ОБЪЕДИНЕННЫЙ ИНСТИТУТ ЯДЕРНЫХ ИССЛЕДОВАНИЙ ДУБНА

N-67

- 8464 P1

3/11-75

8041 2 2 Т.Я.Иногамова, Б.Н.Калинкин, В.Б.Любимов, Д.Тувдендорж, В.Л.Шмонин

 π^{-} С¹² -ВЗАИМОДЕЙСТВИЯ ПРИ Е π^{-} = 40 ГЭВ И ГИПОТЕЗА ОБ АДРОННЫХ КЛАСТЕРАХ

ЛАБОРАТОРИЯ ВЫСОНИХ ЭНЕРГИЙ

P1 - 8464

Т.Я.Иногамова, Б.Н.Калинкин, В.Б.Любимов, Д.Тувдендорж, В.Л.Шмонин

 π^{-} С¹² -ВЗАИМОДЕЙСТВИЯ ПРИ Е π^{-} = 40 ГЭВ И ГИПОТЕЗА ОБ АДРОННЫХ КЛАСТЕРАХ

Направлено в ЯФ

объстаненный ниститут терных исследованы **БИБЛИОТЕНА**

Иногамова Т.Я., Калинкин Б.Н., Любимов В.Б., Тувдендорж Д., Шмонин В.Л.

> π^{-12} С -взаимодействия при $E_{\pi} = 40$ ГэВ и гипотеза об адронных кластерах

Представлен анализ некоторых характеристик взаимодействия π^- -мезонов с ядром углерода при рс = 40 ГэВ (распределения по множественности быстрых и медленных частии, корреляции между ними и пр.). Полученные результаты хорошо согласуются с гипотезой о реализации промежуточных кластерных состояний.

P1 - 8464

Препринт Объединенного института ядерных исследований. Дубна, 1974

Inogamova T.Ya., Kalinkin B.N., Lyubimov V.B., Pl - 8464 Tuvdendorzh D., Shmonin V.L.

 r^{-12} C Interactions at $E_{\pi} = 40$ GeV and the Hypothesis about Hadron Clusters

The analysis of some characteristics of the interaction of π^- -mesons with ¹²C nucleus at pc = 40 GeV (distributions of fast and slow particle multiplicity, correlations between them, etc.) is presented. The obtained results are in good agreement with the hypothesis of intermediate cluster state realization.

> Preprint. Joint Institute for Nuclear Research. Dubna, 1974

1.ВВЕДЕНИЕ

Анализ экспериментальных данных по множественной генерации адронов на ядерных мишенях свидетельствует в пользу двухстадийных моделей элементарного акта.

Подход, учитывающий реализацию промежуточного кластерного состояния адронной материи, хорошо согласуется с широким кругом экспериментальных фактов, полученных в нуклон-ядерном взаимодействии / 1,2/.

Информация о свойствах кластерных состояний может быть получена путем проверки предположений о кластер-нуклонном взаимодействии при движении кластера внутри ядра. В работе /3/ был предложен метод описания динамики развития релятивистского кластера в ядерном веществе. Движение кластера описывалось системой из двух уравнений, учитывающей его расширение с околосветовой скоростью. Кластер-нуклонное взаимодействие характеризовалось двумя параметрами:

ϵ - средней энергией, переданной нуклону, и $\bar{\omega}$ =

=(< K > $-\frac{\sigma}{\sigma} \frac{1}{101}$ –) KN – параметром неупругости взаимодействия. Как выяснилось, эти параметры не зависят от энергии ($\overline{\epsilon} \approx 0,13$ ГэВ; $\overline{\omega} \approx 0,2$). Решениями системы уравнений движения являются функции E (ℓ) – полная энергия кластера в зависимости от длины его пути в ядре ℓ и к(ℓ) – фактор увеличения внутренней энергии кластера в результате его неупругих взаимодействий с нуклонами. При этом предполагалось, что лидируюшая частица, образованная в процессе пионизации, слабо взаимодействует с ядром. В настоящей работе с целью дальнейшей проверки этот подход применен к анализу

