

8313

СООБЩЕНИЯ ОБЪЕДИНЕННОГО ИНСТИТУТА ЯДЕРНЫХ ИССЛЕДОВАНИЙ ДУБНА

Эна чит. зала P1

НЕУПРУГИЕ ВЗАИМОДЕЙСТВИЯ **Q** - ЧАСТИЦ С ИМПУЛЬСОМ 17 ГЭВ/С С ЯДРАМИ

Сотрудничество Варшава - Дубна - Гатчина Кошице - Ленинград - Москва - Ташкент

ЛАБОРАТОРИЯ ВЫСОНИХ ЭНЕРГИЙ

P1 - 8313

НЕУПРУГИЕ ВЗАИМОДЕЙСТВИЯ **С**-ЧАСТИЦ С ИМПУЛЬСОМ 17 ГЭВ/С С ЯДРАМИ

Сотрудничество Варшава - Дубна - Гатчина -Кошице - Ленинград - Москва - Ташкент

К.Д.Толстов, М.Тотова, Й.Тучек, Г.С.Шабратова Объединенный институт ядерных исследований

Э.Скжипчак, А.Яхолковска

Варшавский университет

М.Карабова

Университет им. Шафарика, Кошице, ЧССР

Ф Г.Лепехин, Б.Б.Симонов

Ленинградский институт ядерной физики им. Б.П.Константинова.

Б.В.Губинский, В.И.Остроумов

Ленинградский политехнический институт им. М.И.Калинина.

Н.А.Перфилов, В.А.Плющев, З.И.Соловьева

Радиевый институт им. В.Г.Хлопина, Ленинград

М.И.Адамович, В.Г.Ларионова

Физический институт АН СССР им. П.Н.Лебедева

Е.С.Басова, К.Г.Гуламов, У.Г.Гулямов, Ш.Насыров, Г.М.Чернов

Институт ядерной физики АН Уз.ССР

SUMMARY

The use of photoemulsions of two types, the first having ordinary composition of nuclei (BR-2) and the second enriched with light nuclei (H, C, O), makes it possible to determine the cross sections of the interactions of 17 GeV/c a-particles with C, O and Ag , Br nuclei.

> $\sigma_{\rm C} = (380 \pm 38) \,\text{mb}, \qquad \sigma_{\rm Br} = (1520 \pm 65) \,\text{mb},$ $\sigma_{\rm 0} = (460 \pm 47) \,\text{mb}, \qquad \sigma_{\rm Ag} = (1850 \pm 80) \,\text{mb}.$

The mean multiplicities of shower and heavy particles for the interaction of *a* -particles with emulsion nuclei are

 $<n_s>=4.44\pm 0.07$, $<n_h>=9.08\pm 0.24$.

We have measured the cross sections and mean multiplicities on the mean effective emulsion nucleus for the events:

1) *a*-particle fragmentation and stripping (in case of emission of one-charged relativistic particle with $\theta < 3^{\circ} - a^{\circ}A - 1$).

2) in case of emission of two-charged relativistic particle with $\theta < 3^{\circ} - a A - 2$. $\sigma_{aA-1} = (340 \pm 40) \text{ mb}, \quad < n_{s} >_{aA-1} = 3.70 \pm 0.10, \quad < n_{h} >_{aA-1} = 5.20 \pm 0.20;$ $\sigma_{aA-2} = (100 \pm 15) \text{ mb}, \quad < n_{s} >_{aA-2} = 1.24 \pm 0.10, \quad < n_{h} >_{aA-2} = 4.35 \pm 0.28.$

Angular and momentum distributions are given for events of the type *a* A-1 and *a* A-2.

hand the set

Исследование взаимодействия релятивистских a-частиц с ядрами представляет интерес в различных аспектах: генерация частиц составной релятивистской системой, фрагментация этой системы в результате неупругого взаимодействия с различными ядрами, их возбуждение и распад. При исследовании этих вопросов интересно также сопоставление некоторых характеристик взаимодействий a-ядро с аналогичными характеристик взаимодействий p-ядро и d-ядро. Изучение a-ядро-взаимодействий существенно для релятивистской ядерной физики, ряд проблем которой рассматривался в работах $^{1-3/}$. Помймо этого, затрагиваемые вопросы имеют прикладное значение, например, для радиационной защиты при космических полетах и для определения состава космического излучения.

