

27/11-84

P1-83-823

1983

В.Г.Гришин, Л.А.Диденко, З.В.Метревели*

1175/84

ФРАГМЕНТАЦИЯ КВАРКОВ И ДИКВАРКОВ В **л** - р-ВЗАИМОДЕЙСТВИЯХ ПРИ Р = 40 ГэВ/с

Направлено в журнал "Ядерная физика"

* ИФВЭ Тбилисского государственного университета

§1. ВВЕДЕНИЕ

Анализ струйного поведения вторичных частиц в мягких адронадронных взаимодействиях при полной энергии $\sqrt{s} \ge 4$ ГэВ и сравнение с аналогичными данными по e^+e^- аннигиляции и $\nu(\overline{\nu})p$ -взаимодействиям показали, что струи адронов в этих разных процессах обладают рядом универсальных свойств /1-6/. Совместный анализ различных характеристик струйного рождения частиц в таких процессах позволяет установить общие черты и различия динамики формирования адронов в разных типах взаимодействий, что очень важно для построения феноменологических моделей.

В предыдущих работах / 5,7/ исследовалось струйное поведение вторичных частиц в $\pi^- p$ -взаимодействиях при импульсе 40 ГэВ/с $/\sqrt{s} = 8,7$ ГэВ/ и было показано, что наблюдается образование двух струй адронов, которые можно интерпретировать как результат адронизации кварков /дикварков/, входящих в состав первичных частиц /рис.1а/. При этом значения коллективных переменных "сферисити" и "траст" и характеристики частиц в струях в основном согласуются с аналогичными данными по е+е-аннигиляции при одинаковых энергиях в с.ц.и. Существенные различия имеются лишь в области фрагментации протонов. Вероятно, это связано с различием начальных состояний этих процессов /в e⁺e⁻-аннигиляции протоны отсутствуют/. Поэтому представляет интерес сравнение данных по пр -взаимодействиям с результатами экспериментов по глубоконеупругим $\nu(\bar{\nu})$ р -соударениям, которые имеют аналогичные схемы фрагментации /рис.1б/. В последнее время появились данные по этим процессам, позволяющие провести такой анализ /8/. В настоящей работе сравниваются характеристики фрагментации кварков /дикварков/ в мягких ($\pi^- p$)- и жестких $\nu(\overline{\nu})p$ взаимодействиях /§2/ и определяется средний заряд струй, летящих вперед и назад в с.ц.и. сталкивающихся частиц /§3/.

§2. ИЗУЧЕНИЕ ФРАГМЕНТАЦИИ КВАРКОВ И ДИКВАРКОВ

Работа выполнена на статистике около 14000 полностью измеренных π -р-взаимодействий при Р = 40 ГэВ/с. Экспериментальный материал получен путем обработки стереоснимков с двухметровой пропановой пузырьковой камеры. Методика эксперимента описана в/9/.

Данные по фрагментации кварков и дикварков в π⁻ р -соударениях сравниваются с последними данными по ν(ν)р-взаимодействиям.

1

Рис.1. Схема $\pi^{-}p_{-}/a/$ и $\nu(\bar{\nu})p$ -взаимодействий /б/.

полученными с помощью водородной пузырьковой камеры BEBC^{/8/} в ЦЕРНе, где исследовались инклюзивные процессы:

$$\nu_{\mu} \mathbf{p} \rightarrow \mu^{-} \pi^{\pm} + \mathbf{X}, \qquad /1/$$

$$\overline{\nu}_{\mu} \mathbf{p} \to \mu^{+} \pi^{\pm} + \mathbf{X}$$
 /2/

с эффективной массой вторичных адронов W > 3 ГэВ и x_B>0,1. x_B = Q²/2M($\mathbf{E}_{\nu} - \mathbf{E}_{\mu}$) - переменная Бьеркена, где Q² - квадрат переданного 4-импульса, M - масса нуклона, \mathbf{E}_{ν} , \mathbf{E}_{μ} - энергии нейтрино и мюона.

