45.91/83

сообщения объединенного института ядерных исследований

дубна

29/111-83

P1-83-431

А.М.Балдин, В.К.Бондарев, Н.Гиордэнеску, А.Г.Литвиненко, Н.С.Мороз, Ю.А.Панебратцев, М.Пенця, С.В.Рихвицкий, В.С.Ставинский, А.Н.Хренов

КУМУЛЯТИВНОЕ РОЖДЕНИЕ ЯДЕР ТРИТИЯ, ³ Не И ⁴Не

введение

Настоящая работа содержит экспериментальные данные по инклюзивному рождению ядер трития, ³Не и ⁴Не для значений масштабной переменной ^X и квадрата величины поперечной составляющей импульса p² соответственно:

$$0 \leq X - B \leq 3, 2,$$

$$0 \le p_1^2 \le 10 (\Gamma_2 B/c)^2$$
,

В - барионный заряд фрагмента.

Работа является логическим продолжением изучения кварк-партонной структурной функции ядра ^{/1/} по экспериментальным данным инклюзивных сечений рождения кумулятивных частиц^{/2/}.

С методической точки зрения выбор регистрируемых фрагментов и отличительная особенность данной работы по сравнению с публикацией для пионов и каонов^{/2/} состоит в том, что инклюзивные дифференциальные сечения находятся в импульсном интервале, определяемом одним каналом времяпролетного спектра, что существенно уже импульсного разброса, определяемого магнитным спектрометром ДИСК^{/3/}.

ЭКСПЕРИМЕНТ

Инклюзивные частицы (t, ³He, ⁴He) выделялись по импульсу с помощью магнитного спектрометра с фокусировкой /ДИСК/, по критериям времени пролета на двух базах и потерям энергии в сцинтилляторах. Мишени (Af, Cu, Pb) облучались протонами с импульсом 8,9 ГэВ/с. Вторичные частицы регистрировались под углами 168° и 90° в интервале импульсов 0,5÷2,8 ГэВ/с.

Дифференциальное инклюзивное сечение на единицу фазового объема находилось из соотношения:

$$\frac{E_{i}}{p_{i}^{2}}\left(\frac{d^{2}\sigma}{dpd\Omega}\right)_{i} = \frac{E_{i}}{p_{i}^{2}} \cdot \frac{1}{\Omega(p_{i})} \cdot \frac{\Delta N_{i}}{Ip\ell} \left|\frac{dn_{i}}{dp_{i}}\right| \cdot K_{T}(p_{i}), \qquad /1/$$

где E_i и p_i – энергия и импульс фрагмента, соответствующие каналу п $_i$; $\Omega\left(p_i\right)$ – входной телесный угол спектрометра для частиц с импульсом p_i , вычисленный с учетом торможения и рассеяния

- Martin - Andrewski - Alteristya Andrewski - Andr

на веществе детекторов и усредненный по функции аппаратурного распределения; I_p - интенсивность первичных протонов, найденных по наведенной активности; ℓ - толщина мишени; ΔN_i - число за-регистрированных фрагментов в одном канале времяпролет-ного спектра; $|dn_i/dp_i|$ - якобиан преобразования, найденный из очевидного соотношения

$$n_i = n_0 + \frac{q}{\beta_i} , \qquad /2/$$

где \mathbf{n}_0 и q - константы времяпролетной техники; $\boldsymbol{\beta}_{\mathrm{i}}$ - скорость фрагмента.

В соотношении /1/ $K_{\rm T}$ - поправка на торможение и многократное рассеяние в мишени. Для сечения рождения частиц в виде

$$\sigma = C \frac{p^2}{E} \exp\left[-\frac{T}{T_0}(1 - \cos\theta)\right]$$
 /3/

поправка К_T, позволяющая перейти от переменных в точке рождения (p_a, θ_a) к переменным (p_i, θ_i) на выходе из мишени:

$$K_{T}(p_{i}) = \frac{\sigma_{i}}{\sigma_{ei}} , \qquad /4/$$

где

$$\sigma_{\rm ei} = \frac{1}{\ell} \int_{0}^{\ell} \int_{-\infty}^{\infty} \sigma_{\rm e}(\mathbf{p}_{\rm e}, \theta_{\rm e}) \cdot \omega(\eta) \cdot d\eta \cdot dx , \qquad /5/$$

$$\mathbf{p}_{e} = \mathbf{p}_{i} + \delta \mathbf{p}(\mathbf{x}), \quad \theta_{e} = \theta_{i} + \eta(\mathbf{x}), \qquad /5'/$$

 $\omega\left(\eta
ight)$ - угловое распределение для многократного рассеяния.

В табл. 1 приведены экспериментальные данные по дважды дифференциальным инклюзивным сечениям рождения ядер трития. Сечения выражены в единицах [мб·с³·ср⁻¹·ГэВ⁻²] на нуклон для различных кинетических энергий Т/МэВ/. Угол наблюдения 90°, импульс первичных протонов - 8,9 ГэВ/с, фрагментирующие ядра - Al, Cu, Pb. В табл. 2 приведены величины сечений трития для угла наблюдения 168° / Pb, Al /. Обозначения те же, что и в табл. 1.

Такой выбор углов наблюдения фрагментов позволил получить экспериментальную информацию для малых /168°/ и больших /90°/ величин поперечного импульса фрагментов.

В табл. 3 /90°/ и 4 /168°/ приведены экспериментальные данные для фрагментов 3 He, в таблицах 5 /90°/ и 6 /168°/ – для 4 He.

Таблица 1

Т		d	6
•			

$$pPb \rightarrow t(90^{\circ})$$

	······································		
35,5	4,66 <u>+</u> 0,72	51,4	I,83 <u>+</u> 0,12
35,9	$4.04 \pm 0,60$	52,I	2,20 <u>+</u> 0,13
36,3	3,00 <u>+</u> 0,47	52,8	2,25 <u>+</u> 0,12
36,7	4,93 <u>+</u> 0,5 5	53,5	2,20 <u>+</u> 0,10
37,I	5,4I <u>+</u> 0,53	54,2	2,23 <u>+</u> 0,09
37,5	3,6I <u>+</u> 0,4I	54,9	2,44 <u>+</u> 0,09
37,9	4,98 <u>+</u> 0,46	55,6	2,47 <u>+</u> 0,09
38,3	4,06 <u>+</u> 0,39	56,4	2,39 <u>+</u> 0,08
38,8	4,26 <u>+</u> 0,38	57,I	2,05 <u>+</u> 0,07
39,2	3,89 <u>+</u> 0,34	57,9	2,06 <u>+</u> 0,07
39,6	3,77 <u>+</u> 0,32	58,7	2,18 <u>+</u> 0,07
40,I	4,24 <u>+</u> 0,32	59,5	2,20 <u>+</u> 0,06
40,5	4,50 <u>+</u> 0,32	60,3	I,97 <u>+</u> 0,06
4I, 0	4,36 <u>+</u> 0,3I	61,2	2,03 <u>+</u> 0,06
4I,4	4,3 9 <u>+</u> 0,3I	62,0	I,85 <u>+</u> 0,05
41,9	3,89 <u>+</u> 0,29	62,9	I,96 <u>+</u> 0,05
42,4	3,47 <u>+</u> 0,27	63,8	I,62 <u>+</u> 0,04
42,9	3,93 <u>+</u> 0,28	64,7	I,62 <u>+</u> 0,04
43,4	3,84 <u>+</u> 0,27	65,7	I,70 <u>+</u> 0,04
43,9	3,47 <u>+</u> 0,25	66,6	I,49 <u>+</u> 0,04
44,4	3,I4 <u>+</u> 0,24	67,6	I,36 <u>+</u> 0,04
45,0	3,29 <u>+</u> 0,24	68,6	I,45 <u>+</u> 0,04
45,5	3,IO <u>+</u> 0,24	69,6	I,40 <u>+</u> 0,04
46,0	2,92 <u>+</u> 0,24	70,7	I,44 <u>+</u> 0,04
46,6	3,26 <u>+</u> 0,26	7I , 8	I,23 <u>+</u> 0,04
47,2	2,98 <u>+</u> 0,26	72,9	I,32 <u>+</u> 0,04
47,8	3,00 <u>+</u> 0,28	74,0	I,29 <u>+</u> 0,04
48,3	2,33 ± 0,29	75,I	I,23 <u>+</u> 0,04
48,9	2,59 <u>+</u> 0,34	76,3	I,I8 <u>+</u> 0,04
49,6	3,04 <u>+</u> 0,39	77,5	I,08 <u>+</u> 0,04
50,2	I,79 <u>+</u> 0,15	78,7	I,05 <u>+</u> 0,04
50,8	I,98 <u>+</u> 0,14	80,0	I,05 <u>+</u> 0,05

