

P1-86-109

Д.К.Копылова, В.Б.Любимов, В.Ф.Никитина, Р.Тогоо, Д.Тувдендорж, У.Д.Шеркулов*

УГЛОВАЯ ЗАВИСИМОСТЬ ПАРАМЕТРОВ НАКЛОНА ИНВАРИАНТНЫХ ИНКЛЮЗИВНЫХ СЕЧЕНИЙ ОБРАЗОВАНИЯ КУМУЛЯТИВНЫХ АДРОНОВ В рС-ВЗАИМОДЕЙСТВИЯХ ПРИ 10 ГэВ/с И я-С-ВЗАИМОДЕЙСТВИЯХ ПРИ 40 ГэВ/с

^{*} Самаркандский государственный университет

1. В работе исследовалась угловая зависимость значений параметра < β^{0} >, полученных при аппроксимации инвариантных инклюзивных сечений образования кумулятивных π^{-} -мезонов и протонов в pC - и π^{-} C -взаимодействиях /при 10 и 40 ГэВ/с соответственно/ выражением вида

$$\rho \equiv E \frac{d^3 \sigma}{d p^3} = B \exp(-\beta^0 / < \beta^0 >),$$
 /1/

где $\beta^0 = (E - P_{\parallel})/m_N$. Здесь Е и Р – полная энергия и продольный импульс кумулятивного адрона в лабораторной системе координат /ЛСК/, m_N – масса нуклона.

В настоящее время данных по угловой зависимости структурных функций (ρ) кумулятивных адронов $^{/1-5/}$ явно недостаточно. В особенности это относится к случаю образования кумулятивных пионов. Кроме того, сравнение результатов, полученных для адронуглеродных взаимодействий, различающихся по значениям инвариантной удельной энергии ($_{\ell}$)* в ~ 29 раз, дает дополнительную информацию о масштабных эффектах в кумулятивных взаимодействиях, представления о которых в настоящее время базируются, в основном, на анализе инклюзивных спектров кумулятивных адронов, измеренных под определенным углом /см., например, $^{/6, 7/}$ /.

2. Полученные в данной работе результаты имеют и чисто методическое значение. Фактически спектры кумулятивных адронов анализировались в функции переменной (β^0), зависящей как от импульсов, так и от углов испускания этих адронов. Такие исследования требуют, вообще говоря, условий 4π -геометрии с тем, чтобы эксперимент "захватывал" полный фазовый объем по импульсам и углам для рассматриваемого интервала значений переменной β^0 . Поэтому полученные результаты могут дать ответ на чисто методический вопрос о возможности анализа спектров кумулятивных адронов, измеренных под определенным углом, в зависимости от таких переменных, как β^0 .

3. Работа выполнена при помощи 2-метровой пропановой камеры ЛВЭ ОИЯИ, облученной пучком протонов с импульсов 10 ГэВ/с на синхрофазотроне ОИЯИ, а также пучком π^- -мезонов / $P_{\pi^-} = 40$ ГэВ/с/ на синхрофазотроне ИФВЭ /Протвино/. На снимках, полученных при

Здесь $\epsilon = (P_I \cdot P_I)/(m_I \cdot m_I)$,где P_I , P_{II} - четырехимпульсы сталкивающихся объектов, SHENHLIN RECTUTYT тут ядерных исследонаний Дубна, 1986. Объединенный 1 P the ach of the la

Таблица 1

облучении камеры пучком π^- -мезонов, отбирались и измерялись все неупругие π^- С-взаимодействия /=9000 событий/, в случае облучения камеры протонами поиск и отбор были ограничены только классом событий, сопровождающихся испусканием в интервале углов задней полусферы в ЛСК с $\theta \ge 135^0$ протонов с импульсом Pp > > 380 МэВ/с и π^{\pm} -мезонов с $P_{\pi} > 200$ МэВ/с /=2000 событий/. Подробности о критериях отбора событий и их обработки можно найти в работах ^{/8,9/}.

4. При построении спектров кумулятивных адронов ко всем событиям /полученным при облучении как π^- -мезонами, так и протонами/ были применены одинаковые критерии отбора, а именно: требовалось, чтобы событие имело хотя бы один протон с импульсом $P_p > 380$ МэВ/с или π^{\pm} -мезон с импульсом $P_{\pi} > 200$ МэВ/с, испущенный в интервал телесных углов задней полусферы в ЛСК с $\theta > 135^{\circ}$. При этом вводились поправки для частиц, вылетающих в камере под большими "глубинными" углами * ϕ вверх или вниз, которые были связаны с ухудшением условий измерения и идентификации таких частиц. Эти поправки были получены на основе анализа распределений исследуемых частиц по азимутальному углу /углу в плоскости, перпендикулярной направлению первичной частицы/.

