ОБЪЕДИНЕННЫЙ ИНСТИТУТ ЯДЕРНЫХ ИССЛЕДОВАНИЙ ДУБНА

525/2

A-465

P1 - 8328

10/1- .75

Л.Александров, Т.Ангелеску, Ф.Никитиу, И.В.Фаломкин, Ю.А.Щербаков

. 75

ЗАВИСЯЩИЙ ОТ ЭНЕРГИИ ФАЗОВЫЙ АНАЛИЗ 77[±]He⁴ УПРУГОГО РАССЕЯНИЯ

ΛΑБΟΡΑΤΟΡИЯ ЯДЕРНЫХ ΠΡΟБΛΕΜ

P1 - 8328

ï

Л.Александров,¹ Т.Ангелеску,² Ф.Никитиу,² И.В.Фаломкин, Ю.А.Щербаков

ЗАВИСЯЩИЙ ОТ ЭНЕРГИИ ФАЗОВЫЙ АНАЛИЗ 17[±] He⁴ УПРУГОГО РАССЕЯНИЯ

Направлено на конференцию "Few Body Problems in Nuclear Physics", Quebec, Canada, 1974.

Институт физики, София.

² Институт атомной физики, Бухарест.

SULT:ARY

We present an energy-dependent phase-shift analysis of electric $\pi^3 \text{He}^4$ scattering for the energy interval from 24 MeV to 1c0 MeV (all existing data on differential and total cross sections).

Using the idea of oussipotential /1/ we have obtained equations for scattering amolitudes with relativistic kinematics.

Prior to the energy-dependence phase-shift analysis we have made a fit of all single-energy /2/ solutions to test different forms for energy behavior of partial wave amplitudes. This analysis was recented including high partial wave amplitudes taken from ACE analysis /3/ and the new experimental data on total cross section /4/. The least X^{2} per data point and least number of free parameters are reached with the parametrization of eq. (9).

For Chi-souared minimisation we have used a new algorithm for solving non-linear systems of equations which is based on the regula rized iteration processes of the Gauss-Newton type /5/.

The total number of free parameters was 51 for 393 data points (16 normalization parameters). The χ^2 N, was ~2.2 (all points) and 1.25 for a fit without 28 points (with χ^2 >8).

The results are shown in Fig.1 (S_{i} and T_{i} for S,P, and D waves together with energy-independent phase-shift results) and in Fig.2 (Argand plot). The total and elastic cross sections are shown in Fig.3. The resonant behavior of the P,D,F and J waves is demonstrated in Fig.4 by the velocity diagram of the Argand vector ($|df_{i}/dT|$). The smallest non-resonant background is in the P wave for which the partial total and elastic cross section - Fig.5 - has a clear Breit-wigner behavior.

Taking into account different tests for resonant behavior of partial waves it is possible to suggest a strong π He⁴ resonance in the P wave at a pion kinetic energy of 80 - 125 MeV.The Ref(0) is shown in Fig.6 (the dashed region is the error corridor), there are also shown our dispersion relations calculatio. (curve a) and finite sum-rules results from ref./6/ (curve b and black aqueres).The S wave scattering length is $a_0 = -0.16 \pm 0.01 + i(0.055 \pm 0.007)$ fm and the electromagnetic pion radius obtained from our analysis using the method of ref./8/ is $\langle \pi_i^{*} \rangle = 0.83 \pm 0.17$ fm.

Зависящий от энергии фазовый анализ проводится в интервале энергий 24÷180 МэВ. Полная амплитуда л[±] Нс⁴ упругого рассеяния имеет вид:

$$\mathbf{f}^{\frac{1}{2}}(\theta,\mathbf{k}) = \mathbf{f}_{C}^{\frac{1}{2}}(-\theta,\mathbf{k}) + \mathbf{f}_{S}^{-}(-\theta,\mathbf{k}) + -\frac{1}{k} \geq (-2+n1)(e^{-2i\frac{1}{2}\frac{1}{p}} - 1)T_{p}(\mathbf{k})P_{p}(\cos\theta),$$

$$/1/2$$

где Т_р (k) являются амплитудами парциальных волк сильного взаимодействия:

$$T_{p} = \frac{\eta_{p} e^{2i\delta_{p}} - 1}{2i} - \frac{1}{\operatorname{ctg} \lambda_{p} - 1}, \qquad /2/$$