							Таблиц	а 1 /продолжение/
,		Табли	ца 1 /продолжение/		р Сь	ı → t (90°)		
					40,2	$0,51 \pm 0,23$	66,0	$0,30 \pm 0,03$
p۳ø	- t (90)				40,7 AT T	$0,04 \pm 0,24$	5,00 7 T	$0,33 \pm 0,03$
<u></u>			·····		41,1 AT Q	$0,73 \pm 0,24$	07,7	$0,34 \pm 0,03$
					41,5	$0,07 \pm 0,10$	00,7 60,6	$0,31 \pm 0,03$
8I , 3	0,80 <u>+</u> 0,05	155,2	0,I4 <u>+</u> 0,0I		40,4	$0,70 \pm 0,21$	69,0 70 E	$0,20 \pm 0,03$
82,6	0,79 <u>+</u> 0,05	I58 , 8	0,I4 <u>+</u> 0,0I		42,0	$0,00 \pm 0,10$	70,5	0,34 ± 0,04
84,0	0,82 <u>+</u> 0,05	I62, 5	0,I2 <u>+</u> 0,0I		40,0	$0,01 \pm 0,10$		
85,4	0,95 <u>+</u> 0,06	I66,4	0,II <u>+</u> 0,0I		40,7	$0,07 \pm 0,10$	D Al	$\rightarrow + (90^{\circ})$
86,8	0,85 <u>+</u> 0,04	I70 ,4	(0,89 <u>+</u> 0,01)10 ⁻¹		44,2 44.7	$0,60 \pm 0,17$	Pre	
88,3	0,87 <u>+</u> 0,03	174,5	$(0,78 \pm 0,01) \text{ IO}^{-1}$		44,7	0,00 + 0,17	50.8	0.30 + 0.13
89,8	0,98 <u>+</u> 0,03	I78,8	$(0,70 \pm 0,01)10^{-1}$		40,2	$0,43 \pm 0,14$	53.5	0.28 + 0.07
91,3	0,96 <u>+</u> 0,03	I83 , 3	$(0,73 \pm 0,01) 10^{-1}$		46,1	0,04 + 0,10	54.9	0.33 + 0.06
92,9	0,83 ± 0,03	I88, 0	$(0,72 \pm 0,01) 10^{-1}$		46,7	$0,25 \pm 0,09$	55.6	0.4T + 0.07
94,5	$0,80 \pm 0,02$	192,8	$(0,65 \pm 0,02)10^{-1}$		47,2	$0,29 \pm 0,10$	56 4	0.43 ± 0.06
96,2	$0,75 \pm 0,02$	197,8	$(0,56 \pm 0,03)10^{-1}$		47,7	$0,50 \pm 0,14$	57 I	0.24 ± 0.04
97, 9	0,65 + 0,02	203,0	$(0,50 \pm 0,05)10^{-1}$		48,2	$0,25 \pm 0,10$	57 9	$0,21 \pm 0,01$
99,7	$0,54 \pm 0,02$	208,5	$(0,39 \pm 0,01)10^{-1}$		48,8	$0,33 \pm 0,13$	58 7	$0,27 \pm 0.04$
I OI, 5	0,49 + 0,02	214,2	$(0,35 \pm 0,01)10^{-1}$		49,3	$0,21 \pm 0,11$	59.5	$0,27 \pm 0.04$
IO3,4	0,48 I 0,0I	220,I	$(0,28 + 0,01)10^{-1}$		49, 9	$0,30 \pm 0,14$	59,5 60 3	$0,21 \pm 0.04$
T05.3	0.50 ± 0.0T	226,3	(0,24 ; 0,01)10 ⁻¹		50,4	$0,34 \pm 0,15$	6U.S	0.31 ± 0.04
107,3	0.54 + 0.01	232,75	$(0,21 + 0,01) 10^{-1}$		5I , O	$0,24 \pm 0,14$	62,0	$0,28 \pm 0,03$
1 0 9,3	0.52 + 0.01	239,5	$(0.18 + 0.01)10^{-1}$		5I , 6	$0,27 \pm 0,16$	62,U	$0,20 \pm 0,03$
III.4	0.51 + 0.01	246.6	$(0.15 + 0.01)10^{-1}$		52,2	0,26 <u>+</u> 0,19	02,9	$0,20 \pm 0.03$
I I3. 5	0.51 + 0.01	254.0	$(0.14 + 0.01)10^{-1}$		5 4, I	0,59 <u>+</u> 0,09	63,6	0,20 + 0,03
115.7	0.43 + 0.01	261.7	$(0.11 + 0.01)10^{-1}$		54,7	0,46 <u>+</u> 0,07	64,7	$0, 23 \pm 0, 03$
II8.0	0.4I + 0.0I	269.8	$(0.93 + 0.03) 10^{-2}$		55,4	0,55 <u>+</u> 0,07	65,7	$0,27 \pm 0,03$
120.4	0.36 + 0.01	278.4	$(0.79 + 0.04) 10^{-2}$		56,I	0,35 <u>+</u> 0,05	66,6	$0,22 \pm 0,03$
122.8	0.34 + 0.01	287.3	$(0.62 + 0.03)10^{-2}$		56,7	0,5I <u>+</u> 0,06	67,6	$0,18 \pm 0,03$
125.3	0.25 ± 0.01	296.7	$(0.63 \pm 0.02)10^{-2}$		57,4	0,39 <u>+</u> 0,05	68,6	0,21 + 0,03
127.9	0.26 ± 0.01	306.6	$(0.53 \pm 0.01)10^{-2}$		58,I	0,35 <u>+</u> 0,04	69,6	$0,22 \pm 0,04$
I 3 0.5	0.27 ± 0.01	317.T	$(0.36 \pm 0.01)10^{-2}$		58,9	0,4I <u>+</u> 0,04	70,7	$0,12 \pm 0,03$
133.3	0.26 ± 0.01	328.I	$(0.32 + 0.01)10^{-2}$		59,6	0,38 <u>+</u> 0,04	71,8	$0,23 \pm 0,05$
136,T	0.22 ± 0.01	339.8	$(0,27 + 0.01)10^{-2}$,	60,3	0,43 <u>+</u> 0,04	72,9	$0,15 \pm 0,05$
139.0	0.19 + 0.01	352.I	$(0.21 + 0.01)10^{-2}$		6I , I	0,3I <u>+</u> 0,03	7 4, 0	$0,13 \pm 0,06$
I 42. 0	0.18 ± 0.01	365. T	$(0.15 \pm 0.01)10^{-2}$		61,9	0,35 <u>+</u> 0,03	II8 , 4	$(0,54 \pm 0,06) I0^{-1}$
I45.2	0.18 + 0.01	378.9	$(0, 13 + 0.01) 10^{-2}$	•	62,7	0,37 ± 0,03	120,5	(0,39 <u>+</u> 0,04)I0 ¹ ,
I48.4	0.16 + 0.01	393 6	$(0.12 + 0.04)10^{-2}$		63,5	0,4I <u>+</u> 0,03	122,7	$(0,45 \pm 0,03) IO^{-1}$
151.8	0.17 + 0.01	000,0	(0,1~ _ 0,04/10		64,3	0,35 <u>+</u> 0,03	125,0	$(0,42 \pm 0,02) I0^{-1}$
					65 , I	0,3I <u>+</u> 0,03	127,4	$(0,37 \pm 0,02)$ IO ⁻¹

Таблица 1 /продолжение/

.

