86 - 151

совбщения объединенного института ядерных исследования дубна

P1-86-151

Ю.А.Яцуненко

ОПРЕДЕЛЕНИЕ КООРДИНАТНЫХ ПАРАМЕТРОВ ДРЕЙФОВЫХ КАМЕР

1986

Эффективное использование дрейфовых камер /ДК/ в физических установках требует надежного определения /и контроля/ параметров ДК, определяющих систему координат $\mathbf{x}(\mathbf{z})$ / \mathbf{x} - измеряемая координата, \mathbf{z} - направление пучка регуистрируемых частиц/ и точность измерения характеристик регистрируемых треков (A, B; $\mathbf{x} =$ $= A\mathbf{z} + B$. К наиболее важным параметрам ДК можно отнести следующие: а/ скорость дрейфа электронов -V б/ задержка старта $-T_0$ или порог времяцифрового преобразователя /ВЦП/; в/ направление дрейфа электронов -T (s = \pm 1).

Параметры V, T_0 , s определяют линейную передаточную функцию $x(t) = P + sV(t - T_0)$, /1/

t – измеренное время дрейфа, P – ордината сигнальной проволочки /СП/.

Традиционно эти параметры определяются на стендах или с помощью дополнительных трековых детекторов /например, пропорциональных камер $2^{2'}$ или в результате многопроходового анализа трековой информации эксперимента $3^{2'}$

В данной работе рассматривается возможность относительно быстрого и простого определения параметров ДК, основанная на анализе регистрируемых t - дрейфа и на конструкционных особенностях ДК /нерегулярное по z расположение СП - типичное, в шахматном порядке/.

Основой предлагаемого способа является более подробный формализм хорошо известного метода наименьших квадратов: для набора экспериментальных точек x_n, n = 1,2,..., N нахождение аппроксимирующей Прямой

$$\mathbf{X}_{\mathbf{n}} \approx \mathbf{A}\mathbf{Z}_{\mathbf{n}} + \mathbf{B}$$

сводится к минимизации по А и В функционала Ф

$$\Phi (A, B) = \sum_{n=1}^{N} (A z_n + B - x)^2 W_n$$

$$\sigma_n^2 = 1/W_n - \text{точность определения } x_n.$$
(3)

Параметры трека /А и В линейно определяются набором х;

$$A = \sum_{n=1}^{N} a_n x_n, \quad B = \sum_{n=1}^{N} b_n x_n, \quad /4;5/$$

объсавленный виститут алерных асследований виблиютека

1

121

$$a_{n} \equiv \frac{z_{n} - \overline{z}}{QD} \quad W_{n}, \quad b_{n} \equiv \frac{\overline{z^{2}} - \overline{z}z_{n}}{QD}, \quad W_{n}, \quad /.6;7/$$

 $Q \equiv \sum_{n=1}^{N} W_n$, $D \equiv \overline{z^2} - \overline{z}^2$

/черта над переменными означает усреднение – $\overline{z} \equiv \frac{\sum z_n W_w}{n=1}$

и т.п./.Весьма полезным для дальнейшего оказывается аналитическое представление Ф в минимуме по А и В относительно х, z

$$\Phi(\mathbf{x}, \mathbf{z}) = \sum_{n=1}^{N} \sum_{m=1}^{N} x_{n} C_{nm} x_{m}, \qquad (8)$$

где

$$C_{nm} = \sqrt{W_n W_m} \delta_{nm} - \frac{W_n W_m}{Q} - W_n W_m \frac{(z_n - \overline{z})(z_m - \overline{z})}{QD} , \qquad /9/$$

матрица C_{nm} обладает свойствами:

$$\mathbf{C}^{\mathrm{T}} = \mathbf{C}$$
 /10a/

C Z = 0 или
$$\sum_{n=1}^{N} C_{nm} z_m = 0, n = 1, 2, ..., N$$
 /10в/

и имеет ранг N-2.

Конструктивным оказывается анализ Φ в представлении /8/ по статистике - ν

$$\Phi = \sum_{\nu=1}^{K} \frac{1}{N_{\nu}^{-2}} \sum_{n,m}^{N_{\nu}} x_{n}(\nu) C_{nm}(\nu) x_{m}(\nu) .$$
 (11/

Статистика /т.е. набор регистрируемых треков/ может распространяться по фиксированному набору сигнальных проволок и /или/ по дрейфовой камере в целом / Φ в представлении /11/ характеризует статистическую фазовую площадь А, В треков/.