результатов, полученных при изучении взаимодействий *π*-мезонов (E *π* = 40 ГэВ) в двухметровой пропановой пузырьковой камере ЛВЭ ОИЯИ /4-7/

Ниже рассматриваются следующие характеристики *п*⁻С¹² -взаимодействия:

- распределение по множественности релятивистских заряженных частиц пя;

- распределение по числу медленных протонов;

- средние характеристики γ -квантов (<p₁> , <p_2>, $<\cos\theta>$);

- распределения по быстротам в инклюзивных процессах типа $\pi^- C^{12} \rightarrow \gamma + \dots$

2. РАСПРЕДЕЛЕНИЕ ПО МНОЖЕСТВЕННОСТИ п в

Если кластер, испускающий при своем распаде в элементарном акте, в среднем, n g частиц, пройдет в ядре путь ℓ , то он распадется на п $_{\rm s}$ частиц, причём /l/: 0 n (a)

$$\mathbf{n}_{\mathbf{s}} = \mathbf{n}_{\mathbf{s}} \mathbf{R} \left(\ell \right)$$

$$R(\ell) \approx \frac{(n_{s}^{0} - 1,6) \kappa(\ell) + 1,6}{n_{s}^{0}}$$
(1)

 $_0$ Пусть функция $F_0(n_s^0)$ описывает распределение по п в пион-нуклонном взаимодействии. Данное число п в в пион-ядерном соударении могут дать кластеры с таким значением n_s^0 и проходящие в ядре такой путь ℓ , чтобы выполнялось соотношение (1). Усреднение по всем возможным пробегам кластера в ядре приводит к следующему выражению для функции распределения по множественности в пион-ядерных взаимодействиях:

$$F(n_{s}) = \frac{\int \frac{dV_{\ell}}{R(\ell)} G(\ell) F_{0}(\frac{n_{s}}{R(\ell)})}{\int dV_{\ell} G(\ell)}, \qquad (2)$$

🥰 (ℓ) – функция, учитывающая распределение взаимодействий налетающей частицы внутри ядра.

Случаи с малым числом s -частиц соответствуют, в основном, возбуждению налетающего л -мезона (без образования пионизационного кластера). Их парциальное сечение в элементарном акте невелико. Можно считать, что взаимодействие такого возбужденного пиона с нуклонами ядра не будет существенно отличаться от обычного пион-нуклонного. Поэтому его вторичные неупругие взаимодействия в ядре будут выводить процесс из канала с малой множественностью. Учёт этого фактора приводит к следующему выражению для оценки вероятности P_n -событий с малым числом s -частиц:

Здесь σ_n - парциальное сечение канала с образованием п релятивистских частиц. Согласно (3), определялась вероятность событий с n_s = 0,1,2. Для случая n_s =1 учтён дополнительный вклад когерентного процесса на ядре в целом, сечение которого по оценкам /4/ составляет <u>-</u> 1,7 мб. Для остальных значений n _± произведен расчёт по формуле (2).

Результаты представлены на рис. 1. В качестве F₀(n⁰) использовалась функция

$$F_0(n_s^0) = \begin{cases} F_0^{\pi^- p}(n_s^0) & \text{для чётных } n_s^0 \\ F_0^{\pi^- n}(n_s^0) & \text{для нечётных } n_s^0. \end{cases}$$

Рис. 1. Распределение по множественности релятивистских частиц для $\pi^- C^{12}$ -взаимодействий (сплошная гистограмма) и для $\pi^- N$ -взаимодействий (пунктирная гистограмма). Результаты расчета помечены \times . Соответствующая гистограмма нанесена на рис. 1 пунктиром. Из рисунка видно, что расчёт хорошо согласуется с экспериментом.

Отношение средних множественностей в $\pi^- C^{12}$ – и $\pi^- p$ –взаимодействиях, полученное путем непосредственного усреднения функции $\kappa(\ell)$ по ядру, совпадает с измеренным: $\mathbf{R} = 1,21$ ($\mathbf{R}_{3000} = 1,21\pm0,01$).