І. УСЛОВИЯ ЭКСПЕРИМЕНТА

Облучение ядерных фотоэмульсий типа БР-2 /тип I / и эмульсий БР-2, пропитанных 50%-ным водным раствором глюкозы (C₆ H₁₂O₆) - /тип II /, было произведено на синхрофазотроне ОИЯИ выведенным пучком *а*-частиц с импульсом 16,8 ГэВ/с. Ядерный состав эмульсий и раствора глюкозы дан в приложении 1. Поиск взаимодействий проводился вдоль следа.

3

Научно-техническая библиотека ОИЯИ

II. СВОБОДНЫЙ ПРОБЕГ И СЕЧЕНИЕ ВЗАИМОДЕЙСТВИЯ

Для определения средней длины пробега до неупругого взаимодействия ^{*} необходимо оценить эффективность регистрации событий. Для уменьшения пропусков событий /в особенности звезд, содержавших двухзарядные частицы с малым углом вылета по отношению к пучку a-частиц/ на 20% всей просмотренной длины был произведен повторный просмотр на тех же первичных следах с определением средней эффективности регистрации событий < ϵ >

$$\epsilon \epsilon > = \frac{\frac{12}{1/2(m_1 + m_2)}}{1/2(m_1 + m_2)}$$

где m₁₂ - число звезд, найденных дважды, m₁ и m₂ число звезд, найденных при первом и втором просмотрах соответственно.

Для эмульсин I $<\epsilon>=0.96$; эмульсин II $-<\epsilon>=0.91$, Полное число звезд в эмульсии I составило 4028, а в эмульсии II - 1028. Средний пробег до взаимодействия

 $\lambda_{I} = /19,5\pm0,3/$ см в эмульсин типа I, $\lambda_{II} = /28,5\pm1/$ см в эмульсин типа II.

Используя эти величины, определим средний пробег λ в растворе глюкозы. При наполнении эмульсии I 50%-ным раствором глюкозы объем ее увеличился в 2,68 раза. Вследствие аддитивности объемов эмульсии и раствора глюкозы 1/2,68 объема эмульсии II заполнено эмульсией I, а 1,68/2,68 объема - раствором глюкозы. Следовательно, справедливо соотношение

$$\frac{1}{\lambda_{\rm H}} = \frac{1}{\lambda} \frac{1,68}{2,68} + \frac{1}{\lambda_{\rm H}} \frac{1}{2,68} \, .$$

Используя величины λ_{I} и λ_{II} , получим $\lambda = -/39\pm 3/$ см. Зная λ и ядерный состав раствора глюкозы, *К числу неупругих отнесены однолучевые взаимо-

действия с одной двухзарядной релятивистской частицей, имеющей угол вылета > 3°.

· 正面的 化合物合金 的复数形式

14:22844前期) 公認録の а также сечение неупругого взаимодействия *а*-частиц с протонами *a*_H = 100 *мбарн*^{/4/}, из соотношения

 $\frac{1}{\lambda} = \sigma_{\rm H} n_{\rm H} + \sigma_{\rm C} n_{\rm C} + \sigma_{\rm 0} n_{\rm 0}$

получим $\sigma_{\rm C} \sigma_{\rm C} + \sigma_{0} n_{0} = 0,0192 \pm 0,0020$. Разница в атомных весах С и О сравнительно невелика, а ядер кислорода - в 2,66 раза больше, чем углерода, поэтому допустимо использование закона $A^{2/3}$, т.е. $\sigma_{\rm C} = 0,82 \sigma_{0}$. Тогда получим $\sigma_{0} = /460 \pm 47/$ мб, $\sigma_{\rm C} =$ =/380 ± 38/ мб. Используя величины сечений $\sigma_{\rm H}$, $\sigma_{\rm C}$, σ_{0} , $\sigma_{\rm N} = 0,915 \sigma_{0}$ и закон $A^{2/3}$ для отношения сечений на ядрах серебра и брома, получим из найденной величины $\lambda_{\rm I}$ и ядерного состава эмульсии I $\sigma_{\rm Ag} = /1850 \pm 80/$ мб, $\sigma_{\rm Br}$

III. МНОЖЕСТВЕННОСТЬ ВТОРИЧНЫХ ЗАРЯЖЕННЫХ ЧАСТИЦ

Из полного набора взаимодействий лучевые характеристики были определены:

а/ для 30% событий от общей статистики / события а А "/:

б/ для событий с эмиссией однозарядной релятивистской частицы под углом $\theta < 3^{\circ}$ по отношению к падающей *а* -частице, составляющих около 36% общей статистики /"события *а* A –I "/;

в/ для событий с эмиссией двухзарядной релятивистской частицы под углом θ <3° по отношению к первичной, составляющих около 7% от общей статистики / события а A-2"/.