На основании представлений /2,8,9,11/ задача определения V, $T_{\!\alpha}\,,\,s$ сводится к минимизации Φ по этим неизвестным. Расссмотрим условия существования решений.

А. Общий случай - каждому дрейфовому промежутку приписываются индивидуальные скорость дрейфа V_n и задержка - T_n, так что

$$\mathbf{x}_n = \mathbf{P}_n + \mathbf{s}_n \mathbf{t}_n \mathbf{V}_n + \mathbf{s}_n \mathbf{F}_n,$$

 P_n - известная координата СП, s_n - известное направление дрей-- определяемая "координатная" задержка. ϕa , $F_n \equiv -V_n T_n$

Минимизируя /11/ для фиксированного набора СП по V_n , F_n , получаем систему 2.N линейных уравнений /черта над символами означает статистическое усреднение/:

$$\sum_{n=1}^{N} C_{\mu n} \frac{t_{n} t_{\mu}}{t_{n} t_{\mu}} s_{n} V_{n} + t_{\mu} \cdot \sum_{n=1}^{N} C_{\mu n} s_{n} F_{n} = -t_{\mu} \sum_{n=1}^{N} C_{\mu n} P_{n}$$
 /12a/

$$\sum_{n=1}^{N} C_{\mu n} \overline{t_n} s_n V_n + \sum_{n=1}^{N} C_{\mu n} s_n F_n = -\sum_{n=1}^{N} C_{\mu n} P_n , \qquad (126)$$

$$\mu = 1, 2, ..., N$$
.

Из системы /12/ выделяются уравнения для V_n

$$\sum_{n=1}^{N} C_{\mu n} \overline{r_n r_{\mu}} s_n V_n = 0$$

$$\tau \equiv t - \overline{t}, \quad \mu = 1, 2, ..., N.$$

Задав одно значение V_n /например, V_N /, можно получить решения для остальных N-1 значений V_n , что подтверждается численным розыгрышем. Следует заметить, что при изучении ДК, например, на стендах, нельзя использовать сильноколлимированные пучки, Т.е. нельзя допускать условия $\tau_n^2 = 0$. Так как ранг C_{nm} равен N-2, то из /12б/ можно определить только N-2 значений F_n , задав два из них.

На практике рассмотренная индивидуальность в V_n и T_n устраняется путем определения для каждой СП коэффициентов преобразования: время дрейфа - код ВЦП, так что для каждой СП измеряемая координата x зависит от точности задания двух величин V, T_{Ω}

$$\mathbf{x}_{n} = \mathbf{P}_{n} + \mathbf{V} \cdot \mathbf{s}_{n} \mathbf{t}_{n} + \mathbf{s}_{n} \cdot \mathbf{F} \quad \mathbf{F} = -\mathbf{V} \cdot \mathbf{T}_{0} \cdot \mathbf{V} \cdot \mathbf{V}_{0} \cdot \mathbf{V}_{0} \cdot \mathbf{V}_{0} \cdot \mathbf{V} \cdot \mathbf{V}_{0} \cdot \mathbf{V}_{0} \cdot \mathbf{V} \cdot \mathbf{V}_{0} \cdot \mathbf{V}_$$

Б. Определение V и F. Минимизируя функционал /11/ по V и F, получаем систему уравнений:

$$V \cdot \sum_{n,m} C_{nm} \overline{s_n s_m t_n t_m} + F \cdot \sum_{n,m} C_{nm} \overline{s_n s_m t_m} = -\sum_{n,m} C_{nm} \overline{s_n t_n P_m}$$

$$V \cdot \sum_{n,m} C_{nm} \overline{s_n s_m t_m} + F \sum_{n,m} C_{nm} \overline{s_n s_m} = -\sum_{n,m} C_{nm} \overline{s_n P_m} .$$

$$(156)$$

Анализ этой системы уравнений показывает, что решения / V и F / существуют в следующих случаях:

2

3

/156/

1 - 1 - 1

а/ для набора из N СП /N \geq 4/ статистика может не превышать одного трека, но:

$$\sum_{m=1}^{N} C_{nm} P_m \neq 0$$
 - для каждого n /16/

/все P_n не должны лежать на одной прямой/;

 $\sum_{m=1}^{N} C_{nm} s_m \neq 0$ /17/

/все направления дрейфа должны отличаться друг от друга/;

б/ для N = 3 достаточно двух различных треков, но надо, чтобы хоть на одной СП был зарегистрирован дрейф как "вверх" /s = -1/, так и вниз /s = +1/; кроме того, чтобы хоть для одного из треков выполнялось условие /16/.