Среди кумулятивных пионов для анализа были использованы только *т*--мезоны, так как они идентифицируются однозначно.

5. Инвариантные инклюзивные сечения образования кумулятивных π^{-} мезонов и протонов в pC-и π^{-} С-взаимодействиях исследованы для пяти одинаковых интервалов телесных углов задней полусферы в ЛСК. Результаты для параметров В и < β^{0} >,полученные при аппроксимации этих сечений выражением вида /1/, приведены в табл.1 и 2. В этих таблицах указан интервал по β^{0} , в котором производилась аппроксимация, а также значения χ^{2} на степень свободы. Зависимость значений параметра < β^{0} > от угла испускания (θ) в ЛСК показана на рисунке. Прямые на этом рисунке – результат аппроксимации данных по значениям величины < β^{0} > выражением вида

$$\langle \beta^0 \rangle = \text{const.} + a_1 \cos \theta$$
 /2/

Значения параметра a_1 приведены в табл.3. Как видно из этой таблицы, значения параметра a_1 для кумулятивных π^- -мезонов близки к 0 /отличие от 0 находится в пределах двухкратных ошибок/,и в пределах однократных ошибок эти параметры, полученные для pC-и π^- C-взаимодействий, совпадают друг с другом. Для кумулятивных протонов значения параметра a_1 существенно отличаются от 0 и не совпадают для pC-и π^- C-столкновений.

Значен	ия параметров	<u></u> В и < β ⁰ > д	пя кумуляти	вных п	-мезо	нов
Интервал по соз θ	.Тип взаимо- действия	Интервал по β ⁰	В (ГэВ-2с ³ с	p-1) <f< td=""><td>$3 > \chi/c$</td><td>тепень вободы</td></f<>	$3 > \chi/c$	тепень вободы
-1,0÷-0,8	pC	0,6 [÷] 1,7	2,1+0,9	0,165+	0,014	7,5/9
	$\pi^{-}C$	0,6÷1,8	13,0 <u>+</u> 12,6	0,133 <u>+</u>	0,022	6,7/10
-0,8÷-0,6	pC	0,6÷1,3	1,2+0,6	0,171+	0,019	4,8/5
	πC	0,6÷3,0	15,1 <u>+</u> 2,09	0,119 <u>+</u>	0,026	5,0/22
-0,6÷-0,4	pC	0,3÷1,6	5,7 <u>+</u> 2,8	0,148+	0,020	6,7/11
	<i>π</i> C	0,4÷1,6	30,1 <u>+</u> 44,7	0,076+	0,017	4,1/10
-0,4 [÷] -0,2	pC '	0,2÷1,0	4,7 <u>+</u> 2,5	0,114+	0,018	8,4/6
	πC	0,2÷0,7	0,5 <u>+</u> 0,4	0,144+	0,036	2,1/3
-0,2÷0,0	рC	0,1÷1,0	1,4+0,5	0,142+	0,018	4,9/17
	π C	0,1÷1,4	1, <u>1+</u> 1,1	0,077+	0,019	6,4/11
			}		Табли	ца 2
Значен	ия параметров	В и < β ⁰ > д	ля кумуляти	вных пр	отоно	в
Интервал по соѕ θ	Тип взаимо- действия	Интервал по β ⁰	В(ГэВ ⁻² с ³ сл (при β ⁰ =1,0	5 ⁻¹))) <β ⁰ >	χ ² / c	степень свободы
-1,0÷-0,8	pC	1,4÷3,9	7,8+1,0	0,144+	0,004	50,1/2
	πC	1,4÷2,1	7,9+3,3	0,140+	0,014	13,5/5
-0,8÷-0,6	рС	1,4÷2,7	9,6+2,0	0,120+	0,005	38,0/1
	πC	۱,4÷۱,8	103,7 <u>+</u> 104,9	90,074 <u>+</u>	0,011	6,3/2
-0,6÷-0,4	pC	1,1÷2,5	21,4+4,5	0,095+	0,007	30,5/1
	πC	1,3÷1,7	8,6 <u>+</u> 11,1	0,079 <u>+</u>	0,020	2,4/2
-0,4÷-0,2	pC	1,1÷2,1	14,5 <u>+</u> 1,7	0,073+	0,004	14,1/9
	π^-C	1,1÷1,5	2,6 <u>+</u> 1,7	0,058 <u>+</u>	0,012	0,9/2
	pC	1,1÷1,7	14,4+1,6	0,049+	0,003	6,4/5

 $-0,2\div0,0$

πC

1,0÷1,3 0,8+0,2 0,057+0,007 0,1/1

^{* &}quot;Глубинный" угол ϕ отсчитывается от следа до его проекции на торизонтальную плоскость камеры.