.

•

PAL	→ t(90°)
129,8	$(0,31 \pm 0,02)10^{-1}$
132,3	$(0,28 \pm 0,01)10^{-1}$
I 34 ,8	$(0,25 \pm 0,01) I0^{-1}$
137,5	$(0,25 \pm 0,01) 10^{-1}$
140,2	$(0,25 \pm 0,01)10^{-1}$
I43,0	$(0, 19 \pm 0, 01) 10^{-1}$
I 4 5,9	$(0, 19 \pm 0, 01) 10^{-1}$
I 48,9	$(0, 18 \pm 0, 01) 10^{-1}$
151,8	$(0, 17 \pm 0, 03) 10^{-1}$
155,2	$(0,24 \pm 0,02) 10^{-1}$
I58 , 8	$(0,20 \pm 0,02) 10^{-1}$
162,5	$(0, 17 \pm 0, 01) 10^{-1}$
166,4	$(0, 14 \pm 0, 01) 10^{-1}$
170,4	$(0, 13 \pm 0, 01) 10^{-1}$
174,5	$(0, 12 \pm 0.01) 10^{-1}$
178 . 8	$(0, 10 \pm 0, 01) 10^{-1}$
183,3	$(0,11 \pm 0,01)10^{-1}$
T88_0	$(0, 15 + 0, 01)$ 10_{-1}
192,8	$(0,90 \pm 0,12)10^{-2}$
197,8	$(0.77 \pm 0.18) 10^{-2}$
203,0	$(0,63 \pm 0,31) 10^{-2}$
286, I	$(0,11 \pm 0,01)10^{-2}$
294,7	$(0, 13 \pm 0, 01) 10^{-2}$
303,6	$(0, II \pm 0, 0I) I0^{-2}$
313,0	$(0,74 \pm 0,04) 10^{-3}$
322,9	$(0,52 \pm 0,03)10^{-3}$
333,3	$(0,38 \pm 0,02)10^{-3}$
344,2	$(0,28 \pm 0,02)10^{-3}$
355,6	$(0,33 \pm 0,02) 10^{-3}$

T	d6		
РРЬ	→ t (168°)		
62,6	0, 69 <u>+</u> 0,49	120,5	$(0,51 \pm 0,04) 10^{-1}$
63, 5	I,02 <u>+</u> 0,5I	122,7	$(0,52 \pm 0,03)10^{-1}$
64,3	0,39 <u>+</u> 0,27	125,0	$(0, 49 \pm 0, 02) I0^{-1}$
65,I	0,75 <u>+</u> 0,28	127,4	$(0,46 \pm 0,02)$ 10 ⁻¹
66,0	0,45 <u>+</u> 0,17	129,8	$(0,42 \pm 0,02) 10^{-1}$
66,9	0,62 <u>+</u> 0,17	132,3	$(0,37 \pm 0.01) I0^{-1}$
67,8	0,56 <u>+</u> 0,II	134,8	$(0,37 \pm 0.01) I0^{-1}$
68,7	0,32 <u>+</u> 0,04	137,5	$(0,32 \pm 0,01) I0^{-1}$
69,6	0,28 <u>+</u> 0,03	1 40,2	$(0,29 \pm 0,01) 10^{-1}$
70,6	0,26 <u>+</u> 0,02	143,0	$(0,23 \pm 0,01)10^{-1}$
71,6	0,27 <u>+</u> 0,02	I45,9	$(0,20 \pm 0,01)10^{-1}$
72,6	0,29 <u>+</u> 0,02	I 4 8,9	$(0, 18 \pm 0, 01) 10^{-1}$
73,6	0,26 <u>+</u> 0,02	150,0	$(0, 11 \pm 0, 01) 10^{-1}$
74,6	0,28 <u>+</u> 0,02	151,9	$(0, 16 \pm 0, 01) 10^{-1}$
75,7	0,29 <u>+</u> 0,01	153,I	$(0, 13 \pm 0, 01) 10^{-1}$
76,8	0,32 <u>+</u> 0,0I	155,I	$(0, 16 \pm 0, 01) I0^{-1}$
77,0	0,27 <u>+</u> 0,01	156,3	(0,II ± 0,0I)I0 -
79,0	0 ,2 7 <u>+</u> 0,0I	159,5	$(0,94 \pm 0,08)$ IO ~
80,2	0,28 <u>+</u> 0,01	162,9	$(0,74 \pm 0,07)10^{-2}$
81,4	0,26 <u>+</u> 0,01	166,4	$(0,84 \pm 0,06) 10^{-2}$
82,6	0,22 <u>+</u> 0,01	170,0	$(0,63 \pm 0,05)10^{\sim}$
83,9	0,22 <u>+</u> 0,0I	173,7	$(0,54 \pm 0,04)10^{-2}$
85,I	0,18 <u>+</u> 0,01	177,6	$(0,55 \pm 0,05)10^{\sim}$
86,4	0,18 <u>±</u> 0,01	181,6	$(0,56 \pm 0,05)10^{-3}$
87,8	0,16 <u>+</u> 0,01	277,9	$(0, 16 \pm 0, 05) 10^{-3}$
89,I	0,18 <u>+</u> 0,01	286,1	$(0,08 \pm 0,03)10^{-3}$
90,5	0,19 <u>+</u> 0,01	294,7	$(0,09 \pm 0,02)10^{-3}$
92,0	0,19 <u>+</u> 0,01	303,6	$(0, 12 \pm 0, 02)10^{\circ}$
93,4	0,16 <u>+</u> 0,01	313,0	$(0, 40 \pm 0, 07)10^{-4}$
94,9	0,16 <u>+</u> 0,01	322,8	$(0, 28 \pm 0, 05) 10^{-4}$
96,5	$0,15 \pm 0,01$	333,3	$(0,28 \pm 0,05)10^{-4}$
98, I	0,17 <u>+</u> 0,01	344,1	$(0,17 + 0,04)10^{-1}$
		355,6	(0,99 <u>+</u> 0,3I)IO ⁻⁰

Таблица 2

.