Пользуясь формулой (2), можно получить соотношение типа скейлинга по множественности. Заменив в (2) функцию R(l) на её среднее значение, приходим к соотношению:

$$\overline{R} F(n_s) = F_0 \left(\frac{n_s}{\overline{R}} \right)$$
(4)

или, поскольку $F(n_s) = -\frac{\sigma_n}{\sigma_n}$,

$$\bar{\mathbf{R}} - \frac{\sigma_{\mathbf{n}}}{\sigma^{i\mathbf{n}}} = \mathbf{F}_0(-\frac{\mathbf{n}_s}{\bar{\mathbf{R}}}) , \qquad (5)$$

что аналогично скейлинговому соотношению $^{/8/}$ (величина $\bar{\mathbf{R}}$ выполняет ту же роль коэффициента масштабного преобразования, что и $<\mathbf{n_s}> \sim \bar{\mathbf{R}}$). С ростом атомного веса ядра-мишени следует ожидать отклонения от зависимости (5), поскольку погрешности от замены $\mathbf{R}(\ell)$ на $\bar{\mathbf{R}}$ будут возрастать.

3. РАСПРЕДЕЛЕНИЕ ПО ЧИСЛУ МЕДЛЕННЫХ ПРОТОНОВ В ^{"С12}-ВЗАИМОДЕЙСТВИЯХ

Пусть $P_{\alpha\beta}^{\pi^-}$ - вероятность того, что при взаимодействии налетающего π -мезона с нуклоном сорта aобразуется нуклон отдачи сорта β . Разобьем ядро на n слоев (" ℓ -слои") таким образом, чтобы кластер, рожденный в i -м ℓ -слое, испытал i-1 взаимодействие с нуклонами ядра. Эти слои ограничены поверхностями вида /1 / :

$$z = \sqrt{R^2 - b^2} - \ell_i$$

Далее, пусть X - доля протонов отдачи, регистрируемых в эксперименте в интервале импульсов 150+700 МэВ/с. Тогда вероятность осуществления случая, в котором наблюдается ј протонов отдачи, равна

$$\mathcal{P}^{j} = \sum_{i=1}^{n} \mathcal{P}_{i}^{j} = (P_{p p}^{\pi} + P_{n p}^{\pi}) \sum_{i=j}^{n} \frac{C_{i-1}^{j-1} \Delta V_{i}}{2^{i}} - X^{j-1} (2-X)^{i-j} + (P_{p n}^{\pi} + P_{n n}^{\pi}) \sum_{i=j+1}^{n} \frac{C_{i-1}^{j} \Delta V_{i}}{2^{i}} - X^{j} (2-X)^{i-j-1},$$
(6)

 $\Delta \mathbf{V}_{\mathbf{i}}$ - эффективный нормированный объем ℓ -слоя.

В (6) предполагается, что вероятность образования протона при взаимодействии кластера с нейтроном равна вероятности образования нейтрона при взаимодействии кластера с протоном. Величины $P_{\alpha\beta}^{\pi}$ для пионник кластера с протоном. Величины $P_{\alpha\beta}^{\pi}$ для пионного взаимодействия равны P_{pp}^{π} 0,20, P_{np}^{π} ~ 0,05, причем $P_{\alpha\beta}^{\pi} = 1 - P_{\alpha\alpha}^{\pi}$.

Долю регистрируемых протонов X можно оценить, используя спектр нуклонов отдачи. Этот спектр не меняется в широком диапазоне энергий первичной частицы /9/ и с хорошей точностью описывается выражением /3/:

$$-\frac{d\sigma}{dp^2} \approx \sigma^{t o t} B e^{-B p^2}, \qquad (7)$$

где $B \approx 4$ (ГэВ/с)². Интегрируя по интервалу регистрируемых импульсов, находим

Результаты расчёта по формуле (6), с учётом (8), приведены в табл. 1 и удовлетворительно согласуются с экспериментальным распределением.