Средние значения эффективной массы для νp - и $\bar{\nu}p$ -взаимодействий составили: <W> = 5,43 ГэВ и 4,63 ГэВ, а количество событий: 5538 и 1647 соответственно. Ограничения по W и x в вводились для исключения квазиупругой резонансной области этих процессов, возможного перекрытия областей фрагментации пучка и мишени и уменьшения вклада от морских кварков. Согласно простейшей схеме /puc.16/ кварк-партонной модели, частицы, летящие в переднюю полусферу, в с.ц.и. вторичных адронов $\nu(\bar{\nu})p$ взаимодействия можно считать продуктами фрагментации $\bar{u}(d)$ кварков, а частицы, летящие назад, результатом фрагментации uu (ud) -дикварков. Распределения по x_F в с.ц.и. дают информацию о характере фрагментации кварков и дикварков в заряженные пионы. $x_F = p^* / p_{max}^*$, p_{max}^* – продольный импульс в с.ц.и. сталкивающихся частиц.

В $\nu(\bar{\nu})$ р -взаимодействиях получены фрагментационные функции $D_{u(d)}^{\pi^{\pm}}(\mathbf{x}_{F})$ и $D_{uu(ud)}^{\pi^{\pm}}(\mathbf{x}_{F})$, а также инвариантные функции $F_{u(d)}^{\pi^{\pm}}(\mathbf{x}_{F})$ и $F_{uu(ud)}^{\pi^{\pm}}(\mathbf{x}_{F})$, которые определяются следующим образом:

$$D^{\pi^{\pm}}(\mathbf{x}_{\mathrm{F}}) = \frac{1}{N_{\mathrm{ev}}} \frac{\mathrm{dN}^{\pi^{\pm}}}{\mathrm{dx}_{\mathrm{F}}}, \qquad (3)$$

$$F^{\pi^{\pm}}(\mathbf{x}_{F}) = \frac{1}{\sigma_{ev}} \int E \frac{d\sigma^{\pi^{\pm}}}{d\mathbf{p}} dp_{T}^{2} = \frac{1}{N_{ev}} \frac{E^{*}}{\pi p_{max}^{*}} \frac{dN^{\pi^{\pm}}}{d\mathbf{x}_{F}} \propto \frac{1}{\kappa_{F}} \frac{1}{\pi} |\mathbf{x}_{F}| D^{\pi^{\pm}}(\mathbf{x}_{F}), \qquad /4/$$

где N_{ev} - количество событий, $N^{\pi^{\pm}}$ - число π^+ -мезонов в этих событиях, E^* - энергия π^{\pm} -мезонов в с.ц.и. вторичных частиц.

В /5,7/ нами было показано, что в $\pi^- p$ -взаимодействиях наблюдается образование двух струй адронов, которые можно интерпретировать в основном как результат адронизации кварков /дикварков/, входящих в состав первичных частиц /рис.1а/. В первом приближении можно считать, что в $\pi^- p$ -столкновениях при $x_F \ge 0,1$ частицы рождаются в основном в результате фрагментации непрование драговавших \bar{u} – или d -кварков, а при $x_F \le -0,1$ - в результате фрагментации (uu) или (ud) дикварков. Вклад от взаимо-действия медленных кварков в адрон-адронных столкновениях при $|x_F| \ge 0,1$ предполагается незначительным /5,7,11/*. Сопоставляя диаграммы $\pi^- p - u - \nu(\bar{\nu})p$ -взаимодействуют одинаково, можно написать спелующие соотношения для нормированиях инваркав, можно написать спелующие соотношения для нормированиях инваркав, можно написать спелующие соотношения для нормированиях инваркавия и и в ваимодействуют одинаково, можно написать спелующие соотношения для нормированиях инваркавиях и в функций π^+ -и π^- -мезонов **:

$$\mathbf{F}_{\pi^{-}p}^{\pi^{\pm}}(\mathbf{x}_{\mathrm{F}}) = \frac{1}{2} \mathbf{F}_{\nu p}^{\pi^{\pm}}(\mathbf{x}_{\mathrm{F}}) + \frac{1}{2} \mathbf{F}_{\overline{\nu}p}^{\pi^{\pm}}(\mathbf{x}_{\mathrm{F}}) \text{ для } \mathbf{x}_{\mathrm{F}} \gtrsim 0,1,$$
 /5/

$$\mathbf{F}_{\pi^{-}p}^{\pi^{\pm}}(\mathbf{x}_{\mathrm{F}}) = \frac{1}{3} \mathbf{F}_{\nu p}^{\pi^{\pm}}(\mathbf{x}_{\mathrm{F}}) + \frac{2}{3} \mathbf{F}_{\nu p}^{\pi^{\pm}}(\mathbf{x}_{\mathrm{F}}) \quad \text{для} \quad \mathbf{x}_{\mathrm{F}} \leq -0.1.$$

Аналогичные соотношения должны выполняться и для фрагментационных функций $D^{\pi^{\pm}}(\mathbf{x}_{\mathbf{F}}).$

Для проверки этих соотношений анализировались неупругие $\pi^{-}p^{-}$ взаимодействия ($n_{\pm} \geq 2$) без дифракционных процессов, которые исключались согласно данным /11/с учетом топологии событий / $n_{\pm} = 2,4,6/$ и сечения этих процессов в области 0, $4 \leq |\mathbf{x}_{\rm F}| \leq 1$.

