

P1-86-251

ЦЬ

Д.К.Копылова, В.Б.Любимов, В.Ф.Никитина, Р.Тогоо, У.Д.Шеркулов*

АЗИМУТАЛЬНЫЕ КОРРЕЛЯЦИИ КУМУЛЯТИВНЫХ АДРОНОВ С ВТОРИЧНЫМИ ЧАСТИЦАМИ В рС-ВЗАИМОДЕЙСТВИЯХ ПРИ 10 ГэВ/с

Ň

Самаркандский государственный университет

введение

1. Обнаружение каких-либо корреляций в hA -взаимодействиях кумулятивного типа дает информацию о механизме таких взаимодействий. Существующие в настоящее время скудные сведения о корреляциях во всех неупругих hA -взаимодействиях^{1-7/}, особенно об азимутальных корреляциях^{8-10/},не позволяют пока еще прояснить вопрос о роли локально-коллективных эффектов в hA столкновениях. Практически отсутствует информация о корреляциях в hA -взаимодействиях, сопровождающихся испусканием кумулятивных мезонов, а имеющиеся данные по корреляциям в столкновениях с испусканием кумулятивных барионов не могут прояснить ситуацию в целом^{5,8,9/}.

2. В настоящей работе, которая выполнена на основе снимков с двухметровой пропановой камеры ЛВЭ ОИЯИ, облученной протонами на синхрофазотроне ЛВЭ, исследовались азимутальные корреляции в pC -взаимодействиях при $P_p = 10$ ГэВ/с, сопровождающихся вылетом кумулятивных π^+ -мезонов и протонов. На этих снимках производился поиск событий, сопровождающихся испусканием к заднюю полусферу /ЗП/ лабораторной системы координат /ЛСК/, ограниченную углами $\theta \ge 135^\circ$, π^+ -мезонов с $P_{\pi} > 200$ МэВ/с и протонов с $P_{\pi} > 380$ МэВ/с / θ - угол испускания рассматриваемого адрона в ЛСК/. Всего для анализа было использовано = 2,5 тысяч таких событий^{*}. Эта статистика позволила получить данные об ази-мутальных корреляциях кумулятивных адронов с вторичными части-цами. Для изучения азимутальных корреляций между кумулятивными адронами имеющейся статистики событий оказалось недостаточно.

В качестве кумулятивных адронов рассматривались π^{-} -мезоны и протоны, испущенные либо в полный интервал телесных углов ЗП, либо в интервал углов с $\theta \ge 135^{\circ}$. Причем π^{\pm} -мезоны должны были иметь значение кумулятивного числа $\beta^{\circ} > 0,6$, а протоны – $\beta^{\circ} > 1,4$. Здесь $\beta^{\circ} = (E - P_{\parallel}) / m_{N}$, E и P_{\parallel} – полная энергия и продольный импульс рассматриваемого адрона, m_{N} – масса нуклона . Результаты для азимутальных корреляций, полученных для кумулятивных адронов, взятых в интервале телесных углов ЗП $\theta \ge 135^{\circ}$ и в полном интервале углов ЗП, совпали. Поэтому в дальнейшем, в основном, приводятся данные, относящиеся к кумулятивным адронам в полном интервале телесных углов ЗП, так как статистика событий в этом случае оказалась несколько большей.

^{*} Подробности отбора и анализа событий можно найти в^{/11/}.

Таблица 1

3. Изучены азимутальные корреляции кумулятивных адронов с лидирующими вторичными адронами, протонами, испущенными в переднюю полусферу /ПП/ и заднюю полусферу ЛСК, и π^+ -мезонами ПП и ЗП. Для этого анализировались распределения по разности азимутальных углов /углов в плоскости, перпендикулярной направ-лению первичной частицы/ кумулятивного адрона с соответствующей вторичной частицей ($\Delta\phi$). Вторичные частицы в ЗП были взяты не-кумулятивного типа, то есть для пионов должно было быть $\beta^\circ < 0.6$, а для протонов – $\beta^\circ < 1,4$. Из соображений надежной идентификации импульсы вторичных π^+ -мезонов в ПП были ограничены значением $P_{\pi} = 0,8$ ГэВ/с, вторичных протонов – $P_p = 0,7$ ГэВ/с. В качестве лидирующего адрона рассматривалась положительная или отрицательная частица, имеющая наибольший импульс соответственно среди всех положительных или отрицательных частиц каждого события.