4.3АВИСИМОСТЬ МЕЖДУл_вИ ЧИСЛОМ МЕДЛЕННЫХ ПРОТОНОВ

Соотношение между \bar{n}_s и числом медленных протонов может быть получено из формул (1) и (6). Имеем:

$$\bar{\mathbf{n}}_{s} = \bar{\mathbf{n}}_{s}^{0} \sum_{i=1}^{n} \mathcal{P}_{i}^{j} \mathbf{R}_{i}$$
(9)

 R_i - величина фактора R для кластера, рожденного в i -м слое и испытавшего i-1 соударений с нуклонами ядра. Величины R_i вычислены с помощью решения уравнений движения кластера /3/. Результаты расчёта по формуле (9) приведены в табл. 2. Видно, что расчётные значения $<\!n_{\rm s}\!>$ близки к измеренным /4/.

5. СРЕДНИЕ ХАРАКТЕРИСТИКИ у -КВАНТОВ, ОБРАЗОВАННЫХ В $\pi^- C^{12}$ -ВЗАИМОДЕЙСТВИЯХ

В пределах точности эксперимента средние значения поперечных импульсов, P_{\perp} , γ -квантов, образованных в пион-нуклонных и в $\pi^- C^{12}$ соударениях, совпадают ($\frac{1}{2}(\bar{P}_{\perp}\pi^-p^+\bar{P}_{\perp}\pi^-n) \sim 0,172\pm0,07$, $\bar{P}_{\perp}\pi^-c^{12} \approx 0,177\pm2\pm0,03$ /6/). Этот факт непосредственно следует из развиваемой картины. Если π^0 -мезоны реализуются как отдельные частицы при распаде кластера вне ядра, то их средний поперечный импульс не должен зависеть от массы кластера (т.к. он не зависит от энергии первичной частицы в адрон-нуклонном столкновении). Следовательно, и средний поперечный импульс γ -квантов при переходе к взаимодействию на ядрах не должен измениться.

Таблица 1					
N g	O	1	2	3	<u>≥</u> 4
% эксп.	55,7 <u>+</u> 0,6	25,2 <u>+</u> 0,5	12,0 <u>+0</u> ,4 5	5 ,0<u>+</u>0, 2	2,1 <u>+</u> 0,2
%теор.	50 , 0	30,8	12,9	4,7	1,6
Таблица 2					
N g	0	1	2	3	<u>></u> 4
п в эксп	6 ,02<u>+</u>0,0 5	6,87 <u>+</u> 0,09	7,58 <u>+</u> 0,12	2 7,83 <u>+</u> 0),19 7,44 <u>+</u> 0,24
n _{s reop}	5,92	6,65	7,25	7,8	2 8,37

Изменение среднего продолъного импульса обусловлено уменъшением скорости кластера при его движении в ядре.

Пусть р₀ - средний продольный импульс у -квантов в пион-нуклонном соударении. Очевидно,

$$\overline{\mathbf{P}}_{||} = \frac{\overline{\beta}}{\beta_0} \frac{\overline{\gamma}}{\gamma_0} \approx -\frac{1}{\kappa} \overline{\mathbf{P}}_{0||} .$$
 (10)

Подставляя в (10) усредненное по ядру значение величины κ ($\kappa \approx 1,3$) и $\tilde{p}_{0||} = \frac{1}{2} (\tilde{p}_{0||}^{\pi} + \tilde{p}_{0||}^{\pi}) = 1,80\pm1,10$, находим $\tilde{p}_{||} \approx 1,38\pm0,08$, что близко к значению, полученному в эксперименте. Использованное значение $p_{0||}$ получено с учётом примеси π^-C -взаимодействий в событиях, отобранных как π -нуклонные взаимодействия.