а/ Инвариантные функции $F^{\pi^{-}}(\mathbf{x}_{F})$

Сравнение инвариантных распределений пионов в обсуждаемых процессах /5/, /6/ начнем с реакций без лидирующих час-

** Здесь учитываются изотопические соотношения для фрагментаций кварков $F_n^{\pi^+}(\mathbf{x}_F) = F_n^{\pi^-}(\mathbf{x}_F), \quad F_n^{\pi^-}(\mathbf{x}_F) = F_n^{\pi^+}(\mathbf{x}_F).$

^{*}При анализе данных мы более точно определим область, где существен вклад от взаимодействующих кварков.

тиц*. На рис.2а и б приведены $F^{\pi^{\pm}}(\mathbf{x}_{F})$ для $\mathbf{x}_{F}(\pi^{+}) > 0$ и $\mathbf{x}_{F}(\pi^{-}) < 0$ для $\pi^{-}\mathbf{p}$ -и $\nu(\overline{\nu})\mathbf{p}$ -взаимодействий. Как видно из рисунков, имеется хорошее согласие для двух различных процессов, за исключением области $|\mathbf{x}_{F}| \leq 0,1$, где существен вклад от взаимодействующих кварков в $\pi^{-}\mathbf{p}$ -соударениях. Сравнение аналогичных распределений для π^{+} -мезонов ($\mathbf{x}_{F} < 0$) невозможно из-за того, что в $\pi^{-}\mathbf{p}$ эксперименте протоны и π^{+} -мезоны в этой области практически не разделяются по методическим причинам. Распределения лидирующих частиц $\pi^{-}(\mathbf{x}_{F} > 0)$ в пределах ошибок согласуются с данными по $\nu(\overline{\nu})\mathbf{p}$ -взаимодействиям при $\mathbf{x}_{F} \geq 0,3$ /рис.2в/. Интересно отметить, что аналогичные распределения для π^{\pm} -мезонов по \mathbf{x}_{F} в $\pi^{-}\mathbf{p}$ -взаимодействиях, определенные относительно оси струй в пределах ошибок совпадают с приведенными распределениями.

Теоретические	значения	\mathbf{n}_{T}	/формула	/7//	для	фрагментации
	кварн	сов	и диквари	СОВ		

				<u> </u>
Кварки	n _T	Дикварки	n _T	
$u \rightarrow \pi^+$	1	$uu \rightarrow \pi^+$	3	
u → π [−]	2	$uu \rightarrow \pi^-$	5	
$d \rightarrow \pi^+$	2	ud $\rightarrow \pi^+$	4	
d → π [−]	1	$u\dot{d} \rightarrow \pi^{-}$	4	

В кварк-партонных моделях /12-15 инвариантные распределения $F^{\pi^{\pm}}(\mathbf{x}_{\mathrm{F}})$ обычно аппроксимируются функцией:

$$F^{\pi^{\pm}}(\mathbf{x}_{F}) = A(1 - |\mathbf{x}_{F}|)^{n},$$
 /7/

где А, п - свободные параметры. Теоретические значения п $_{\rm T}$ для фрагментации кварков и дикварков, полученные с помощью простейших диаграмм квантовой хромодинамики, приведены в табл.1 /13,14/. Отсюда для фрагментации $\pi^-(\bar{u}d) \to \pi^\pm$ получим п $_{\rm T}=2$ для π^+ -мезонов и п $_{\rm T}=1$ для π^- -мезонов, а для фрагментации p(uud) $\to \pi^-$ зна-

В табл.2 приводятся результаты аппроксимации по формуле /7/ экспериментальных данных для $\pi^- p - u \ \nu(\overline{\nu}) p$ -взаимодействий, полученных по формулам /5/, /6/. Видно, что значения параметра п_{эксп}для $\pi^- p - u \ \nu(\overline{\nu}) p$ -взаимодействий близки и не противоречат теоретически ожидаемым значениям. Результаты $\nu(\overline{\nu}) p$ -взаимодействий для $\mathbf{x}_{\mathrm{F}}(\pi^-) < 0$ в области $\mathbf{x}_{\mathrm{F}} < -0,5$ статистически мало обеспечены. Поэтому при аппроксимации использовались экспериментальные данные в области: $-0,525 \leq \mathbf{x}_{\mathrm{F}} \leq -0,225$.