4. Для каждого варианта анализа азимутальных корреляций были получены фоновые распределения разностей азимутальных углов выбранных пар адронов, рассчитанные способом случайной выборки значений азимутальных углов из экспериментально измеренных азимутальных распределений этих адронов /фон случайных комбинаций фон СК/. В этих расчетах учитывались также распределения по множественности рассматриваемых адронов. В каждом случае фон СК был получен с использованием не менее 10 тысяч комбинаций.

5. Полученные данные по азимутальным корреляциям представлены в виде таблиц /табл.1÷5/, в которых приведена статистика рассматриваемых комбинаций и значения величины отклонения (δ) среднего значения разности азимутальных углов ($<\Delta \phi >$) от ожидаемого для случая симметричных распределений ($<\Delta \phi > = \pi/2$). В таблицах приведены также значения величины δ для фоновых распределений. В некоторых случаях полученные результаты иллюстрируются рисунками.

РЕЗУЛЬТАТЫ

1. Данные по азимутальным корреляциям кумулятивных адронов с лидирующими частицами приведены в табл.1. Видно, что с лидирующими адронами коррелируют кумулятивные протоны, причем с положительно заряженными лидирующими адронами. Распределения по разности азимутальных углов в этом случае вместе с фоном СК показаны на рис.1а. Проведенный анализ показал, что с ростом импульса вторичной положительной частицы отмеченные корреляции усиливаются /не проиллюстрировано/.

Из данных табл.1 следует, что в пределах имеющейся точности кумулятивные π^{\pm} -мезоны с лидирующими адронами не коррелируют.

Данные по азимутальным корреляциям кумулятивных адронов с лидирующими частицами

Кумулятив- ный адрон	Знак лидирую- щей час- тицы	Чис ло комбина— ций	Ś	
			эксперимент	фон
	+	II04	0,09 <u>+</u> 0,03	0,005 <u>+</u> 0,007
р 	<u> </u>	396	0,08±0,04	0,001±0,007
π	+	266	0,03 <u>+</u> 0,06	0,007±0,007
		69	0,18±0,11	0,007±0,007
	· +	305	0, 04 <u>+</u> 0,05	0,006±0,007
	-	89	0,07 <u>±</u> 0,10	0,008±0,007

Рис.1.Распределение значений разностей азимутальных углов: а/ между кумулятивными протонами и лидирующими положительными частицами; б/ между кумулятивными протонами и протонами, испущенными в ПП ЛСК; в/ между кумулятивными протонами и вторичными протонами в ЗП ЛСК. Фоновые распределения обозначены пунктиром.

Таблица 4

2. В табл.2 приведены результаты по азимутальным корреляциям кумулятивных адронов с протонами, испущенными в ПП. Видно, что коррелированное по азимутальным углам испускание протонов в ПП происходит с кумулятивными протонами. Соответствующие распределения показаны на рис.16.

Таблица 2

Кумулятив- ный адрон `	Число	δ		
	комоднации	эксперимент	фон	
p	1861	0,13 <u>+</u> 0,02	0,002±0,006	
π-	405	0,04 <u>+</u> 0,04	0,000 <u>±</u> 0,006	
π^+	424	0,05 <u>+</u> 0,04	0,002 <u>±</u> 0,006	

Данные по азимутальным корреляциям кумулятивных адронов с протонами, испущенными в переднюю полусферу ЛСК

Таблица З

Кумулятив-	Чис ло комбинаций	δ	δ		
най адрон	экспвримент		фон		
p	513 .	0,I0 _± 0,04	0,001±0,007		
π	102	0,16 <u>+</u> 0,08	0,002 <u>+</u> 0,007		
π^+	130	0,14 <u>+</u> 0,08	0,001 <u>+</u> 0,007		

Имеются указания на коррелированное по азимутальным углам испускание кумулятивных протонов с протонами ЗП /имеющих значение $\beta^{\circ} < 1, 4/$. Эти данные приведены в табл.3 и показаны на рис.1в. Из табл.2 и 3 видно, что в пределах двухкратных ошибок отсутствуют азимутальные корреляции кумулятивных π^{\pm} -мезонов с протонами как передней, так и задней полусфер.

3. Результаты по азимутальным корреляциям кумулятивных адронов с π^+ -мезонами передней и задней полусфер приведены в табл.4 и 5. Отметим, что корреляции кумулятивных адронов

Данные по азимутальным корреляциям кумулятивных адронов с *п*-мезонами

Куму дя-	муля- вный рон угол испуска- ния л -мезона		Число	δ	
адрон			комоинации	экспэримент	фон
	<	90 ⁰	1215 ^x	0,03 <u>+</u> 0,03	0,001 <u>±</u> 0,006
, p	>	90 ⁰	126	0,14 <u>+</u> 0,07	0,003 <u>+</u> 0,007
π ⁻ 	~ ~	90 ⁰ 90 ⁰	163 ^x 261 ^x	0,0I±0,07 0,04±0,06	0,000 <u>±</u> 0,007 0,000 <u>±</u> 0,007

^х В этих случаях кумулятивный адрон был взят в интервале углов ЗП с $\theta > 135^{\circ}$.