Пользуясь релятивистским преобразованием углов, нетрудно получить выражение, связывающее $\langle \cos \theta \rangle_{\rm B}$ реакциях на ¹² С и нуклоне:

$$<\cos\theta> = \sqrt{\frac{1}{1 + \bar{\kappa}^2 (\frac{1}{<\cos\theta > 0} - 1)}} .$$
(11)

Подставляя в (11) $< \cos \theta > 0 = 0.884 \pm 0.008$, находим $< \cos \theta > \approx 0.824 \pm 0.008$ ($< \cos \theta > 0.824 \pm 0.008$) ($< \cos \theta > 0.846 \pm 0.005$).

6. СРАВНЕНИЕ РАСПРЕДЕЛЕНИЙ ПО БЫСТРОТАМ В ОДНОЧАСТИЧНЫХ ИНКЛЮЗИВНЫХ ПРОЦЕССАХ $\pi^{-}p \rightarrow \gamma + \dots$ И $\pi^{-} C^{12} \rightarrow \gamma + \dots$

При прохождении кластером пути ℓ в ядерном веществе быстрота претерпевает сдвиг на величину

$$\Delta \mathbf{y}(\ell) = \frac{1}{2} \ell \mathbf{n} \left[\frac{1+\beta_0}{1-\beta_0} - \frac{1-\beta(\ell)}{1+\beta(\ell)} \right]$$
(12)

(уменьшается скорость кластера $\beta(\ell)$). При этом сечение увеличивается на фактор

$$\overline{\mathbf{R}}(\ell) = 1, 2. \tag{13}$$

Можно оценить масштаб сдвига плато. Из (12) следует:

$$\overline{\Delta \mathbf{y}(\ell)} \approx \frac{1}{2} \quad \ell \mathbf{n} \quad \frac{-\gamma_0}{\gamma(\ell)} \approx \ell \mathbf{n} \quad \overline{\kappa} \approx 0,3.$$
(14)

Как рост сечения (13), так и величина сдвига плато (14) не противоречат эксперименту.

7. ЗАКЛЮЧЕНИЕ

Итак, представленный нами анализ основных характеристик взаимодействия π^- -мезонов с ядрами ¹² С согласуется с гипотезой о реализации промежуточных кластерных состояний в процессе множественного рождения адронов.

Большой интерес представило бы уточнение данных по распределению коэффициента неупругости в адронядерных взаимодействиях при различном числе медленных протонов. Это позволило бы получить важную информацию и об особенностях взаимодействия лидирующей частицы с нуклонами ядра.

Авторы благодарны В.Г.Гришину за полезные обсуждения.

ЛИТЕРАТУРА

- 1. Б.Н.Калинкин, В.Л.Шмонин. Препринт ОИЯИ, Р2-7870, Дубна, 1974.
- 2. Б.Н.Калинкин, В.Л.Шмонин. Препринт ОИЯИ, P2-7871, Дубна, 1974.
- 3. Б.Н.Калинкин, В.Л.Шмонин. Препринт ОИЯИ, Р2-7869, Дубна, 1974.
- 4. А.У.Абдурахимов, Н,Ангелов и др. Препринт ОИЯИ, P1-6277, Дубна, 1972.
- 5. В.Г.Гришин, Т.Я.Иногамова, Ш.В.Иногамов. Препринт ОИЯИ, Р1-7523, Дубна, 1973.
- 6. А.У.Абдурахимов, Н.Ангелов и др. Препринт ОИЯИ, P1-6928, Дубна, 1973.
- 7. Сотрудничество: Будапешт-Бухарест-Варшава-Дубна-Краков-Москва-София-Ташкент-Тбилиси-Улан-Батор-Ханой. Препринт ОИЯИ, Р1-7668, Дубна, 1974.
- 8. Z.Koba, H.B.Nielsen, P.Olesen.Nucl.Phys., B40,317 (1972).
- 9. V.S.Barashenkov, K.K.Gudima, S.M.Eliseev. et al. Proc. XI Conf. on Cosmic Rays, Budapest, 1969.

Рукопись поступила в издательский отдел 20 декабря 1974 года.