Угловая зависимость значений параметра $< \beta^0 >$. • - рС-взаимодействия, о - π^- С-взаимодействия.

выводы

 Значения параметра < β⁰> для инвариантных инклюзивных сечений образования кумулятивных π⁻-мезонов практически не зависят от угла их испускания /для углов задней полусферы в ЛСК/.

2. Для кумулятивных протонов параметр < β > увеличивается с ростом угла испускания этих протонов.

3. Угловая зависимость параметра $< \beta^0 >$ в пределах однократных ошибок оказывается одинаковой для кумулятивных π^- -мезонов, испущенных из pC - и π^- С-взаимодействий. Угловые зависимости

параметра < β^0 >для кумулятивных протонов в этих взаимодействиях отличаются друг от друга.

Таблица 3

Значения параметра a_1 для угловой зависимости величии < β^0 >

Тип	Тип взаимо-	a ₁	Х ² /степень
частицы	действия		свободы
π	рС	-0,049 <u>+</u> 0,026	2,9/3
	л ⁻ С	-0,059 <u>+</u> 0,034	4,6/3
þ	рС	-0,118+0,006	0,1/3
	π ⁻ С	-0,072+0,016	9,4/3

Авторы благодарны коллективу сотрудничества по обработке снимков с 2-метровой пропановой камеры за обсуждение полученных результатов.

ЛИТЕРАТУРА

1

- 1. Ефременко В.И. и др. ЯФ, 1983, т.37, с.118; Баюков Ю.Д. и др. ИТЭФ-90, М., 1981; ИТЭФ-65, М., 1983.
- 2. Балдин А.М. ОИЯИ, E1-12031, Дубна, 1980; Балдин А.М. и др. ОИЯИ, E1-82-472, Дубна, 1982.
- 3. Абдинов О.Б. и др. ЯФ, 1979, т.30, с.396.
- 4. Аланакян К.В. и др. Письма в ЖЭТФ, 1980, т.31, с.386; Препринт ЕрФИ-386/44/-79, Ереван, 1979; Nucl.Phys., 1981, vol.A367, p.429.
- Иванилов А.А. и др. Письма в ЖЭТФ, 1979, т.30, с.390.
- 6. Ставинский В.С. ЭЧАЯ, 1979, т.10, с.949.
- 7. Лексин Г.А. Препринт ИТЭФ-147, М., 1976; ОИЯИ, Д1,2-12036, Дубна, 1979, с.274.
- 8. Абдурахимов А.У. и др. ОИЯИ, Р1-6277, Дубна, 1972; ОИЯИ, Р1-6326, Дубна, 1972.
- 9. Армутлийски Д. и др. ОИЯИ, Р1-83-327, Дубна, 1983.

Рукопись поступила в издательский отдел 25 февраля 1986 года.

4

Копылова Д.К. и др.

P1-86-109

Угловая зависимость параметров наклона инвариантных инклюзивных сечений образования кумулятивных адронов в pC-взаимодействиях при 10 ГэВ/с и *т*⁻C-взаимодействиях при 40 ГэВ/с

На снимках с 2-метровой пропановой камеры исследованы инвариантные инклюзивные сечения образования кумулятивных *m*-мезонов и протонов в pC- и *m*-C-взаимодействиях /Pp = = 10 Гэв/с, P*m* = 40 Гэв/с/ для пяти интервалов углов задней полусферы в лабораторной системе координат. Обнаружено, в частности, что угловая зависимость параметров, определяющих наклон инклюзивных спектров кумулятивных *m*-мезонов /в отличие от кумулятивных протонов/, оказывается одинаковой для pC- и *m*-Cстолкновений.

Работа выполнена в Лаборатории высоких энергий ОИЯИ.

Сообщение Объединенного института ядерных исследований. Дубна 1986

Перевод О.С.Виноградовой

Kopylova D.K. et al. P1-86-109 Angular Dependence of Slope Parameters of Invariant Inclusive Cumulative Hadron Production Cross Sections in pC -Interactions at $P_p = 10$ GeV/c and π C -Interactions at 40 GeV/c

Invariant inclusive cross sections of π^- -mesons and proton cumulative production from pC- and π^- C-interactions ($P_p = 10 \text{ GeV/c}, P_{\pi^-} = 40 \text{ GeV/c}$) for five intervals of the back hemisphere angles in the laboratory coordinate system have been investigated in the pictures from the 2 meter propane bubble chamber. It has been found that the angular dependence of parameters defining the slope of inclusive spectra of cumulative π^- -mesons (in contrast to cumulative protons) was similar for pC- and π^- C-collisions.

The investigation has been performed at the Laboratory of High Energies, JINR.

Communication of the Joint Institute for Nuclear Research. Dubna 1986