Таблица 5

Данные по азимутальным корреляциям кумулятивных адронов с π^+ -мезонами

Кумулятив- ный адрон	Угол испускания	Число комбина- ций	δ	
	π ⁺ -мезона		эксперимент	фон
	~ 90 ⁰	905	0,66 <u>+</u> 0,03	0,000 <u>+</u> 0,006
P	> 90 ⁰	I35	0,12 <u>+</u> 0,08	0,000±0,007
π-	~ 90 ⁰	230	0,03 <u>+</u> 0,06	0,0II _± 0,007
n^+	∠ 90 ⁰	. 254 -	0,03 <u>+</u> 0,06	0,016±0,007
			•	

с π^{-} -мезонами ЗП удалось исследовать только для случая кумулятивных протонов. Для кумулятивных π^{+} -мезонов статистика соответствующих комбинаций оказалась недостаточной для каких-либо выводов /20÷50 комбинаций/, поэтому данные по азимутальным^{*} корреляциям кумулятивных π^{\pm} -мезонов с вторичными π^{\pm} -мезонами ЗП мы не приводим.

Как видно из табл.4 и 5, в пределах двухкратных ошибок не наблюдаются отличия экспериментально измеренных значений δ от 0, то есть азимутальные корреляции кумулятивных адронов с вторичными π^{\pm} -мезонами, по-видимому, отсутствуют.

Данные по азимутальным корреляциям кумулятивных адронов с протонами, испущенными в заднюю полусферу ЛСК

выводы

1. Наблюдается коррелированное по азимутальным углам испускание кумулятивных протонов с лидирующими положительными частицами, а также с вторичными протонами, испущенными как в переднюю, так и в заднюю полусферы ЛСК.

2. Корреляций кумулятивных протонов с вторичными π^{\pm} -мезонами не обнаружено.

3. Не обнаружено корреляций кумулятивных π^{\pm} -мезонов с лидирующими адронами, вторичными π^{\pm} -мезонами и протонами.

Авторы благодарны коллективу сотрудничества по обработке снимков с двухметровой пропановой камеры. за обсуждение полученных результатов, а также А.П.Чеплакову за помощь в составлении программы расчета фона.

ЛИТЕРАТУРА

- 1. Гулямов К.Г. и др. ЭЧАЯ, 1978, т.9, с.554.
- 2. Аношин А.И. и др. ЯФ, 1982, т.36, с.409.
- 3. Любимов В.Б. и др. ОИЯИ, Р1-82-363, Дубна, 1982.
- 4. Ангелов Н. и др. ЯФ, 1977, т.26, с.1029; ЯФ, 1980, т.32, с.1589.
- 5. Баюков Ю.Д. и др. ЯФ, 1981, т.34, с.1511.
- 6. Абдинов О.А. и др. ОИЯИ, Р1-81-469, Дубна, 1981.
- 7. Арефьев А.В. и др. Препринт ИТЭФ-51, М., 1978; ЯФ, 1978, т.27, с.716.
- 8. Азимов С.А. и др. ЯФ, 1985, т.41, с.149.
- 9. Баюков Ю.Д. и др. Препринт ИТЭФ-53, М., 1985; Препринт ИТЭФ-126, М., 1984.
- 10. Гришин В.Г. и др. ЯФ, 1981, т.33, с.371.
- 11. Армутлийски Д. и др. ОИЯИ, Р1-83-327, Дубна, 1983.

Рукопись поступила в издательский отдел 18 апреля 1986 года.

НЕТ ЛИ ПРОБЕЛОВ В ВАШЕЙ БИБЛИОТЕКЕ?

Вы можете получить по почте перечисленные ниже книги,

если они не были заказаны ранее.