В качестве иллюстрации можно привести результаты определения V и двух "задержек" F_1 и F_2 для дрейфовой камеры, имеющей шахматное расположение СП и большое пролетное расстояние между первыми двумя дрейфовыми плоскостями и последней парой, так что для каждой пары следовало определять свою задержку.

Данной задаче соответствует система из трех уравнений для V, F_1 и F_2 , аналогичная /15/, разрешимая на минимальной статистике из двух треков. В результате последовательного перебора около 6000 событий по паре треков было получено гауссоподобное распределение для V; среднее V = 49,3+0,1 мкм/нс; расчетное значение - V_p = 50 мкм/нс.

Скорость дрейфа и задержки определяются специальным анализом трековой информации эксперимента, направления дрейфа / s = ± 1 / - конструкцией камер, однако могут существовать треки, неоднозначно соответствующие конструкции ДК /в смысле установления знака дрейфа/. Информация в таких случаях может искажаться или теряться. Самый простой путь определения подобных s_n - искать минимальное значение Φ /8/, перебирая каждое s_n /путь - нелучший: для N СП требуется 2^N вычислений Φ /, однако существует возможность прямого вычисления s_n для каждого трека, если знать V,T₀, P_n и измеренные t_n.

В. Будем искать минимальное значение Φ /8/

$$\Phi = \sum_{n,m} \mathbf{x}_n \mathbf{C}_{nm} \mathbf{x}_m,$$

 $x_n = P_n + s_n \cdot \dot{y}_n$, $y_n \equiv V \cdot (t_n - T_0)$

как функцию s_n , считая s_n непрерывными /нас интересует знак $s_n/$, последнее предположение позволяет записать условие минимума Φ в обычной форме $\partial \Phi/\partial s_{\mu}=0$, что дает N-2 линейных уравнений для s_n ;

$$\sum_{n=1}^{N} s_n y_n C_{n\mu} = -\sum_{n=1}^{N} P_n \cdot C_{n\mu},$$
(18a/

Кроме того, можно наложить еще N условий:

$$|\mathbf{s}_{\mu}| = \mathbf{1}, \ \mu = \mathbf{1}, \ 2, \dots, \mathbf{N}.$$
 (186/

Условия /18а/ и /18б/ рассматриваются как система уравнений. К настоящему времени не найдено общего решения /в аналитическом виде/ для s_n при произвольном N, но для практических значений N= 3, N = 4 получены решения, имеющие в 2-3 раза меньшее число арифметических операций по сравнению с упомянутым способом перебора.

$$s_{1} = \frac{u^{2} + u_{1}^{2} - u_{2}^{2} - w_{1}^{2}}{2(u \cdot u_{1} + w_{1} \cdot u_{2})} ,$$

$$s_{2} = \frac{u^{2} + u_{2}^{2} - u_{1}^{2} - w_{1}^{2}}{2(u \cdot u_{2} + w_{2} \cdot u_{1})} ,$$

$$s_{3} = \frac{u^{2} + u_{3}^{2} - u_{4}^{2} - w_{2}^{2}}{2(u \cdot u_{3} + w_{2} u_{4})} ,$$

$$s_{4} = \frac{u^{2} + u_{4}^{2} - u_{3}^{2} - w_{2}^{2}}{2(u \cdot u_{4} + w_{2} \cdot u_{3})} ,$$

ΓДЕ
$$u = F(K, L), K = \{y_n \cdot C_{n1}\}, L = \{y_n \cdot C_{n2}\}$$

 $F(\vec{K}, \vec{L}) = K_1 K_2 L_3 L_4 - L_1 L_2 K_3 K_4$
 $u_n = F(K_n \rightarrow Q, L_n \rightarrow R), n = 1, 2;$
 $u_n = F(L_n \rightarrow R, K_n \rightarrow Q), n = 3, 4;$
 $Q = -\sum_{n=1}^{N} P_n \cdot C_{n1}$ $R = -\sum_{n=1}^{N} P_n \cdot C_{n2};$