Общие данные по множественностям во взаимодействиях *а*-частиц с ядрами приведены на *рис. 1-3* и в *табл. 1.*

В основном форма распределения числа сильно ионизирующих частиц п_h существенным образом не отличается от соответствующих распределений для взаимодействий протонов ^{/5}/ и дейтронов ^{/6}/ с ядрами фотоэмульсии при близких импульсах, приходящихся на нуклон налетающей частицы.

4.

Таблица І.

والمرجع المرجع والمرجع والمرجع المرجع المرجع والمرجع والمرجع والمادي المجرد		
	<n b=""></n>	< n > s
aA	9.08 ± 0.24	4.44 <u>+</u> 0.07
a A-I	5.20 ± 0.20	3.70 ± 0.10
0LA-2	4.35 ± 0.28	I.24 <u>+</u> 0.10
d A-3	I2.I2 <u>+</u> 0,44	5.32 <u>+</u> 0.14
dA	7.90 ± 0.10	3.IO ± 0.04
dA (стрип.)) 5.I <u>+</u> 0.I	2.6 <u>+</u> 0.1
P-A	8.74 <u>+</u> 0.18 ·	2.77 ± 0.04

6

	0	1	2	3	4	5	6	7	8	9	1C)	12	2	14	,	16	,	18		20		22		24		26	i	28	3	30		32	:	34		36	38	3	40		42		44		46		48	^` h
0		4	37	π	4	4	4	3	1			2	2	Ι	1	Τ			Γ				•									Τ													\square				70
1	1	25	16	9	9	5	6	6	4	2			4	1		Τ	2	1	Γ	1				2			1	1				1		Τ		1		Τ	Γ	Γ				Π	Π				98
2	50	46	30	011	2	1 15	9	5	2	1		Ι	1	1	5	1	2	Γ	ŕ	1		4	3			2	2	1				1				1								Π	Π				219
3	34	21	21	27	72	2 22	12	2 13	5	4	6	9) 2	3	2	3	1	4	5		1	3	2		2	3					T	T	1	1	1			Τ		1	1			Γ		Π			230
4	23	26	19	19	5 17	7 16	7	12	9	5	3	4	6	1	5	1	3	3	3		4	5	4	2	1	1	4	2	1	1	2	1		1	2		i	1	1	F				Π	Π				210
5	19	13	11	15	5 14	(2	1	7	2	7	6	9) 4	2	2 4	7	1	3	2	3	1	2	2	1	1	4	2	2	1	1	1	,	1	1	1	1	1	T	1	T				Π	Π	Π			182
6	5	1	3	4	1:	3 12	14	9	5	4	2		3 7	13	2	5	2	2	4	7	2	4	4	1	5	4	3	1	1	3	1	1	1	2	1	1	\top	1	1	T					Π	Π			143
7	5	Ī	4	4		1 5	5	3	5	3	5	; ;	3	17	4	1	4	t	3	4		3	4	4	5	3	1	2	4	1	1	1	1	2			1	T	1	1	ŀ	Ţ		Γ		Π			99
8	1	ſ	T	3	4	3	3	2	12	1	3		5 3	2	2	4	2	1	1	4	2	7	2	-	3	3	2	1	2	1	2	2			1	1	1	╈	t	t	F		F	F	Γ	Η	1		87
9	F	T	T	3		1	1	2	2	4	1	t	1	1	i,	1	3	2	1	3	3	2		5	1	2		2	2	1	2	1		2	1	1	+	\dagger	t	┢	T	T	F	F	T	Η		Π	49
0	Γ	T	T	T	T	2		T	T	1	1	1	3	12	2 1	1	t	1	1	2			3	-	1	4	5		1	3	1				-	1	+	╋	t	┢	┢	†-	F	t	F				35
11	F	t	t	t	t	1	1	ŀ	t	1	1		12	1	ϯ	2	t	t	2	1	1		1	3		3	1	-	1	+		1			1		+	\dagger	┢	┢	t	1	F	t	t	Η			23
12	Γ	t	T	t	T	t	T	T	1	t	t	t	╈	t	ı†	t	1	2	t	┢		1	1					1		1	1	1	1		1		+	╈	+	╋	ſ	1	F	t	┢	Η		Η	10
3	F	F	T	T	t		t	┢	\dagger	T	t	┢	T	t		t	t	1	t	t			1			-						1				-	+	1	1	┢	t		ŀ	t	┢	Η	\vdash	H	2
4	F	t	t	t	t		t	t		t	t	╋	\dagger	t	╈	ϯ	\dagger	t	t						-							+		、			╉	+	╈	╀	┢	┢	┢	t	t	Η	┢╴		
5	Γ	t	T.	t	t	ϯ	t	t	T	t	t	1	+	t	1	t	\uparrow	t	1	1				_	-								-		-			-	+	t	t	T	\uparrow	t	┢	Η	\vdash		3
6	F	┢	\uparrow	t	ł	$^{+}$	t	+	\uparrow	\uparrow	+	+	+	+	+			1	┢	\vdash	\vdash	-		_	-			-									+	+	+	┢	t	┢	\uparrow	t	t	Η			1
7		t	t	t	t	$^{+}$	t	t	t	\uparrow	t	t	\dagger	\dagger	+	Ť	\dagger	\uparrow	t	t												1	-		-	-		\dagger	╈	t	t		t	t	t	Η		T	1
	138 137 141 101 1077 110 77 62 48 33 28 40 30 24 27 27 21 20 23 27 14 31 27 18 19 29 21 13 12 8 11 8 4 7 4 6 2 1 4 1 1 1462																																																
s			<i>'</i>				,	.					T						*																														
							1	^D u	C.		1	•	T	a	5л	u	ļa		м	нс	ж	e	CT	8	ен	H	oc	π	и	ð,	ля		8	30	u	м	60	ей	C T	18	us	,							

