поперечного импульса я -мезонов и ссобенно протонов от числа взаимодействующих протонов в событии. Вароятная всего, это расхождения является оледотвиям того, что в модели не учтены взаимодействия движущихся вторичных частиц между собой. Таков приближение, вподне допустимов для адрон-ядерных столкновений. по-видимому, не определено из-за наличия большого числа движущихся частии. сооредоточенных в ядерном объеме.

Однако возможно, что наблюдазмые расхождания овидствльствуют о существовании и каких-либо других явлений, имеющих место при ядро-ядерных отолжновениях и не учитываемых ДКМ. Для выяснения этого вопроса необходимы дальнейшие исследования.

8

Авторы выражают свою глубокую благодарность техническому персоналу двухметровой пропановой камеры и лаборантам сотрудничества за помощь в получении и обработке экспериментального материала, участникам сотрудничества по обработке онимков с двухметровой пропановой камеры за ряд полезных замечаний и обоуждений.

ЛИТЕРАТУРА

- 1. A.R. Bodmer. Phys.Rev., <u>D4</u>, 1974, 1601.
- 2. T.D. Lee, G.C. Wick. Phys.Rev., <u>D9</u>, 1974, 2291.
- 3. T.D. Lee. Rev.Mod.Phys., <u>47</u>, 1976 and references therein.
- 4. W.Weise, G.E. Brown. Phys.Reports, <u>27C</u>, 1976, 1 and references therein.
- 5. A.F. Migdal. Rev.Mod.Phys., <u>50</u>, 1978, 107 and references therein.
- 6. V. Ruck, M. Cyulassy, W. Greiner. Z. Phys., A277, 1979, 391.
- 7. Г.Г.Бунатян. ИФ,т.34,с.1328,1979.
- C.F. Chapline, H.H. Yohnson, E. Teller, and M.S. Weiss. Phys.Rev., <u>D8</u>, 1973, 4302.
- 9. M. Gyulassy, W. Greiner. AnnPhys., 109, 1977, 485.
- H. Stocker, J. Maruhn, W. Greiner. Z. Phys., <u>A286</u>, 1978, 121; Phys.Lett., <u>81B</u>, 1979, 303.
- M. Jacob, J. Tran Than Van (Editors). Phys.Rep., <u>E8</u>, 1982, 321 and references therein.
- 12. E. Anderson, I. Otterlund and E. Stenlund. Phys.Lett., <u>73B</u>, 1979, 343.
- 13. M.K. Hegab and J. Hufner. Nucl. Phys., <u>A384</u>, 1982, 353.
- 14. N. Suzuki. Prog. Theor. Phys., 67, 1982, 571.
- 15. D. Rees et al. Z. Phys., C17, 1983, 95.
- 16. К.К.Гудима, В.Д. Тоневв. МФ, т. 27, с. 658, 1978.
- 17. H.N. Agakishiev et al. Z.Phys., C27, 1985, 177.
- 18. Г.Н.Агакишизе и др. ЯФ,т. 38, с. 152, 1983.
- 19. Г.Н.Аганишивь и др. ОИНИ, РІ-83-662, Дубна, 1983.
- 20. Д.Армутлийски и др. ОИМИ, РІ-86-263, Дубна, 1986.
- 21. Н.Ангелов и др. НФ, т. 30, с. 1590, 1979.
- 22. A. Sandoval et al. Phys.Rev.Lett., 45, 1980, 874.

Рукопись поступила в издательский отдел 17 июня 1986 года.

НЕТ ЛИ ПРОБЕЛОВ В ВАШЕЙ БИБЛИОТЕКЕ?

:

Вы можете получить по почте перечисленные ниже книги,

если они не были заказаны ранее.

д 2- 82-568	Труды совещания по исследованиям в области релятивистской ядерной физики. Дубна, 1982.	1 р. 75 к.
д9-82-664	Труды совещания по коллективным методам ускорения. Дубна, 1982.	3 р. 30 к.
ДЗ,4-82-704	Труды IV Международной школы по нейтронной Физике. Дубна, 1982.	5 p. 00 ĸ.
Д11-83-511	Труды совещания по системам и методам аналитических вычислений на ЭВМ и их применению в теоретической физике. Дубна, 1982.	2 р. 50 к.
Д7-83-644	Труды Международной школы-семинара по физике тяжелых ионов. Алушта, 1983.	6 p. 55 K.
Д2,13-83-689	Труды рабочего совещания по проблемам излучения и детектирования гравитационных волн. Дубна, 1983.	2 р. 00 к.
Д13-84-63	Труды XI Неждународного симпозиума по ядерной электронике. Братислава, Чехословакия, 1983.	4 р. 50 к.
д2-84-366	Труды 7 Международного совещания по проблемам квантовой теорим поля. Алушта, 1984.	4 p. 30 k
Д1,2~84-599	Труды VII Международного семинара по пробленам Физики высоких энергий. Дубка, 1984.	5 p. 50 ĸ.
Д17-84-850	Труды Ш Международного симпозиума по избранным проблемам статистической механики. Дубна,1984. /2 тома/	7 p. 75 ĸ.
дто,11-84-818	Труды V Международного совещания по про- блемам математического моделирования, про- граммированию и математическим методам реше- ния физических задач. Дубна, 1983	3 р. 50 к.
	Труды IX Всесоюзного совещания по ускорителям заряженных частиц. Дубна, 1984 /2 тона/	13 р.50 к.
Д4-85-8 5 1	Труды Международной школы по структуро ядра, Алушта, 1985.	3 р. 75 к.
д11-85-791	Труды Международного совещания по аналитическим вычислениям на ЭВМ и их применению в теоретиче- ской физике. Дубна,1985.	4 p.
ді 3-85-793 [°]	Труды .XП Мождународной симпозиума по я́дерной электронике. Дубна 1985.	, 4 р. 80 к.
		,