,					ፐ	d6		Таблица 3
		Таблица	2 /продолжение/		PPb	$\rightarrow {}^{3}\text{He}(90^{\circ})$		
				•	I 5 8.8	$(0,49 \pm 0,11)10^{-1}$	553,2	$(0,75 \pm 0,21)10^{-4}$
					162.5	(0,59 <u>+</u> 0,09)IO ⁻¹ _	580, 5	$(0,25 \pm 0,12)10^{-4}$
ρΑι	$\rightarrow t(168^{\circ})$				166.4	$(0,57 \pm 0,07)10^{-1}$	610,0	$(0, 26 \pm 0, 26) 10^{-4}$
			7		170.4	$(0,51 \pm 0,06)10^{-1}$	6 42, I	$(0,25 \pm 0,09)10^{-4}$
73.6	$(0,72 \pm 0,12) 10^{-1}$	137,5	$(0,30 \pm 0,04) 10^{-2}$		174.5	$(0.55 + 0.06)10^{-1}$	677,I	$(0, 12 \pm 0, 04) 10^{-4}$
74.6	$(0.45 + 0.07) I0^{-1}$	140,2	$(0,20 \pm 0,03) 10^{-2}$		178.8	$(0.43 + 0.05)10^{-1}$	715,4	$(0,45 + 0,24) I0^{-5}$
75.7	$(0.43 + 0.06) I0^{-1}$	I 43, 0	$(0, 19 \pm 0, 03) 10^{-2}$	•	183 3	$(0.44 + 0.04)10^{-1}$	855,I	$(0.75 + 0.75) I0^{-6}$
76.8	$(0.50 + 0.05) 10^{-1}$	I 45, 9	$(0, 19 \pm 0, 03) 10^{-2}$		187.9	$(0.41 + 0.04)10^{-1}$	912,3	$(0,44 + 0,44) I0^{-6}$
77.9	$(0.46 + 0.05)10^{-1}$	I 48, 9	$(0,15 \pm 0,02)10^{-2}$		192.8	$(0,34 + 0,04) I0^{-1}$		
79.I	$(0.43 + 0.04)10^{-1}$	152,0	$(0, 12 \pm 0, 02) 10^{-2}$		197 8	$(0.25 + 0.04) 10^{-1}$		
80.2	$(0.34 + 0.03) 10^{-1}$	155,I	$(0, 12 \pm 0, 02) 10^{-2}$		203.0	$(0.21 + 0.04)10^{-1}$	- C	$\frac{3}{10}(00^{\circ})$
81.4	$(0.33 + 0.03)10^{-1}$	303,6	$(0,28 + 0,10)10^{-4}$		208 5	$(0.20 + 0.05)10^{-1}$	pcu	-+ He(90)
82.6	$(0.33 + 0.03)10^{-1}$	313.0	$(0,26 + 0,07) I0^{-4}$		214 2	$(0.15 + 0.08)10^{-1}$	-	
83.9	$(0.32 + 0.03)10^{-1}$	322.9	$(0.15 + 0.07) 10^{-4}$		220 T	$(0.17 + 0.02)10^{-1}$	I 47.0	$(0,34 \pm 0,34) I0^{-1}$
85,T	$(0.26 + 0.02)10^{-1}$	333.3	$(0.13 + 0.06) 10^{-4}$		226 3	$(0.19 + 0.02)10^{-1}$	156.3	$(0,22 \pm 0,13) 10^{-1}$
86.4	$(0.25 + 0.02)10^{-1}$	344.2	$(0.81 + 0.41)10^{-5}$		232 7	$(0.16 + 0.01)10^{-1}$	159.5	$(0,31 \pm 0,12)10^{-1}$
87.8	(0.22 ± 0.02) 10 ⁻¹	355.6	$(0.71 + 0.41)10^{-5}$		230 5	(0.12 + 0.01) I0 ⁻¹	162.9	$(0,32 \pm 0,10)10^{-1}$
89,0	(0.23 ± 0.02) IO ^{-I}	,-			205,0	$(0.11 + 0.01)10^{-1}$	166.4	$(0,20 \pm 0,07)10^{-1}$
90.5	$(0.25 \pm 0.02)10^{-1}$				253 0	$(0.10 + 0.01)10^{-1}$	170.0	$(0,37 \pm 0,08)$ 10^{-1}
92 0	$(0.26 \pm 0.03)10^{-1}$				200,9 96T 79	$(0.86 \pm 0.06)10^{-2}$	173.8	$(0, 14 + 0, 05) 10^{-1}$
02,0 03.4	$(0.19 \pm 0.02)10^{-1}$				201,7	$(0.74 + 0.06) I0^{-2}$	177.6	$(0,15+0,04)10^{-1}$
90; 4 94 9	$(0.17 \pm 0.03)10^{-1}$				203,0	$(0.61 + 0.06)10^{-2}$	181.6	$(0.13 + 0.04) I0^{-1}$
94,9 05 5	$(0,17 \pm 0,03)10^{-1}$				4/0,4 007/0	$(0.52 \pm 0.06) I0^{-2}$	T85.8	$(0.11 + 0.04)10^{-1}$
90,0 T20 E	$(0,17 \pm 0,03)10$				287,3	$(0.58 \pm 0.06) 10^{-2}$	190.0	$(0.22 + 0.05) 10^{-1}$
120,0	$(0,35 + 0,10)10^{-2}$				290,7	$(0, 41 + 0.05)10^{-2}$	194.5	$(0.15 + 0.05) 10^{-1}$
166,7	(0, 30 + 0, 11)10				306,6	$(0, 41 + 0, 00)10^{-2}$	199.T	$(0.12 + 0.05) 10^{-1}$
125,0	$(0,19 \pm 0,07)10$				317,1	$(0,22 + 0.05)10^{-2}$	208.8	$(0.15 + 0.08) 10^{-1}$
147,4 TOO 9	$(0, 22 \pm 0, 00)10^{-2}$,			328,1	$(0,21 \pm 0.05)10^{-2}$	213.9	$(0.19 + 0.06)10^{-1}$
129,8	$(0,41 \pm 0,07)10$				339,8	$(0, 21 \pm 0, 00) 10^{-2}$	219.3	$(0.14 + 0.04) 10^{-1}$
132,3	$(0,28 \pm 0,05)10$				352,1	$(0,10 \pm 0,00)10^{-2}$	224 8	$(0.83 + 0.20) 10^{-2}$
134,8	$(0,32 + 0,04)10^{-1}$				365,1	$(0,10 \pm 0,02)10^{-2}$	230 6	$(0.91 + 0.16)10^{-2}$
					378,9	$(0, 14 \pm 0, 02)10$	236,6	$(0.67 \pm 0.11)10^{-2}$
					393,6	(0,02 + 0,14)10	242 9	$(0.58 \pm 0.09) I0^{-2}$
				`	409,2	$(0,74 \pm 0,13)10^{-3}$	242,5	$(0.38 \pm 0.06)10^{-2}$
					440,0	$(0,52 \pm 0,08)10^{\circ}$	6437,4 252 2	$(0.42 + 0.06) \text{ IO}^{-2}$
					443,5 469 E	$(0,28 \pm 0,14)10^{-0}$	ະໜູະ ວຣລີຊີ	$(0.39 + 0.06)10^{-2}$
				۰,	402,5	$(0,28 \pm 0,05)10^{-0}$	ເບິ່ງອີ ອີກຄູ່ອີ	(0.44 + 0.07) 10 ⁻³
					482,8	$(0,14 \pm 0,03)10^{-3}$	۵٬۵٫٬	(0,** <u>1</u> 0,01/20
					504,6	$(0,09 \pm 0,02)$ IO ⁻⁰		
					528,0	(0,15 <u>+</u> 0,03)10 ⁻³		

ОБСУЖДЕНИЕ ЭКСПЕРИМЕНТАЛЬНЫХ ДАННЫХ

На рис. 1 приведены экспериментальные данные по инклюзивным сечениям рождения ядер трития в зависимости от их кинетической энергии для разных углов наблюдения. Фрагментирующее ядро – свинец. На этом же рисунке показаны экспериментальные данные при первичной энергии протонов 400 ГэВ для ядра тантала /4/ . Из рисунка видно, что при малых энергиях ядер трития сечения, полученные в нашей работе, близки к соответствующим величинам при энергии 400 ГэВ. что подтверждает эмпирическую гипотезу "ядерного скейлинга" /5/ . Однако при больших энергиях фрагментов сечения рождения ядер трития при энергии 400 ГэВ существенно /на порядок величины/ превышают соответствующие величины при энергии 8,9 ГэВ. Различие настолько сильно, что трудно говорить об асимптотическом стремлении к "пределу" с ростом первичной энергии. Изменяется с ростом энергии и форма спектров, т.е. параметр наклона, характеризующий эффективную среднюю энергию, "температуру" спектра.