Интересно также отметить, что распределения по $\mathbf{F}^{\pi^-}(\mathbf{x}_F)$ в области фрагментации кварков имеют показатель степени меньше /распределения шире/, чем в области фрагментации дикварков. В кваркпартонных моделях этот результат связан с тем, что валентные кварки в пионах имеют в среднем больший импульс, чем в протонах /12/.

б/ Функции фрагментации $D^{\pi^{\pm}}(\mathbf{x}_{\mathbf{F}})$

В сделанных выше предположениях соотношения типа /5/, /6/ должны выполняться и для неинвариантных фрагментационных функций $D^{\pi^{\pm}}(\mathbf{x}_{\mathbf{F}})$, определенных по формуле /3/. На рис.3 приводятся значения этих функций в зависимости от $\mathbf{x}_{\mathbf{F}}$ для $\pi^{-}\mathbf{p}$ -и $\nu(\vec{\nu})\mathbf{p}$ -

^{*}Лидирующими в адронных взаимодействиях называются такие вторичные частицы, которые имеют те же квантовые числа,что и первичные, и летят в том же направлении в с.ц.и. с $|\mathbf{x}_{\rm F}| > 0.2\div0.3$.

Таблица 2

зависимостью $A(1 - |x_F|)^n$ Аппроксимация инвариантных функций $\mathbb{F}^{\pi^{\pm}}(\mathbf{x}_{\mathbf{\Gamma}})$

	Тип процес- са	область Х _F	A	n skc	x*/N	ć
x,<0)	ิม.3 P ¶⊺ืP	-0,525 € X, 	0,20 <u>+</u> 0,0 4 0,17 <u>+</u> 0,01	4,6 <u>+</u> 0,5 3,6 <u>+</u> 0,2	6,3/7 I,3/7	4+5
(x,>0)	ъ,5р ¶ ⁻ р	0,225 ≰ ∞	0,20 <u>+</u> 0,01 0,17 <u>+</u> 0,07	2,6 <u>4</u> 0,I 2,3 <u>4</u> 0,I	14,2/I 0 20,7/I0	3
(حر ₊ >م)	<u>у, 5</u> р 11 ⁻ р	0,325 ∢ ∞₆ ≼	0,22±0,02 0,138±0,006	I ,4<u>+</u>0,I 0,83 <u>+</u> 0,06	16,7/10 26,3/10	н

ν(ν)ρ+π_x

• 1 p-+ 1 X (40 56+)

взаимодействий, нормированные на область $|\mathbf{x}_F| \ge 0,1^*$. Из рисунков видно, что полученные распределения хорошо согласуются друг с другом, за исключением области $|\mathbf{x}_F| < 0,1$, в которой для $\pi^- p$ -взаимодействий существен вклад от взаимодействующих кварков /рис.1а/.

* Следует отметить, что средние значения множественности π -мезонов, определенные по соотношениям типа /5/, /6/ при $\|\mathbf{x}_{F}\| \geq 0.2$. Близки в этих процессах $<\mathbf{n}_{\pi^{-}p}^{\pi^{-}}(\mathbf{x}_{F} \geq 0.2) > = 0.50\pm0.01$, $<\mathbf{n}_{\nu(\overline{\nu})p}^{\pi^{-}}(\mathbf{x}_{F} \geq 0.2) > = 0.53\pm0.02;$ $<\mathbf{n}_{\pi^{-}p}^{\pi^{+}}(\mathbf{x}_{F} \geq 0.2) > = 0.29\pm0.01,$ $<\mathbf{n}_{\nu(\overline{\nu})p}^{\pi^{+}}(\mathbf{x}_{F} \geq 0.2) > = 0.26\pm0.01;$ $<\mathbf{n}_{\pi^{-}p}^{\pi^{-}}(\mathbf{x}_{F} \geq 0.2) > = 0.26\pm0.01;$ $<\mathbf{n}_{\pi^{-}p}^{\pi^{-}}(\mathbf{x}_{F} \leq -0.2) > = 0.13\pm0.01;$ $<\mathbf{n}_{\nu(\overline{\nu})p}^{\pi^{-}}(\mathbf{x}_{F} \leq -0.2) > = = 0.14\pm0.01$.