Заказы на упомянутые книги могут быть направлены по адресу: 101000 Москвя, Главпочтамт, п/я 79 Издательский отдел Объединенного института ядерных исследований

ТЕМАТИЧЕСКИЕ КАТЕГОРИИ ПУБЛИКАЦИЙ ОБЪЕДИНЕННОГО ИНСТИТУТА ЯДЕРНЫХ ИССЛЕДОВАНИЙ

Индек	с Тематика
1.	Экспериментальная физика высоких энергий
2.	Теоретическая физика высоких энергий
3.	Экспериментальная нейтронная физика
4.	Теоретическая физика низких энергий
5.	Математика
6.	Ядерная спектроскопия и радиохимия
7.	Физика тяжелых ионов
8.	Криогеника
9.	Ускорители
10.	Автоматизация обработки экспериментальных данных
11.	Вычислительная математика и техника
12.	Химия
13.	Техника физического эксперимента
14.	Исследования твердых тел и жидкостей ядерными методами
15.	Экспериментальная физика ядерных реакций при низких энергиях
16.	Дозиметрия и физика защиты
17.	Теория конденсированного состояния
18.	Использование результатов и методов фундаментальных физических исследований в смежных областях науки и техники
19.	Биофизика

Агакишиев Г.Н. и др. P1-86-370 Анализ поведения "Т-мезонов и протонов, рожденных в ядро-ядерных взаимодействиях при импульсе 4,2 ГэВ/с на нуклон в зависимости от числа протонов, принявших участие во взаимодействии

На основе метода двухметровой пропановой камеры изучалось образование пионов и протонов в неупругих взаимодействиях dC, HeC, CC, а также многонуклонных CC-столкновениях при импульсе 4,2 ГэВ/с на нуклон.Использовано понятие суммарного заряда события (Q) для определения числа взаимодействующих протонов. Множественность π -мезонов, импульсные и угловые характеристики π^- -мезонов, импульсные и угловые характеристики π^- -мезонов. Полученные данные сравнивались с расчетами, проведенными в рамках дубненской каскадно-испарительной модели /ДКМ/. Показано, что ДКМ качественно воспроизводит зависимости средних значений импульсов <P>, быстроты <Y> и угла вылета < θ > π^- -мезонов и протонов от Q в наблюдаемых взаимодействиях. Имеющиеся расхождения между вычисленными и экспериментально полученными значениями уменьшаются с возрастанием массы-снаряда. Модель плохо описывает зависимость среднего поперечного импульса $<P_{\perp}$ > π^- -мезонов от Q и для протонов те достигает даже качественного согласия при воспроизведении зависимости $<P_{\perp}$ > от Q.

Работа выполнена в Лаборатории высоких энергий ОИЯИ.

Препринт Объединенного института ядерных исследований. Дубна 1986

Перевод Л.Н.Барабаш

4

Agakishiev G.N. et al.

P1-86-370

Analysis of Behaviour of "-Mesons and Protons Produced in Nucleus-Nucleus Interactions at 4.2 GeV/c per Nucleon Depending on the Number of Interacting Protons

The produced of pions and protons in inelastic dC ,HeC ,CC and also multinucleon CC interactions at 4.2 GeV/c per nucleon has been studied by the 2m propane bubble chamber method. The concept of summary charge of (Q) event is used to define the number of interacting protons. The π -meson multiplicity, momentum and angular characteristics of π -mesons and protons have been analysed depending on the number of interacting protons. The data obtained are compared with DCM calculations. The Q dependence of the average <P> momentum, <Y> rapidity and <P> emission angle of π -mesons and protons in the collisions observed is reproduced qualitatively by the Dubna cascade-evaporation model. Differences available in the calculated and experimentally obtained values reduce with increasing the projectile mass. The model decribes badly the Q dependence of the average <P_1> transverse momentum of π -mesons and does not even agree qualitatively in the reproduction of the <P_1> dependence on Q for protons.

The investigation has been performed at the Laboratory of High Energies, JINR.

Preprint of the Joint Institute for Nuclear Research. Dubna 1986