/стрелка означает замену компонента K_n , L_n на Q и R соответственно в алгебраической функции /20//;

$$2W_{1} = K_{3}K_{4} \cdot (R^{2} + \vec{L}^{2} - 2L_{3}^{2} - 2L_{4}^{2}) - L_{1}L_{2} \cdot (Q^{2} + \vec{K}^{2} - 2K_{3}^{2} - 2K_{4}^{2})$$

$$W_{2} = K_{1}K_{2} \cdot (R^{2} + \vec{L}^{2} - 2L_{1}^{2} - 2L_{2}^{2}) - L_{3}L_{4} \cdot (Q^{2} + \vec{K}^{2} - 2K_{1}^{2} - 2K_{2}^{2})$$

4

Анализ решений /19/ показывает, что s_n не определены, когда Q = R = 0 /все СП лежат на одной прямой/.

Для N = 3 решения существуют, если $\Phi
eq 0;$

$$s_{n} = \frac{a_{n}^{2} - b_{n}^{2} + Q^{2} \dot{K}_{n}^{2}}{2a_{n} K_{n} Q} , n = 1, 2, 3,$$
 /21/

где $a_n \equiv \frac{Q^2 - \vec{k}^2}{2} + K_n^2$ и $b_n \equiv \frac{K_1 K_2 K_3}{K_n}$.

Численное моделирование /и обработка экспериментальной информации/ подтверждают справедливость решений /19/ и /21/ – для идеальных треков знаки s_n совпадают с задаваемыми /все $|s_n|$ =1/; для треков с "ошибками" в y_n , $|s_n| \neq 1$ и характеризуют отклонение y_n от идеальных значений; знаки s_n совпадают с "действительными" направлениями, если значения y_n превосходят величину ошибки измерений.

Для N > 4 можно все же указать некоторые рецепты определения направлений дрейфа:

а/ "Ортогональность" матрицы С к прямой линии /10в/ /аналог 18а/ йли

$$\sum_{m=1}^{N} C_{nm} x_{m} = 0, \quad n = 1, 2, ..., N$$

эквивалентна известной связи трех координат, лежащих на одной прямой:

$$\mathbf{x}_{n} = \mathbf{a}_{n} \cdot \dot{\mathbf{x}}_{1} + (1 - a_{n}) \cdot \dot{\mathbf{x}}_{N}, \quad \mathbf{a}_{n} \equiv \frac{\mathbf{z}_{N} - \mathbf{z}_{n}}{\mathbf{z}_{N} - \mathbf{z}_{1}}$$

Тем самым задача сводится к решениям типа /21/, однако следует контролировать постоянство знаков "опорных" ${\rm s_1}$ и ${\rm s_N}$ для различных троек.

б/ Исходная система /18/ разбивается на"клетки", и решения ищутся указанными способами /19,21/.

В заключение автор выражает благодарность Л.С.Золину и В.А.Свиридову за поддержку данной работы.

ЛИТЕРАТУРА

1. Горбунов В.К. и др. Препринт ИЯИ АН СССР, П-0103, 1978.

- 2. Герген Э. и др. ОИЯИ, 10-11210, Дубна, 1978.
- 3. Filatova N.A. et al. Nucl.Instr. and Meth. 1977, 143, p.17.

Рукопись поступила в издательский отдел 17 марта 1986 года.

НЕТ ЛИ ПРОБЕЛОВ В ВАШЕЙ БИБЛИОТЕКЕ?

Вы можете получить по почте перечисленные ниже книги,

если они не были заказаны ранее.