7

e	
đ	
Z	
5	
g	

<u>_</u>
A exp(-B x ₁
выра кением
функций
х Т
D#_()
Аппроксимация

	Тып процес- са	област.,	ຮ້	A	80	x*/N
पा ⁻ (æ _r <0)	୬, ତି p ୩୮ p	-0,425 ≰ ∞,	-0,125 -0,125	5 ,5± 0,6 5,1 <u>±</u> 0, 2	9,4 <u>+</u> 0,5 9,0 <u>+</u> 0,2	4,9/7 4,8/7
$\mathbb{T}^{+}(x_{F}>0)$	ა.ეp ¶ეp	0 , I25 ∢X_F ⊹ 0,I25 ≮X_F≮	0,725 0,725	4,6±0,3 4,7±0,2	6,5 <u>+</u> 0,2 6,8 <u>+</u> 0,I	9,1/I0 I2,9/I0
¶ [−] (∞ _F < 0)	بی ۳ م ۹	0 ,2 25 ≮ ∞	0,775	5,5 <u>+</u> 0,4 4,2 <u>+</u> 0,2	4,9 <u>+</u> 0,2 4,4 <u>+</u> 0,I	13,3/12 62,6/12

Фрагментационные функции, как и в ^{/8/}, аппроксимировались выражением:

$$D^{\pi^{\pm}}(\mathbf{x}_{F}) = A \exp(-B|\mathbf{x}_{F}|),$$
 /8/

где А и В - свободные параметры. Результаты такого анализа приведены в табл.3. Значения параметров А и В оказались близкими для обоих процессов.

§3. СРЕДНИЙ ЗАРЯД СТРУЙ

Как было показано, образование адронов в $\pi^- p$ -взаимодействиях, летящих в переднюю полусферу ($x_F \ge 0,1$), можно рассматривать как результат адронизации одного из кварков / \bar{u} или d /, входящих в состав первичного π^- -мезона. Адроны, летящие назад в с.ц.и. ($x_F \le -0,1$), образуются в результате адронизации дикварков / uu или ud /, которые входят в состав первичных протонов. В связи с этим представляет интерес определить средний заряд всех адронов /или струй адронов/, летящих в разные полусферы.

Если в первом приближении пренебречь различием во взаимодействиях \vec{u} и d-кварков и считать, что валентные кварки /дикварки/ фрагментируют независимо, то в аддитивной кварковой модели /12/средний заряд струй, летящих вперед в с.ц.и., будет равен:

$$< Q >_{B} = \frac{1}{2} Q(\bar{u}) + \frac{1}{2} Q(d) + < Q_{S} > = -0.5.$$
 /9/

Для струй частиц, летящих назад в с.ц.и.:

$$< Q_{>_{\rm H}} = \frac{1}{3} Q(uu) + \frac{2}{3} Q(ud) + < Q_{\rm S} > = \frac{5}{6} \approx 0.83$$
, /10/

где <Q_S>- средний заряд морских кварков, обеспечивающих фрагментирующий кварк и дикварк/16,17/. В этом случае предполагается, что дикварк в основном переходит в барион. Значение <Q_S> при фрагментации \vec{u} - и d -кварков равно нулю. Чтобы выделить струи адронов, которые с большой вероятностью имеют квантовые числа фрагментирующего кварка /дикварка/, целесообразно определить <Q> в зависимости от $x = \sum_i |x_{F_i}|$, где суммирование производится по всем заряженным частицам в струе, за исключением центральной области ($|x_{F_i}| < 0, 1$).