На рис. 2 приведены экспериментальные данные для ядер ³Не. Символами (х) показаны экспериментальные данные для угла наблюдения 90° , первичной энергии протонов 7,5 ГэВ при облучении ядер золота ⁶⁷. Сравнение экспериментальных величин, полученных в нашей работе, с данными при энергии 400 ГэВ, как и для ядер трития /см. рис. 1/, говорит о нарушении предельной фрагментации типа "ядерного скейлинга", а сравнение данных при энергии 400 ГэВ с данными работы ⁶⁷ свидетельствует в пользу "ласеного скейлинга".

Такая же противоречивая ситуация наблюдается и для образования ядер $^{\rm 4He}$ /см. рис. 3/.

Следует отметить /как видно из рис. 1-3/, что в настоящей работе получены наиболее подробные экспериментальные данные по зависимости инклюзивных сечений от энергии рожденных фрагментов и относящиеся к наибольшим значениям кинетических энергий регистрируемых частиц. Особенно показателен в этом отношении рис. 3 для ядер ⁴ Не.

В настоящее время не существует разработанных моделей фрагментации ядер с вылетом энергичных фрагментов, состоящих из одного или нескольких нуклонов. Однако в ряде работ высказаны предположения о том, какие механизмы, по мнению авторов, исключены. Это, в первую очередь, механизм "испарения" ядра. Действительно, параметр "температуры" экспериментальных спектров - порядка 100 МэВ, что намного выше обычных "температур" испарительных моделей /несколько МэВ/. Кроме того, энергии первичной частицы просто недостаточно для столь высоких возбуждений всего ядра. Попытки использования механизмов "локального разогрева" или так называемых "кластерных моделей" встречаются с серьезными трудностями, в первую очередь - в описании рождения нуклонных фрагментов.

•	40		raomita i
PPt	→ ³ He (168°)	PAL	→ ³ He (168°)
PPt 92,0 93,4 94,9 96,5 98,1 99,7 101,3 103,0 104,8 106,6 108,4 110,3 112,2 114,2 116,3 120,5 122,7 125,0 127,4 156,4 161,8 165,3 168,9 172,6 176,5 180,5 184,6 188,9 303,6 313,0 322,9 333,2 344,1	$\begin{array}{c} (0.21 \pm 0.15) 10^{-1} \\ (0.19 \pm 0.08) 10^{-1} \\ (0.17 \pm 0.07) 10^{-1} \\ (0.26 \pm 0.08) 10^{-1} \\ (0.20 \pm 0.06) 10^{-1} \\ (0.31 \pm 0.07) 10^{-1} \\ (0.31 \pm 0.03) 10^{-1} \\ (0.17 \pm 0.04) 10^{-1} \\ (0.13 \pm 0.03) 10^{-1} \\ (0.13 \pm 0.03) 10^{-1} \\ (0.22 \pm 0.04) 10^{-1} \\ (0.3 \pm 0.04) 10^{-1} \\ (0.13 \pm 0.04) 10^{-1} \\ (0.13 \pm 0.04) 10^{-1} \\ (0.13 \pm 0.04) 10^{-1} \\ (0.14 \pm 0.05) 10^{-1} \\ (0.26 \pm 0.09) 10^{-2} \\ (0.24 \pm 0.07) 10^{-2} \\ (0.24 \pm 0.07) 10^{-2} \\ (0.12 \pm 0.03) 10^{-2} \\ (0.12 \pm 0.03) 10^{-2} \\ (0.12 \pm 0.03) 10^{-2} \\ (0.11 \pm 0.03) 10^{-2} \\ (0.13 \pm 0.05) 10^{-3} \\ (0.08 \pm 0.08) 10^{-3} \\ (0.26 \pm 0.15) 10^{-4} \\ (0.24 \pm 0.13) 10^{-4} \end{array}$	94,9 98,I 99,7 101,3 103,0 104,8 110,3 116,3 118,4 120,5 125,0 127,4 132,3 134,8 140,2 143,0 145,9 151,9 155,I 158,4 161,8 165,3 168,9 172,6 176,5 180,5 184,7 189,0 193,4 245,6 255,5 270,I 330,0	$\begin{array}{c} - & {}^{3}\text{He} \left(468^{\circ} \right) \\ \hline \\ (0,66 \pm 0,66) 10^{-2} \\ (0,85 \pm 0,60) 10^{-2} \\ (1,11 \pm 0,64) 10^{-2} \\ (0,32 \pm 0,32) 10^{-2} \\ (0,26 \pm 0,26) 10^{-2} \\ (0,22 \pm 0,22) 10^{-2} \\ (0,22 \pm 0,22) 10^{-2} \\ (0,14 \pm 0,14) 10^{-2} \\ (0,14 \pm 0,14) 10^{-2} \\ (0,31 \pm 0,22) 10^{-2} \\ (0,19 \pm 0,19) 10^{-2} \\ (0,33 \pm 0,24) 10^{-2} \\ (0,12 \pm 0,12) 10^{-2} \\ (0,08 \pm 0,08) 10^{-2} \\ (0,08 \pm 0,08) 10^{-2} \\ (0,05 \pm 0,05) 10^{-2} \\ (0,05 \pm 0,05) 10^{-2} \\ (0,12 \pm 0,05) 10^{-2} \\ (0,12 \pm 0,05) 10^{-2} \\ (0,18 \pm 0,09) 10^{-2} \\ (0,14 \pm 0,05) 10^{-2} \\ (0,14 \pm 0,05) 10^{-3} \\ (0,37 \pm 0,19) 10^{-3} \\ (0,41 \pm 0,15) 10^{-3} \\ (0,34 \pm 0,13) 10^{-3} \\ (0,34 \pm 0,14) 10^{-3} \\ (0,28 \pm 0,14) 10^{-3} \\ (0,28 \pm 0,14) 10^{-3} \\ (0,22 \pm 0,08) 10^{-4} \\ (0,29 \pm 0,29) 10^{-4} \\ (0,20 \pm 0,20) 10^{-4} \\ (0,16 \pm 0,16) 10^{-4} \\ \end{array}$
		344,2	$(0, 13 \pm 0, 13) 10^{-4}$