Д17-81-758	Труды II Международного симпозиуна по избранным проблемам статистической механики. Дубна, 1981.	5 p. 40 ĸ.
P18-82-117	Труды IV совещания по использованию новых ядерно- физических методов для решения научно-технических и народнохозяйственных задач. Дубна, 1981.	3 р. 80 к.
Д2-82-568	Труды совещания по исследованиям в области релятивистской ядерной физики. Дубна, 1982.	1 p. 75 ĸ.
д9-82-664	Труды совешания по коллективным методам ускорения. Дубна, 1982.	3 р. 30 к.
ДЗ,4-82-704	Труды IV Международной школы по нейтронной Физике. Дубна, 1982.	5 p. 00 x.
Д11-83-511	Труды совещания по системам и методам. аналитических вычислений на ЭВМ и их приненению в теоретической физике. Дубна, 1982.	2 р. 50 к.
д7-83-644	Труды Неждународной школы-семинара по физике тяжелых ионов. Алушта, 1983.	6 р. 55 к.
Д 2, 13-83-689	Труды рабочего совещания по пробленан излучения и детектирования гравитационных волн. Дубна, 1983.	2 р. 00 к.
Д13-8 ⁴ -63	Труды XI Международного симпозиума по ядерной электронике. Братислава, Чехословакия, 1983.	4 р. 50 к.
д2-84-366	Труды 7 Международного совещания по проблемам квантовой теории поля. Алушта, 1984.	4 р . 30 к.
д1,2-84-599	Труды VII Международного семинара по проблемам физики высоких энергий. Дубна, 1984.	5 р. 50 к.
д17-84-850	Труды Ш Международного симпозиума по избранным проблемам статистической механики. Дубна,1984. /2 тома/	7 р. 75 к.
Д10,11-84-818	Труды V Международного совещания по про- Блемам математического моделирования, про- граммированию и математическим методам реше- ния физических задач. Дубна, 1983	3 р. 50 к.
	Труды IX Всесоюзного совещания по ускорителям заряженных частиц. Дубна, 1984 /2 тома/	13 р.50 к.
Д4-85-851	Труды Международной школы по структуре ядра, Алушта, 1985.	Зр. 75 к.

Заказы на упомянутые книги могут быть направлены по адресу: 101000 Москва, Главпочтамт, п/я 79 Издательский отдел Объединенного института ядерных исследований

6

ТЕМАТИЧЕСКИЕ КАТЕГОРИИ ПУБЛИКАЦИЙ ОБЪЕДИНЕННОГО ИНСТИТУТА ЯДЕРНЫХ ИССЛЕДОВАНИЙ

Индекс	Тематика
1.	. Экспериментальная физика высоких энергий
2	. Теоретическая физика высоких энергий
3.	. Экспериментальная нейтронная физика
4.	Теоретическая физика низких энергий
5.	Математика
6.	Ядерная спектроскопия и радиохимия
7.	Физика тяжелых ионов
8.	Криогеника
9.	Ускорители
10.	Автоматизация обработки экспериментальных данных
11.	Вычислительная математика и техника
12.	Химия .
13.	Техника физического эксперимента
14.	Исследования твердых тел и жидкостей ядерными методами
15.	Экспериментальная физика ядерных реакций при низких энергиях
16.	Дозиметрия и физика защиты
17.	Теория конденсированного состояния
18.	Использование результатов и методов фундаментальных физических исследований в смежных областях науки и техники
19.	Биофизика

Яцуненко Ю.А. Определение координатных параметров дрейфовых камер

Предложен метод определения параметров дрейфовых камер: скорость дрейфа – V, задержка старта – T, направление дрейфа – S. Метод основан на аналитическом представлении "хи-квадрата": V, T определяются из систем линейных уравнений, S – нелинейных уравнений. Приведены условия разрешимости систем. Методы проверены при анализе по Monte-Carlo и экспериментальной информации.

P1-86-151

Работа выполнена в Отделе новых методов ускорения ОИЯИ.

Сообщение Объединенного института ядерных исследований. Дубна 1986

Перевод О.С.Виноградовой

Yatsunenko Yu.A. P1-86-151 Determination of Drift Chamber Coordinate Parameters of Drift Chambers

A method for determining the drift chamber parameters (drift velocity - V, start signal delay - T and drift direction - S) are presented. The method is based on analytical form of chi-square for the straight line:V, T may be determined from the system of linear equations and S - from nonlinear system. Conditions for resolving these systems are described. The methods have been successfully tested by Monte-Carlo and experimental data analysis.

The investigation has been performed at the Department of New Acceleration Methods, JINR.

Communication of the Joint Institute for Nuclear Research. Dubna 1986