На рис.4 показан средний заряд струй в зависимости от величины x для передней /б/ и задней /а/ полусфер, за исключением частиц c $\mid x_{F_i}\mid \leq 0,1,$ определенный следующим образом: <Q>= = $\Sigma(N_+-N_-)/N_$, где N_+ и N_- число положительных и отрицательных частиц в струе, $N_{\rm COG}$ -количество событий с множественностью $n_+\geq 4.$ Здесь же для сравнения приводятся значения <Q>

8

9

для всех вторичных заряженных частиц. Как видно из рис.46, при x > 0,5 заряд струй, летящих вперед, не противоречит ожидаемому - <Q> =-0,5Для струй, летящих назад /рис.4а/, значение <Q> приближается к ожидаемому значению при x \gtrsim 0,8, только при исключении адронов с $|\mathbf{x}_{\mathbf{F}_i}| \leq 0, 1$. Аналогичная зависимость получена и для событий с множественностью $n_{\pm} \ge 6$ /рис.5/, в которых нет вклада дифракционных процессов. Значения < Q> в пределах ошибок не отличаются от данных для событий с n₊≥ 4.

чения заряда <Q> струй от x = = $\Sigma |\mathbf{x}_{F_t}|$ в событиях с $n_{\pm} \ge 4$ для *п***р** -взаимодействий: а/ в задней полусфере; б/ в передней полусфере: • - для всех заряженных частиц в событиях: о - пля заряжен-

§4. РЕЗУЛЬТАТЫ

Приведенное сравнение мягких л р-и глубоконеупругих $\nu(\vec{v})$ р взаимодействий позволяет сделать следующие выводы.

1. Инвариантные функции $\mathbf{F}^{\pi^{\pm}}(\mathbf{x}_{\mathbf{F}})$ для фрагментации кварков и дикварков в $\pi \bar{p}$ -и $\nu(\bar{\nu}) p$ -взаимодействиях для нелидирующих частиц ($\pi^+(x_F > 0)$ и $\pi^-(x_F < 0)$) в пределах ошибок хорошо согласуются при $|x_F| \ge 0, 1$, а для лидирующих π^- мезонов $(x_F > 0)$ - при х $_{\rm F} \ge 0.3$. Превышение ${\rm F}^{\pi} \stackrel{\star}{(} {\rm x}_{\rm F})$ -функций для $\pi^- {\rm p}$ -взаимодействий в области $|\mathbf{x}_{\mathbf{h}}| \leq 0,1$ объясняется вкладом частиц от взаимодействующих кварков. Совпадение этих распределений указывает также на выполнение скейлинга в области W от 4,6 до 8,7 ГэВ для этих различных процессов. Аппроксимация $\mathbf{F}^{\pi^{\pm}}(\mathbf{x}_{\mathrm{F}})$ функций зависимостью $F^{\pi t}(x_F) = A(1 - |x_F|)^n$ дает значения параметра n, близкие к ожидаемым в кварк-партонных моделях.

2. Фрагментационные функции $D^{\pi^{\pm}}(x_{\rm F})$ для $\pi^{-}p$ - и $\nu(\vec{\nu})$ р -взаимодействий в пределах ошибок хорошо согласуются при $|x_{\rm F}| \ge 0,1$. Аппроксимация этих распределений формулой $D^{\pi^{\pm}}(x_{\rm F}) = A \exp(-B|x_{\rm F}|)$ дает близкие значения параметров А и В для двух типов взаимодействий.

3. Анализ среднего заряда струй в π р -взаимодействиях в зависимости от величины х показывает, что при х ≥ 0,5 для струй, летацих впород, и в 2 0,8 для струй, летация назад, полученные значения < Q> совпадают со значениями -0,5 и 0,83 соответственно, вычисленными в аддитивной кварковой модели.

Полученные результаты позволяют сделать заключение о том, что фрагментация кварков и дикварков в мягких π р-и глубоконеупругих $v(\tilde{v})$ р-взаимодействиях одинакова при $\sqrt{s} = W = 5-9$ ГэВ и образование адронов в $\pi^- p$ -взаимодействиях при $|x_{\rm F}| \ge 0,1$ в основном можно интерпретировать, как результат фрагментации непровзаимодействовавших кварков и дикварков, входящих в состав первичных частиц.

Нам приятно выразить благодарность Н.С.Ангелову и П.П.Темникову за помощь в работе.

ЛИТЕРАТУРА

1.0

- 1. Basile M. et al. Phys.Lett., 1980, 92B, p.367; 1980, 95B, p.311; 1981, 99B, p.247.
- 2. Basile M. et al. Nuovo Cim., 1980, 58A, p.193; 1981, 65A, p.414; 1981, 65A, p.400; 1982, 67A, p.244; 1982, 67A, p.53.
- 3. Gottgens R. et al. Nucl.Phys., 1981, B178, p.392.
- 4. Breakstone A. et al. CERN/EP 81-68 Rev. July, 1981.