Д17-81-758	Труды II Международного симпозиуна по избранным проблемам статистической механики. Дубна, 1981.	5 p. 40 ĸ.
P18-82-117	Труды IV совещания по использованию новых ядерно- физических методов для решения научно-технических и народнохозяйственных задач. Дубна, 1981.	3 р. 80 к.
д2-82-568	Труды совещания по исследованиям в области релятивистской ядерной физики. Дубна, 1982.	îр. 75 к.
Д9-82-664	Труды совещания по коллективным методам ускорения. Дубна, 1982.	3 р. 30 к.
A3,4-82-704	Труды IV Леждународной школы по нейтронной физике. Дубна, 1982.	5 p. 00 ĸ.
Д11-83-511	Труды совещания по системам и методам. аналитических вычислений на ЭВМ и их применению в теоратической физике. Дубна, 1982.	2 p. 50 ĸ.
д7-83-644	Труды Международной школы-семинара по физике тяжелых ионов. Алушта, 1983.	6 р. 55 к.
Д 2,13-83- 689	Труды рабочего совещания по проблемам излучения и детектирования гравитационных волн. Дубна, 1983.	2 p. 00 ĸ.
Д13-84-63	Труды XI Неждународного симпозиума по ядерной электронике. Братислава, Чехословакия, 1983.	4 р. 50 к.
Д2- 84 - 366	Труды 7 Неждународного совещания по проблемам квантовой теории поля. Алушта, 1984.	4 р. 30 к.
д1,2-84-599	Труды VII Международного семинара по проблемам Физики высоких знергий. Дубна, 1984.	5 p. 50 ĸ.
д17-84-850	Труды Ш Международного симпозиума по избранным проблемам статистической механики. Дубна,1984. /2 тома/	7 p. 75 ĸ.
д10,11-84-818	Труды V Международного совещания по про- блемам математического моделирования, про- граммированию и математическим методам реше- ния физических задач. Дубна, 1983	3 р. 50 к.
	Труды IX Всесоюзного совещания по ускорителям заряженных частиц. Дубна, 1984 /2 тома/	13 p.50 ĸ.
д 4-85-851	Труды Международной школы по структуре ядра, Алушта, 1985.	- 3 р. 75 к.

Заказы на упомянутые книги могут быть направлены по адресу: 101000 Москва, Главпочтамт, п/я 79 Издательский отдел Объединенного института ядерных исследований

ТЕМАТИЧЕСКИЕ КАТЕГОРИИ ПУБЛИКАЦИЙ ОБЪЕДИНЕННОГО ИНСТИТУТА ЯДЕРНЫХ ИССЛЕДОВАНИЙ

Индекс	Тематика
1	2
1.	экспериментальная физика высоких энергий -
2.	Георетическая физика высоких энергий
3.	Экспериментальная нейтронная физика
4.	Теоретическая физика низких энергий
5.	Математика
6.	Ядерная спектроскопия и радиохимия
7.	Физика тяжелых ионов
8.	Криогеника
9.	Ускорители
10.	Автоматизация обработки экспериментальных данных
11.	Вычислительная математика и техника
12.	Химия
13.	Техника физического эксперимента
14.	Исследования твердых тел и жидкостей ядерными методами
15.	Экспериментальная физика ядерных реакций при низких энергиях
16.	Дозиметрия и физика зажиты
17.	Теория конденсированного состояния
18.	Использование результатов и методов фундаментальных физических исследований в смежных областях наукм и техники
19.	Биофизика

Копылова Д.К. и др. P1-86-251 Азимутальные корреляции кумулятивных адронов с вторичными частицами в pC-взаимодействиях при 10 ГэВ/с

В отобранных на снимках с двухметровой пропановой камеры кумулятивных pC-взаимодействиях при P_p = 10 ГэВ/с исследовались распределения по разности азимутальных углов кумулятивных адронов /протоны и π⁺-мезоны/ и остальных вторичных частиц /протоны π[±]-мезоны, лидирующие адроны/. Найдено коррелированное по азимутальным углам испускание кумулятивных протонов с протонами каждого события и с положительными лидирующими адронами. Азимутальных корреляций кумулятивных π[±]-мезонов со всеми рассмотренными частицами не обнаружено.

Работа выполнена в Лаборатории высоких энергий ОИЯИ.

Сообщение Объединенного института ядерных исследований. Дубна 1986

Перевод О.С.Виноградовой

۲

Kopylova D.K. et al. P1-86-251 Azimuthal Correlations of Cumulative Hadrons with Secondary Particles in pC-Interactions at 10 GeV/c

The distributions over differences of azimuthal angles of cumulative hadrons (protons and π^{\pm} -mesons) and other secondary particles (protons, π^{\pm} -mesons, leading hadrons) are investigated in the selected cumulative pC-interactions at P_p= 10 GeV/c on the pictures from the 2-meter propane bubble chamber. The emission of cumulative protons correlated on azimuthal angles with protons of every event and with the positive leading particles has been found. Azimuthal correlations of cumulative π^{\pm} mesons with all considered particles were not found.

The investigation has been performed at the Laboratory of High Energies, JINR.

Communication of the Joint Institute for Nuclear Research. Dubna 1986