а-частиц с ядрами фотоэмульсии / "аА -события"/.

Рис. 3. Распределения по n_s для " aA - событий". Здесь же приведены данные для $d = \pi d p o / 6 / u - p - \pi d p o / 5 / .$

Средние значения < n_h > равняются 9,08±0,24, 7,9± ± 0,1 и 8,74±0,18 для первичных a, d и р соответственно. Вклад звезд с $n_h \ge 28$ при взаимодействиях a-частиц с ядрами оказывается большим /4,7±0,6/%, чем в соударениях дейтронов /2,0±0,3/% и протонов /1,5± ±0,3/% с ядрами.

В отличие от распределения по п_h, форма распределения числа п_s вторичных быстрых однозарядных частиц/*рис.3*/ в "событиях *a* А " отличается от распределений для взаимодействий дейтронов и протонов. Среднее значение $<n_s>$, равное 4,44±0,07; 3,10±0,04; 2,77±0,04 для первичных *a*; d и р соответственно растет с ростом массы первичной частицы /см. табл. 1/.

Взанмодействия $n_s = 0$ /4,8/% и $n_s = 1$ /6,7/% в основном принадлежат "событиям a A - 2 ", где составляют 44,5% и 28,5% соответственно. Из этого следует, что в "aA-событиях", связанных с развалом первичной

a -частицы, случан $n_s = 0$ н $n_s = 1$ составляют менее чем 2% и 5% соответственно. Этот факт свидетельствует о росте числа испускаемых быстрых частиц по сравнению с взаимодействием протонов и дейтронов /где, например, доля событий с n_s = 1 около 20%/ н. следовательно, о роли неупругих взаимодействий двух и более нуклонов налетающей а-частицы.

Характеристики по множественностям для событий а A-2 показаны на рис. 4 и в табл. 1. Распределения по nh и n. уже, чем для а А -событий, а соответствующие средние значения $< n_h > * = 4,35\pm0,28$ и $< n_s > = 1,24\pm0.10$ меньше, что легко понять, т.к. эти события соответствуют двум инклюзивным реакциям

а + ядро → ⁴ Не+ ... /2/

Прямое разделение реакций /1/ и /2/ в условиях данного эксперимента затруднительно. Оценки их относительных вкладов будут проведены позднее на основании комплексного анализа совокупности экспериментальных данных. В настоящее время можно только сказать, что сравнение средних значений $<_n - 1 > \mu <_n > для$ "событий aA - 2" со средним значением $<_n + 2 > \mu <_n - 1 > \pi$ для протонного стриппинга дейтронов/7/ *табл. 1*/ указывает на сравнимый вклад реакций /1/ и /2/ в совокупность "событий a A - 2 ".