			Таблица 5
Ť	d6		
ρРЬ	→ ⁴ He(90°)		an a
III,4 II3,3 II5,2 II7,I II9,I I21,2 I23,3 I25,5 I27,7 I30,0 I32,3 I34,7 I37,2 I39,7 I42,3 I45,0 I47,8 I50,6 I53,6 I59,7 I62,9 I66,3 I69,7 I73,2	$(0,63 \pm 0,24)10^{-1}$ $(0,52 \pm 0,19)10^{-1}$ $(0,78 \pm 0,20)10^{-1}$ $(0,78 \pm 0,20)10^{-1}$ $(0,78 \pm 0,15)10^{-1}$ $(0,78 \pm 0,09)10^{-1}$ $(0,56 \pm 0,11)10^{-1}$ $(0,56 \pm 0,09)10^{-1}$ $(0,56 \pm 0,09)10^{-1}$ $(0,52 \pm 0,09)10^{-1}$ $(0,54 \pm 0,08)10^{-1}$ $(0,54 \pm 0,08)10^{-1}$ $(0,37 \pm 0,07)10^{-1}$ $(0,33 \pm 0,06)10^{-1}$ $(0,33 \pm 0,07)10^{-1}$ $(0,36 \pm 0,09)10^{-1}$ $(0,36 \pm 0,09)10^{-1}$ $(0,32 \pm 0,06)10^{-1}$ $(0,32 \pm 0,12)10^{-1}$ $(0,32 \pm 0,03)10^{-1}$ $(0,13 \pm 0,03)10^{-1}$ $(0,15 \pm 0,02)10^{-1}$ $(0,19 \pm 0,02)10^{-1}$	210,7 215,7 220,8 226,1 231,6 237,3 243,2 249,4 255,8 262,5 269,4 276,7 284,2 292,1 300,3 308,9 317,8 327,2 337,0 347,3 358,1 369,4 381,3 393,8	$\begin{array}{c} (0,78 \pm 0,10) 10^{-2} \\ (0,62 \pm 0,95) 10^{-2} \\ (0,72 \pm 0,10) 10^{-2} \\ (0,72 \pm 0,09) 10^{-2} \\ (0,70 \pm 0,09) 10^{-2} \\ (0,42 \pm 0,07) 10^{-2} \\ (0,42 \pm 0,07) 10^{-2} \\ (0,45 \pm 0,08) 10^{-2} \\ (0,40 \pm 0,08) 10^{-2} \\ (0,41 \pm 0,09) 10^{-2} \\ (0,22 \pm 0,07) 10^{-2} \\ (0,22 \pm 0,07) 10^{-2} \\ (0,19 \pm 0,09) 10^{-2} \\ (0,39 \pm 0,09) 10^{-2} \\ (0,21 \pm 0,05) 10^{-2} \\ (0,19 \pm 0,04) 10^{-2} \\ (0,18 \pm 0,04) 10^{-2} \\ (0,11 \pm 0,02) 10^{-2} \\ (0,12 \pm 0,02) 10^{-2} \\ (0,87 \pm 0,19) 10^{-3} \\ (0,85 \pm 0,16) 10^{-3} \\ (0,89 \pm 0,15) 10^{-3} \\ (0,74 \pm 0,12) 10^{-3} \\ (0,53 \pm 0,09) 10^{-3} \\ (0,53 \pm 0,09) 10^{-3} \\ (0,37 \pm 0,09) 10^{-3} \\$
173,2 176,8 180,6 184,5 188,5 192,7 196,9 201,4 206,0	$(0,15 \pm 0,02)10^{-1}$ $(0,15 \pm 0,02)10^{-1}$ $(0,10 \pm 0,01)10^{-1}$ $(0,12 \pm 0,01)10^{-1}$ $(0,09 \pm 0,01)10^{-1}$ $(0,10 \pm 0,01)10^{-1}$ $(0,10 \pm 0,01)10^{-1}$ $(0,10 \pm 0,01)10^{-1}$ $(0,10 \pm 0,01)10^{-1}$	406,9 420,8 435,4 450,9 467,2 484,5 502,8 522,3	$(0,37 \pm 0,09)10^{-3}$ $(0,23 \pm 0,12)10^{-3}$ $(0,20 \pm 0,08)10^{-3}$ $(0,17 \pm 0,06)10^{-3}$ $(0,26 \pm 0,06)10^{-3}$ $(0,10 \pm 0,03)10^{-3}$ $(0,09 \pm 0,03)10^{-3}$ $(0,18 \pm 0,08)10^{-3}$ $(0,63 \pm 0,14)10^{-4}$

		Таблі	ица 5 /продолжение/
PAL	→ ⁴ He(90°)		
169,7 176,9 180,6 188,5	$(0,33 \pm 0,30) 10^{-2}$ (0,47 \pm 0,22) 10^{-2} (0,17 \pm 0,11) 10^{-2} (0,15 \pm 0,08) 10^{-2}	314,0 409,9 415,4 428,5	$(0, I4 \pm 0, II) I0^{-3}$ (0, 2I \pm 0, II) I0^{-3} (0, 6I \pm 0, 35) I0^{-4} (0, 88 \pm 0, 34) I0^{-4}
196,9	$(0, 17 \pm 0, 07) 10^{-2}$	47 I,9	$(0,83 \pm 0,22) 10^{-4}$
201,4	$(0, 16 \pm 0, 07) 10^{-2}$	488,0	$(0,67 \pm 0,22) 10^{-4}$
206,0	$(0,10 \pm 0,05)10^{-2}$	504,9	$(0,70 \pm 0,32) 10^{-4}$
210,7 215,7 220,8 235,7 241,0 246,5 252;2 258,1	$(0, I3 \pm 0, 07) I0^{-2}$ $(0, II \pm 0, 07) I0^{-2}$ $(0, 20 \pm 0, I2) I0^{-2}$ $(0, 20 \pm 0, I1) I0^{-2}$ $(0, 56 \pm 0, 49) I0^{-3}$ $(0, 54 \pm 0, 34) I0^{-3}$ $(0, 54 \pm 0, 36) I0^{-3}$ $(0, 88 \pm 0, 42) I0^{-3}$	543,0 565,1 588,6 991,5 1046,3 1106,5 1172,7	$(0,29 \pm 0,12)10^{-4}$ $(0,26 \pm 0,11)10^{-4}$ $(0,21 \pm 0,13)10^{-4}$ $(0,19 \pm 0,10)10^{-5}$ $(0,19 \pm 0,06)10^{-5}$ $(0,11 \pm 0,04)10^{-5}$ $(0,11 \pm 0,08)10^{-5}$
264,2 270,5 298,4 306,0	$(0,61 \pm 0,34) 10^{-3}$ $(0,64 \pm 0,35) 10^{-3}$ $(0,23 \pm 0,23) 10^{-3}$ $(0,37 \pm 0,22) 10^{-3}$	10 [°]	pA t •.0 9 (ГэВ/ с •.0 400 (Гэ

Рис. 4. Сечения рождения ядер
трития в зависимости от масштаб-
ной переменной Х-В . Обозна-
чения как на рис. 1.

Таблица 5 /продолжение/

р РЬ	→ ⁴ He(90°)	PCu	4 → ⁴ He (90°)
р РЬ 543,0 565,I 588,6 669,5 700,6 734,I 770,3 809,5 949,3 1005,I 1066,6 1134.7	$- \frac{4}{\text{He}} (90^{\circ})$ $(0,76 \pm 0,12) 10^{-4}$ $(0,59 \pm 0,11) 10^{-4}$ $(0,18 \pm 0,07) 10^{-4}$ $(0,15 \pm 0,05) 10^{-4}$ $(0,13 \pm 0,03) 10^{-4}$ $(0,12 \pm 0,02) 10^{-4}$ $(0,56 \pm 0,12) 10^{-5}$ $(0,33 \pm 0,14) 10^{-5}$ $(0,39 \pm 0,23) 10^{-5}$ $(0,19 \pm 0,06) 10^{-5}$ $(0,70 \pm 0,35) 10^{-6}$ $(0,46 \pm 0,48) 10^{-6}$	P Cu 109,3 110,9 117,8 121,5 123,4 127,4 129,4 131,5 133,7 138,1 140,5 142,8 145,3 147,8 150,4 153,0 155,2	$\begin{array}{r} (0,35 \pm 0,35) 10^{-1} \\ (0,26 \pm 0,26) 10^{-1} \\ (0,26 \pm 0,26) 10^{-1} \\ (0,67 \pm 0,26) 10^{-1} \\ (0,11 \pm 0,08) 10^{-1} \\ (0,15 \pm 0,09) 10^{-1} \\ (0,15 \pm 0,09) 10^{-1} \\ (0,06 \pm 0,05) 10^{-1} \\ (0,06 \pm 0,05) 10^{-1} \\ (0,21 \pm 0,08) 10^{-1} \\ (0,21 \pm 0,08) 10^{-1} \\ (0,05 \pm 0,04) 10^{-1} \\ (0,06 \pm 0,05) 10^{-1} \\ (0,06 \pm 0,05) 10^{-1} \\ (0,28 \pm 0,12) 10^{-1} \\ (0,28 \pm 0,12) 10^{-1} \\ (0,06 \pm 0,06) 10^{-1} \\ (0,06 \pm 0,06) 10^{-1} \\ (0,06 \pm 0,06) 10^{-1} \\ (0,22 \pm 0,17) 10^{-1} \\ (0,07 \pm 0,07) 10^{-1} \\$
		147,8 150,4 153,0 155,7 158,5 161,4 167,4 170,5 177,0	$(0, 10 \pm 0, 08) 10^{-1}$ $(0, 06 \pm 0, 06) 10^{-1}$ $(0, 22 \pm 0, 17) 10^{-1}$ $(0, 07 \pm 0, 07) 10^{-1}$ $(0, 07 \pm 0, 05) 10^{-1}$ $(0, 15 \pm 0, 07) 10^{-1}$ $(0, 68 \pm 0, 31) 10^{-2}$ $(0, 49 \pm 0, 21) 10^{-2}$ $(0, 44 \pm 0, 15) 10^{-2}$
		180,4 187,6 191,3 195,1 199,1	$(0,50 \pm 0,15) 10^{-2} (0,36 \pm 0,10) 10^{-2} (0,27 \pm 0,08) 10^{-2} (0,38 \pm 0,09) 10^{-2} (0,28 \pm 0,08) 10^{-2} $