а ζ_{ψ}^{2} - кулоновские сдвиги фаз:

$$\zeta_{l}^{t} = \arg \left[\left(l + 1 + in_{C}^{t} \right) \right].$$
 (3/

Чисто ядерные и кулоновские амплитуды имеют соответственно вид

$$f_{S} = \frac{1}{k} \sum (2l' + 1) T_{l'}(k) P_{l'}(\cos \theta), \qquad /4/$$

$$f_{C}^{\pm} = \frac{-n_{C}^{\pm}}{2k \sin^{2} \frac{\theta}{2}} \exp\left[-\ln \frac{t}{C} \ln \sin^{2} \frac{\theta}{2} - 2i\zeta_{0}^{\pm}\right] \cdot F_{He}^{-4}(q^{2})F_{\pi}(q^{2}),$$
/5/

где F $f_{1e}4q^2$ и F (q^2) - электромагнитные формфакторы ядра Не⁴ и пиона соответственно. Нерелятивистский кулоновский параметр равен:

Рис. 1. Фазы δ_{ρ} и коэффициенты упругости η_{β} в зависимости от кинетической энергии пиона для S-, P- и D-волн. Сплошчые линии /пунктир изображает коридор ошибок/ - результаты наших вычислений, отдельные точки - результаты не зависящего от энергии фазового анализа /2/.

$$n_{C}^{\pm} = \frac{Z_{1}Z_{2}am}{k_{NR}}, m = \frac{m_{1}m_{2}}{m_{1}+m_{2}}, a = \frac{1}{137}.$$
 /6/

Чтобы получить аналогичные уравнения для амплитуды рассеяния с релятивистской кинематикой ($k_{NR} \rightarrow k_R$), мы использовали идеюквазипотенциала. Соответствующее уравнение Шредингера в случае релятивистской проблемы двух тел.¹/ получается с помощью подстановки

$$m \rightarrow m_{w} = \frac{m_{1}m_{2}}{w}, \quad w = (m_{1} + m_{2})^{2} + 2Tm_{2},$$
 /7/
E $\rightarrow k_{R}^{2} / 2m_{w},$

в релятивистское уравнение Шредингера. В этой работе мы использовали подстановку Тодорова /7/ в соотношениях /1/-/6/. Релятивистский кулоновский параметр будет иметь вид:

$$n_{t:}^{t} = Z_{1} Z_{2} u m_{1} m_{2} / k_{11} * . /8 / ... /8$$

Рис. 2. Диаграммы Аргана для S-, P-, D-, F-и G-волн. Цифры у кривых показывают кинетическую энергию пиона в лабораторной системе координат.

Рис. 3. Вычисленные полные сечения и сечения упругого рассеяния тНе⁴ /показан коридор ошибок/.

Прежде чем выполнять зависящий от энергии фазовый анализ, мы фитировали все решения при фиксированных энергиях ^{/2/}, чтобы проверить различные формы энергетической зависимости амплитуд парциальных волн. Этот анализ был повторен с учетом амплитуд высших парциальных волн, взятых из АСЕ-анализа³. и с учетом новых экспериментальных данных по полным сечениям $^{/4/}$. Наименьшее значение χ^2 на одну экспериментальную точку и наименьшее ччсло свободных параметров были получены при следующей параметризации чисто ядерной парциальной волны:

$$k^{2\ell+1} \operatorname{ctg} \Lambda_{\ell} = -\frac{1}{a_{\ell}} + b_{\ell} T + c_{\ell} T^{2} + ..., \qquad /9/$$

где Т - кинетическая энергия в лабораторной системе координат; a_{ℓ} , b_{ℓ} , c_{ℓ} - комплексные числа. Для S - волны мы использовали 6 параметров, для P-и C - волн по

Рис. 4. Скорость изменения вектора Аргана $|df_{\ell}/dT|$ в зависимости от кинетической энергии пиона.

Рис. 5. Парциальные сечения упругого рассеяния и полные сечения для $\ell = 0, 1, 2, 3, 4$.