- 5. Гришин В.Г. и др. ЯФ, 1983, т.37, вып.4, с.915; ОИЯИ, P1-81-542, Дубна, 1981.
- 6. Barch M. et al. Nucl. Phys., 1981, B192, p.289.
- 7. Гришин В.Г. и др. ОИЯИ, Р1-82-252, Дубна, 1982.
- 8. Allen P. et al. Nucl.Phys., 1983, vol.B214, No.3, p.369. 9. Абдурахимов А.У. и др. ОИЯИ, P1-6326, Дубна, 1972; ЯФ,
- 1973, т.18, с.545.
- 10. Гришин В.Г. и др. ОИЯИ, Р1-83-306, Дубна, 1983.
- 11. Гришин В.Г. и др. ЯФ, 1982, т.35, с.376.
- Anisovich V.V., Shekhter V.M. Nucl.Phys., Ser.B., 1973, vol.55, p.455.
- Gunion J.F. Proc. 11 Int.Symp. on Multipart. Dynamics. Bruges, 1980, p.767.
- Andersson B., Gustafson G., Peterson C. Phys.Lett., 1977, 69B, p.221; 1977, 71B, p.337.
- Sivers D., Brodsky S.J., Blankenbecler R. Phys.Rep., 1976, C23, p.1; Blankenbecler R., Brodsky S.J., Gunion J.F. Phys.Rev., 1975, D12, p.3469.
- Фейнман Р. Взаимодействие фотонов с адронами. "Мир", М., 1975.
- Картвелишвили В.Г., Ройнишвили В.Н. Препринт ИФВЭ, 81-14, Серпухов, 1981.

Работа выполнена в Лаборатории высоких энергий ОИЯИ. Препринт Объединенного института ядерных исследований. Дубна 1983

наковым образом.

Grishin V.G., Didenko L.A., Metreveli Z.V. P1-83-823 Fragmentation of Quarks and Diquarks in π P-Interactions at P = 40 GeV/c

Гришин В.Г., Диденко Л.А., Метревели З.В.

в 7 р -взаимодействиях при Р = 40 ГэВ/с

Фрагментация кварков и дикварков

P1-83-823

The fragmentation of quarks and diquarks is studied in $\pi^- p$ -interactions at 40 GeV/c. Invariant xF distributions $F^{\pi^\pm}(x_F)$ and non-invariant distributions $D^{\pi^\pm}(x_F)$ (fragmentation functions) are compared with the analogous data on $\nu(\bar{\nu})p$ -interactions. It is shown that good agreement exists in the region $|x_F| \ge 0.1$ for these different processes. The average jet charge <Q> for forward (<Q>F = -0.52+0.03) and backward (<Q>_B=0.83+0.03) directions in the c.m.s. of $\pi^- p$ -interactions is determined. The obtained values of <Q> are in agreement with the expected values for additive quark model. The obtained results indicate that the fragmentation of quarks and diquarks in soft $\pi^- p$ -interactions are similar to those in hard $\nu(\bar{\nu})p$ -scattering.

Изучается фрагментация кварков и дикварков в пр-взаимо-

 $F^{\pi^{\pm}}(\mathbf{x}_{F})$ и фрагментационные $D^{\pi^{\pm}}(\mathbf{x}_{F})$ функции сравниваются с ана-

логичными данными для глубоконеупругих и()р -взаимодействий.

Получено хорошее согласие в области | х г | > 0,1 для этих различ-

п р-взаимодействий, значения которых согласуются с ожидаемыми

взаимодействиях и в жестких $\nu(\overline{\nu})$ р -соударениях происходит оди-

ных процессов. Определены средние заряды струй <Q>, летяших

вперед (<Q>_в ~ -0,52+0,03) и назад (< Q>_н ~0,83+0,03) в с.ц.и.

в аплитивной кварковой модели. Полученные результаты показы-

вают, что фрагментация кварков и дикварков в мягких тр-

действиях при импульсе 40 ГэВ/с. Полученные инвариантные

The investigation has been performed at the Laboratory of High Energies, JINR.

Preprint of the Joint Institute for Nuclear Research. Dubna 1983

Перевод О.С.Виноградовой

Рукопись поступила в издательский отдел 8 декабря 1983 года.