Если не учитывать пренебрежимо малого вклада релятивистских мезонов в угле $\theta < 3^{\circ}$ по отношению к падающей частице, то "события а A-1 " описываются инклюзивными реакциями.

/4/ $a + \pi g p o \rightarrow d + \dots$

/5/ $a + ядро \rightarrow p +$

* К числу серых лучей нами относилась частица, сохранившая заряд Z = 2.

	133	77	37	24	15	5	9		2.	-	-	1	299
5	·			-									-
			1			-							
, i													
Б.											-		-
2													
8												<u> </u>	-
3										-		-	-
5										-			L.
2									-				-
2													
3													-
2					-								-
₽					-	-	-					ļ	3
₽								L					
4		-		÷.,		11							-
₽													
5					7		-						n
14		-	-	•				,					m
13	-	1. A.	•										-
12		-	-	-							• '		3
Ξ	2					1.1							7
₽				-									-
6	2	-		8									S.
Ŗ	2	2			-				3. 	- 50 ^{- 6}		1. F.	ŝ
2	9	4		-	-	1.1	۴.						2
9	2	2	2	e	7	-	1. 1		-	· · · ·	199		3
2	12	5	5	-	· +	· /	-				•		26
4	6	5	5	ŝ	-								25
5	21	9	3	2	2	2							<u>_</u> %_
2	71	14	ç	3							- 		8
-		31	10	'n	•			· .					\$
	0	-	2	3	+	S	و	2	80	6	P	=	

П

Характеристики множественностей этих событий приведены на рис. 5 и в табл. 1. Средние значения <_{nb} > и <_{ns}> равны 5,2±0,2 и 3,7±0,1 соответственно. Распределения по пь и п_в уже распределений для "аА - событий" и шире распределений для "событий а A - 2". Вклады реакций /3/, /4/, /5/ можно, в принципе, оценить из угловых и импульсных распределений вторичных релятивистских частиц с Z = 1 в узком конусе. В табл. 1 приведены также средние характеристики <nb > , <ns > для событий а А-взаимодействий за исключением событий типа а A -1 н aA -2 /обозначенные aA-3/. Наблюдается еще большее различие в значениях < n_h > и < n_s > для этого типа событий и событий pA, dA, чем в случае aA, что объясняется заметной вероятностью взаимодействия с ядром двух и более нуклонов а-частицы. Это согласуется с оценкой /10 / числа эффективно взаимодействующих нуклонов а -частицы.

IV. УГЛОВЫЕ РАСПРЕДЕЛЕНИЯ ВТОРИЧНЫХ ЧАСТИЦ

Рассмотрим угловые распределения вторичных частиц, испущенных в конусе $\theta < 3^{\circ}$ по отношению к первичной. На *рис.* 6 приведены распределения для одной из релятивистских заряженных частиц из *а*-ядро, *d*-ядро - взаимодействий / P_d = 9,4 $\Gamma_{\Im}B/c//^{7-8}$ и частиц, рожденных в p-ядро- / P_p = 6,3 $\Gamma_{\Im}B/c//^{9/}$ -взаимодействиях. Как и в d - ядро-соударениях, в *а* - ядро-событиях наблюдается острый максимум при малых θ , который естественно отнести к реакциям /3/, /4/, /5/ фрагментации и стриппинга *а*-частиц в однозарядные (t, d, p) и нейтральные частицы.

Применяя процедуру вычитания фона, аналогичную использованной в $^{7,8/}$, получаем число звезд, обусловленных процессами фрагментации и стриплинга 1100±100 или 26% всех неупругих а-ядро-взаимодействий, что соответствует сечению 340±40 *мбарн*, на среднеэффективном ядре фотоэмульсии $< A_{3}$ фф. > = 70, имея в виду вероятность взаимодействия с тяжелым и легким ядрами 0,7 и 0,3 соответственно.