.

15

Рис. 5. Сечения рождения ядер ³Не в зависимости от (X-B). Обозначения как на рис. 1 и 2.

Рис. 7. Зависимость от квадрата поперечного импульса (в (ГэВ/с)²) сечений рождения ядер ⁸Не (♂) и ⁴Не (↓). Для сравнения приведены зависимости для пионов и каонов и кривая из работы Дара. 26

	<u> </u>		
р Pb	• → ⁴ He(168°)		
103,4	$(0,76 \pm 0,42) 10^{-2}$	262,8	$(0,32 \pm 0,14)10^{-3}$
IO 4, 9	$(0,35 \pm 0,25) 10^{-2}$	269,2	$(0,33 \pm 0,08) 10^{-3}$
106,4	$(0,64 \pm 0,32) 10^{-2}$	275,8	$(0,27 \pm 0,07) 10^{-3}$
IO8,0	$(0,39 \pm 0,23) 10^{-2}$	282,6	$(0,30 \pm 0,10)10^{-3}$
I 0 9,6	$(0,42 \pm 0,23) 10^{-2}$	289,7	$(0, 15 \pm 0, 05) 10^{-3}$
III,3	$(0,29 \pm 0,25) 10^{-2}$	297,2	$(0,05 \pm 0,03) 10^{-3}$
II3,0	$(0,53 \pm 0,29)10^{-2}$	304,9	$(0, 14 \pm 0, 10) 10^{-3}$
II 4, 7	$(0, 19 \pm 0, 12) 10^{-2}$	415,4	$(0,50 \pm 0,20) I0^{-4}$
II6 , 5	$(0,22 \pm 0,12) 10^{-2}$	428,5	$(0,20 \pm 0,09) 10^{-4}$
II8 ,3	$(0,35 \pm 0,20)10^{-2}$	442,2	$(0,30 \pm 0,08) 10^{-4}$
122,0	$(0,44 \pm 0,13)10^{-2}$	456,7	$(0,20 \pm 0,05) 10^{-4}$
I24,0	(0,30 <u>+</u> 0,15)10 ⁻²	471,9	(0,65 <u>+</u> 0,29)IO ^{-D}
I26 , 0	$(0,20 \pm 0,08) 10^{-2}$		
I28,0	$(0,29 \pm 0,14)10^{-2}$		· · · · · · · · · · · · · · · · · · ·
			- ·
132,3	$(0, 14 \pm 0, 09) 10^{-2}$	рA	$\ell \rightarrow 4 \text{He}(168^\circ)$
132,3 134,5	$(0,14 \pm 0,09)10^{-2}$ $(0,15 \pm 0,10)10^{-2}$	P A	$\ell \rightarrow {}^{4}\text{He}(168^{\circ})$
132,3 134,5 139,0	$(0,14 \pm 0,09)10^{-2}$ $(0,15 \pm 0,10)10^{-2}$ $(0,16 \pm 0,10)10^{-2}$	Р ^А 188,4	1000000000000000000000000000000000000
132,3 134,5 139,0 175,5	$(0,14 \pm 0,09)10^{-2}$ $(0,15 \pm 0,10)10^{-2}$ $(0,16 \pm 0,10)10^{-2}$ $(0,13 \pm 0,10)10^{-2}$	P ^A 188,4 197,6	1000000000000000000000000000000000000
132,3 134,5 139,0 175,5 182,4	$(0,14 \pm 0,09)10^{-2}$ $(0,15 \pm 0,10)10^{-2}$ $(0,16 \pm 0,10)10^{-2}$ $(0,13 \pm 0,10)10^{-2}$ $(0,92 \pm 0,48)10^{-3}$	P A 188,4 197,6 201,6	1000000000000000000000000000000000000
132,3 134,5 139,0 175,5 182,4 189,8	$(0,14 \pm 0,09)10^{-2} (0,15 \pm 0,10)10^{-2} (0,16 \pm 0,10)10^{-2} (0,13 \pm 0,10)10^{-2} (0,92 \pm 0,48)10^{-3} (0,42 \pm 0,22)10^{-3} 2 $	P ^A 188,4 197,6 201,6 205,8	1000000000000000000000000000000000000
132,3 134,5 139,0 175,5 182,4 189,8 193,6	$(0,14 \pm 0,09)10^{-2}$ $(0,15 \pm 0,10)10^{-2}$ $(0,16 \pm 0,10)10^{-2}$ $(0,13 \pm 0,10)10^{-2}$ $(0,92 \pm 0,48)10^{-3}$ $(0,42 \pm 0,22)10^{-3}$ $(0,57 \pm 0,22)10^{-3}$	P ^A 188,4 197,6 201,6 205,8 214,7	1000000000000000000000000000000000000
132,3 134,5 139,0 175,5 182,4 189,8 193,6 197,6	$(0,14 \pm 0,09)10^{-2}$ $(0,15 \pm 0,10)10^{-2}$ $(0,16 \pm 0,10)10^{-2}$ $(0,13 \pm 0,10)10^{-2}$ $(0,92 \pm 0,48)10^{-3}$ $(0,42 \pm 0,22)10^{-3}$ $(0,57 \pm 0,22)10^{-3}$ $(0,99 \pm 0,25)10^{-3}$	P ^A 188,4 197,6 201,6 205,8 214,7 245,1	1000000000000000000000000000000000000
132,3 134,5 139,0 175,5 182,4 189,8 193,6 197,6 201,6	$(0,14 \pm 0,09)10^{-2}$ $(0,15 \pm 0,10)10^{-2}$ $(0,16 \pm 0,10)10^{-2}$ $(0,13 \pm 0,10)10^{-2}$ $(0,92 \pm 0,48)10^{-3}$ $(0,42 \pm 0,22)10^{-3}$ $(0,57 \pm 0,22)10^{-3}$ $(0,99 \pm 0,25)10^{-3}$ $(0,38 \pm 0,13)10^{-3}$	P ^A 188,4 197,6 201,6 205,8 214,7 245,1 250,8	$\begin{array}{ccc} & & & & & & & & \\ \hline & & & & & & \\ \hline & & & &$
132,3 134,5 139,0 175,5 182,4 189,8 193,6 197,6 201,6 205,8	$(0,14 \pm 0,09)10^{-2}$ $(0,15 \pm 0,10)10^{-2}$ $(0,16 \pm 0,10)10^{-2}$ $(0,13 \pm 0,10)10^{-2}$ $(0,92 \pm 0,48)10^{-3}$ $(0,42 \pm 0,22)10^{-3}$ $(0,57 \pm 0,22)10^{-3}$ $(0,99 \pm 0,25)10^{-3}$ $(0,38 \pm 0,13)10^{-3}$ $(0,17 \pm 0,08)10^{-3}$	P ^A 188,4 197,6 201,6 205,8 214,7 245,1 250,8 254,2	$\begin{array}{c} A\ell \rightarrow {}^{4}\text{He} \left(168^{\circ} \right) \\ \hline (0,09 \pm 0,03) 10^{-3} \\ (0,16 \pm 0,13) 10^{-3} \\ (0,14 \pm 0,11) 10^{-3} \\ (0,17 \pm 0,11) 10^{-3} \\ (0,09 \pm 0,08) 10^{-3} \\ (0,15 \pm 0,11) 10^{-3} \\ (0,12 \pm 0,08) 10^{-3} \\ (0,66 \pm 0,13) 10^{-4} \end{array}$