8 параметров и для F-- и G-волн по 6 параметров нтого 34 физических параметра. Полное число экспериментальных точек составляло 378 для сечений упругого рассеяния /154 точки для π^+ He⁴ и 224 - для π^- He⁴ / и 15 - для полных сечений. В нашем анализе мы использовали еще 16 параметров /нормирующие множители, одинаковые для π^+ и π^- при каждой энергин/ и плюс еще один параметр · электромагнитный раднус пиона /формфактор в гауссовой форме/. Полное число свободных 51 при 393 экспериментальных точках. параметров -При минимизации значения у² мы использовали новый алгоритм для решения нелинейных систем уравнений. хоторый основан на стандартных итерационных процессах гаусс-ньютоновского типа $^{/5/}$. Величина χ^2 'N $_{\rm II}$ была равна ~ 4 без нормирующих множителей, составляла ~ 2,2

при наличии 16 нормирующих параметров и 1,25 для фита без 28 точек /для которых $\chi_1^2 \ge 8$ /.

Результаты показаны на рис. $1/\eta$ и δ для S—, Р— и D-волн вместе с результатами фазового анализа, не зависящего от энергин/ г на рис. 2 /днаграммы Аргана/.

Рис. 6. Реальная часть амплитуды рассеяния вперед в лабораторной системе координат из нашего анализа /коридор ошибок заштрихован/, кривая а - наши вычисления на основе дисперсионных соотношений и кривая b - на основе правила конечных сумм ^{/6/} /она плавно проведена через вычисленные точки, показанные квадратиками на рисунке/.

Полные сечения и сечения упругого рассеяния показаны на рис. 3. Резонансиое поведение P-, D-, F- и G - воли демонстрируется на рис. 4 диаграммой скоростей вектора Аргана($|df_{\rm P}/dT|$). Нанменьший нерезонансный фон присутствует в P-волне, которая имеет ясную брайтвигнеровскую форму в полном сечении и сечении упругого рассеяния /рвс 5/. На ри показаны Ref_S(0) /заштрихованная область - кој ошибок/, наши вычисления на основе дисперсионных соотношений /кривая а / в результаты, следующие из правила конечных сумм '6 /кривая b /.

Длина рассеяния для S - волны:

Из # ⁺ He ¹ прв 24 <i>МэВ</i> ^{(7,1}	Наш зависящий от энергии фазовый анализ	9 Мезоатомы
Rea ₀ -0,188±0,004	-0,160±0,010	-0,143±0,004
Ima ₀ 0,114±0,008	0,055±0,007	0,042±0,003

Электромагнитный раднус пиона, полученный из нашего анализа с использованием метода из работы $\frac{9}{1}$, оказывается равным: $(1^2 \times 1^{1/2} = 0.83 \pm 0.17) \Phi_{\rm M}$.

Литература

- 1. I.T.Todorov. JINR, E2-5813, Dubna, 1971.
- I.V.Faromkin, M.M.Kulyukin, V.I.Lyashenko, A.Mihul, F.Nichitiu, G.Piragino, G.Pontecorvo, Yu.A.Scherbakov. EI-6534, Dubna, 1972; Nuovo Cimento, 21A, 168 (1974); Lett. Nuovo Cim., 5, 1125 (1972).
- O.V.Dumbrais, F.Nichitiu, Yu.A.Scherbakov. Rev.Roumaine de Physique, 18, 1249 (1973).
- C.Wilkin, C.R.Cox, J.J.Domingo, K.Gabathuler, E.Pedroni, J.Rohlin, P.Schwaller, M.W.Tanner. Nucl. Phys., 62B, 61 (1973).
- 5. Л.Александров. Препринты ОИЯИ, Р5-7258, Р5-7259, Дубна, 1973.
- G.Alberi, Z. Grossman, J.Leon, P.Osland. IC/74/13 Preprint, Tricste, 1974.
- M.E.Nordberg, K.E.Kinsey, Phys.Lett., 20, 692 (1966), S.Dubnicka. Preprint JINR, E2-6765, Dubna, 1972.
- 8. F.Nichitiu, Yu.A.Scherbakov. Nucl. Phys., B61, 429 (1973).
- 9. G.Backenstoss et al. Nucl.Phys., B66, 125 (1974). II-Tong Cheon, T. von Egidy. Preprint Institut de Physique Universite de Liege, Belgium (1974).

Рукопись поступила в издательский отдел 18 октября 1974 года.