_				_			_						_
	8	399	325	251	196	66	65 .	28	2	8	S		1468
33					-					1		T	-
32			1	1	-	-	1		1				~
5		-				1	1		1				
3		1.		1	1			1			2		-
62				-	\square		-	1	-				2
28		-	-	~	1	1		1-	+	1			6
27			-	-		1	-	-	+			1	4
26		-	1-	-	1-	-	1		1		<u> </u>	1	5
22		-	1	1	-		+	-	† -		\uparrow	1.	4
2			1	-	8	-	~	-				1	~
23	-		<u> </u>	-	-	-	-	\uparrow		\square	\vdash	1	4
22	-		6	-		-	2			1-	1-		
51		-	-	2	1	~	-		-	<u> </u>			~
20	-	1	2	6	2		-	9	2	-		-	5
\$	-		2	2	-	m		3			-		Ę
18	-	-	2	-		-	m	· .	1	-	-		=
4		-	m	5			1	-	-		<u>† </u>		
16	6		-	-	-	4	1	1	-	<u> </u>	\vdash		Ŧ
5		-	-	N	••	3	~	-	1	-	1	1-	4
14	-	•	3	~	-	3	6			1		1	ę
13	-	-	9	4	C4	-		1	1	~			22
12	3	-	~	-	5	S	6		-		\vdash	ŀ	21
11		9	2	S	0	3	-	2	-			<u> </u>	53
ê		. 6	-	-	•	2	m		2			-	%
6	5	-	80	80	6	6	-		-				đ
8	3	~	و	80	و	~	2	2		-		-	\$
7	9	12	21	₽	2	•	*	2	-				2
9	4	30	50	£	8	=	5	~			2		95
2	6	26	26	28	4	₽	ور	5	-			-	125
4	=	3	*	25	12	80	4	m	-		-	-	133
m	8	33	26	25	13	8	80		8				123
~	t 6	Ŧ	44	26	6	4	5	4		· ·			149
-	2	98	53	5	15	S	-						215
-	4	10	55	27	32	9	S	-	1942				541
4	+	2	3	4	ŝ	9	2	80	6	Đ .	.E	12	

13

Рис. 5. Таблица множественности для "событий аA-/Z = 1, θ < 3° /.

Рис. 6. Угловое распределение для "событий aA-1 " / Z=1, $\theta < 3^{\circ}$ /. Там же приведены распределения для d - ядро/6/ и p - ядро/8/.

Сравнение этого углового распределения с распределением для протонов от стриппинга дейтронов при сравнимой энергип на нуклон падающего ядра показывает, что они в пределах ошибок одинаковы.

На рис. 7 показано аналогичное угловое распределение для двухзарядных вторичных частиц, испущенных в конусе $\theta < 3^{\circ}$ и имеющих ионизацию, совпадающую с ионизацией первичной частицы. Как видно из рисунка, распределение этих частиц, очевидно, представляющее сумму распределений для реакций /1/ и /2/, также обнаруживает острый максимум при малых θ . Оценка фона от серых следов /частиц отдачи/, попадающих в конус $<3^{\circ}$ и имеющих ионизацию, близкую к ионизации первичной частицы, пока-

Рис. 7. Угловые распределения для "событий aA-2 / Z = 2, $\theta < 3^{\circ}$ /.

зывает, что фон пренебрежимо мал. Сечение этих реакций /310 событий/ имеет своим верхним пределом величину 100±15 мбарн на средне-эффективное ядро эмульсии.

V.ИМПУЛЬСНЫЕ РАСПРЕДЕЛЕНИЯ ВТОРИЧНЫХ ЧАСТИЦ

Оценка импульсов релятивистских частиц производилась методом многократного кулоновского рассеяния * на части материала. Предварительно для проверки мето-

* Авторы благодарны М.И. Третьяковой и И.Я. Часникову за полезное обсуждение методических вопросов.

да было измерено 26О следов первичных частиц / рис. 8/. Среднее значение $\langle p\beta \rangle = /16,5\pm0,3$ / ГэВ/с, что соответствует среднему импульсу /16,9±0,3 / ГэВ/с.

Распределение по $p\beta$ для вторичных частиц с углом вылета $\leq 3^{\circ}$ в событиях aA-1 и aA-2 представлено на *рис. 9а* и 96 соответственно. При построении распределений были введены поправки на геометрический фактор, учитывающий то обстоятельство, что измерения производились на следах, имевших в одном слое длину ≥ 4 см. В этих распределениях /*рис. 9а*/ в ожидаемых областях фрагментации налетающей частицы имеются указания на структурные особенности. Фитирование экспериментального спектра для вторичных частиц с Z=1 тремя гауссовыми кривыми со среднеквадратичным отклонением, соответствующими ошибкам измерения в данных областях, позволяет грубо оценить соотношение сечений реакций /3/, /4/ и /5/ $\sigma_3: \sigma_4: \sigma_5 = 1:2:2$.

Рис. 9. а/ Распределение по р β для "аA-1 событий" / Z=1, θ <3° /. б/Распределение по р β для "аA-2 - событий" / Z=2, θ <3° /. Данные обработаны по методу работы /11/

16

Tadanua II

pβ (ΓaB/c)	< u >	< ^S u >
9 V	5,2 ± 0,6	$4,0 \pm 0,2$
6 + IO	3,8±0,6	$3,2 \pm 0,2$
7 10	2,3 ± 0,5	2,8 ± 0,2

Для событий aA-1 были определены средние множественности релятивистских $<n_s >$ и сильно ионизирующих частиц $<n_h >$ для трех областей р β / табл. 2/.

Из табл. 2 следует, что уменьшение энергии возбуждения ядра-мишени соответствует уменьшению числа эффективно взаимодействующих нуклонов падающей а-частицы.

Более полный анализ характеристик каналов реакции *а*-ядро и статистическое разделение событий, происшедших на легких и тяжелых ядрах фотоэмульсии, будут произведены позднее.

В заключение авторы выражают свою глубокую благодарность коллективу отдела синхрофазотрона ЛВЭ ОИЯИ, сотрудникам электронного отдела ЛВЭ С.Хорозову, А.Голохвастову за помощь в проведении эксперимента по облучению ядерных эмульсий.

Авторы благодарны сотрудникам Лаборатории высоких энергий ОИЯИ за изготовление эмульсии II и проявление слоев, а также всем лаборантам, принимавшим участие в поисках звезд и измерениях характеристик ядерных взаимодействий.

ПРИЛОЖЕНИЕ

Ядерный сост	ав эму:	прсин	/ Б Р-2/			
число ядер	H	C	N	0	Br	Ag
в 1 <i>см</i> ³ х10-22	3,15	1,41	0,395	0,956	1.031	1.031

Ядерный состав 50% раствора глюкозы

Число ядер	Н	C	0
$B 1 cm^3 x 10^{-22}$	6,46	1,2	3,22

<u>,</u> 18

and the second second

Литература

- 1. А.М.Балдин. Сообщение ОИЯИ, Р7-5808, Дубна, 1971.
- 2. А.М.Балдин и др. Сообщения ОИЯИ, Р1-5819, Дубна, 1971.
- A.M.Baldin et al. Particles and Fields. Am. Inst. of Phys. (1971). 3. Harry. H. Heckman. High-Energy Physics and Nuclear Structure.
- 403, 1974. North-Holland Publishing Company Amsterdam. London.
- 4. В.С.Барашенков, В.Д.Тонеев. Взаимодействия высокоэнергетических частиц и атомных ядер с ядрами. Стр. 41, М., Атомиздат /1972/.
- 5. H. Winzeler . Nuovo Cim., 17, 8 (1960).
- H.Winzeler. Nucl.Phys., 69, 661 (1965).
- 6. J.A.Galstyan et al. Nucl. Phys., A208, 626 (1973). Н.И.Богачев и др. Сообщения ОИЯИ, P1-6877, Дубна, 1972.
- 7. М.И.Адамович и др. Сообщения ОИЯИ, Р1-6386, Дубна, 1972.
- 8. С.А.Азимов и др. Изв. АН УзССР, сер. физ.мап., №2, 49 /1973/.
- 9. P.L. Jain et al. Nucl. Phys., 67, 641 (1965).
- 10. G.Fäldt, H.Pilkuhn, H.G.Schlaile. Annals of Physics, 82, 326 (1974).
- Е.П.Феррейра, П.Я.Валошен. Материалы 1-й Международной конференции по мирному использованию атомной энергии в Женеве. 1955, 2, Гостехиздат, 1958, стр. 147.

Рукопись поступила в издательский отдел 19 октября 1974 года.