132,3 134,5 139,0 175,5 182,4 189,8 193,6 197,6 201,6 201,6 205,8 210,2	$(0,14 \pm 0,09)10^{-2}$ $(0,15 \pm 0,10)10^{-2}$ $(0,16 \pm 0,10)10^{-2}$ $(0,13 \pm 0,10)10^{-2}$ $(0,92 \pm 0,48)10^{-3}$ $(0,42 \pm 0,22)10^{-3}$ $(0,57 \pm 0,22)10^{-3}$ $(0,99 \pm 0,25)10^{-3}$ $(0,38 \pm 0,13)10^{-3}$ $(0,55 \pm 0,14)10^{-3}$	P ^A 188,4 197,6 201,6 205,8 214,7 245,1 250,8 254,2 269,2	$\begin{array}{ccc} & & & & & & & & \\ & & & & & & \\ \hline & & & &$
132,3 134,5 139,0 175,5 182,4 189,8 193,6 197,6 201,6 205,8 210,2 214,7	$(0,14 \pm 0,09)10^{-2}$ $(0,15 \pm 0,10)10^{-2}$ $(0,16 \pm 0,10)10^{-2}$ $(0,13 \pm 0,10)10^{-2}$ $(0,92 \pm 0,48)10^{-3}$ $(0,42 \pm 0,22)10^{-3}$ $(0,57 \pm 0,22)10^{-3}$ $(0,38 \pm 0,13)10^{-3}$ $(0,55 \pm 0,14)10^{-3}$ $(0,25 \pm 0,10)10^{-3}$	P ^A 188,4 197,6 201,6 205,8 214,7 245,1 250,8 254,2 269,2 275,8	$\begin{array}{ccc} & & & & & & & & & \\ & & & & & & & \\ \hline & & & &$
132,3 134,5 139,0 175,5 182,4 189,8 193,6 197,6 201,6 205,8 210,2 214,7 219,3	$(0,14 \pm 0,09)10^{-2}$ $(0,15 \pm 0,10)10^{-2}$ $(0,16 \pm 0,10)10^{-2}$ $(0,13 \pm 0,10)10^{-2}$ $(0,92 \pm 0,48)10^{-3}$ $(0,42 \pm 0,22)10^{-3}$ $(0,57 \pm 0,22)10^{-3}$ $(0,99 \pm 0,25)10^{-3}$ $(0,38 \pm 0,13)10^{-3}$ $(0,55 \pm 0,14)10^{-3}$ $(0,25 \pm 0,10)10^{-3}$ $(0,32 \pm 0,12)10^{-3}$	P A 188,4 197,6 201,6 205,8 214,7 245,1 250,8 254,2 269,2 275,8 282,6	$\begin{array}{ccc} & & & & & & & & \\ & & & & & & \\ \hline & & & &$
132,3 134,5 139,0 175,5 182,4 189,8 193,6 197,6 201,6 201,6 205,8 210,2 214,7 219,3 224,1	$(0,14 \pm 0,09)10^{-2}$ $(0,15 \pm 0,10)10^{-2}$ $(0,16 \pm 0,10)10^{-2}$ $(0,13 \pm 0,10)10^{-2}$ $(0,92 \pm 0,48)10^{-3}$ $(0,42 \pm 0,22)10^{-3}$ $(0,57 \pm 0,22)10^{-3}$ $(0,99 \pm 0,25)10^{-3}$ $(0,38 \pm 0,13)10^{-3}$ $(0,55 \pm 0,14)10^{-3}$ $(0,25 \pm 0,12)10^{-3}$ $(0,34 \pm 0,13)10^{-3}$ $(0,34 \pm 0,13)10^{-3}$	P ^A 188,4 197,6 201,6 205,8 214,7 245,1 250,8 254,2 269,2 275,8 282,6 289,7	$\begin{array}{ccc} & & & & & & & & & & & & & & & & & &$
132,3 134,5 139,0 175,5 182,4 189,8 193,6 197,6 201,6 205,8 210,2 214,7 219,3 224,1 229,1	$(0,14 \pm 0,09)10^{-2}$ $(0,15 \pm 0,10)10^{-2}$ $(0,16 \pm 0,10)10^{-2}$ $(0,13 \pm 0,10)10^{-2}$ $(0,92 \pm 0,48)10^{-3}$ $(0,42 \pm 0,22)10^{-3}$ $(0,57 \pm 0,22)10^{-3}$ $(0,99 \pm 0,25)10^{-3}$ $(0,38 \pm 0,13)10^{-3}$ $(0,55 \pm 0,14)10^{-3}$ $(0,32 \pm 0,12)10^{-3}$ $(0,34 \pm 0,13)10^{-3}$ $(0,23 \pm 0,13)10^{-3}$ $(0,23 \pm 0,13)10^{-3}$	P ^A 188,4 197,6 201,6 205,8 214,7 245,1 250,8 254,2 269,2 275,8 282,6 289,7 297,2	$\begin{array}{ccc} & & & & & & & & & & & & & & & & & &$
132,3 134,5 139,0 175,5 182,4 189,8 193,6 197,6 201,6 205,8 210,2 214,7 219,3 224,1 229,1 250,8	$(0,14 \pm 0,09)10^{-2}$ $(0,15 \pm 0,10)10^{-2}$ $(0,16 \pm 0,10)10^{-2}$ $(0,13 \pm 0,10)10^{-2}$ $(0,92 \pm 0,48)10^{-3}$ $(0,92 \pm 0,22)10^{-3}$ $(0,57 \pm 0,22)10^{-3}$ $(0,57 \pm 0,22)10^{-3}$ $(0,38 \pm 0,13)10^{-3}$ $(0,38 \pm 0,13)10^{-3}$ $(0,55 \pm 0,14)10^{-3}$ $(0,55 \pm 0,14)10^{-3}$ $(0,32 \pm 0,12)10^{-3}$ $(0,34 \pm 0,13)10^{-3}$ $(0,23 \pm 0,13)10^{-3}$ $(0,29 \pm 0,13)10^{-3}$	P A 188,4 197,6 201,6 205,8 214,7 245,1 250,8 254,2 269,2 275,8 282,6 289,7 297,2 411,9	$\begin{array}{ccc} & & & & & & & & & & & & & & & & & &$

Таблица б

Как показано в работе ^{/7/}, из кинематики следует, что для получения энергичных фрагментов необходимо замедление кластеров, т.е. чем больше энергия фрагмента, тем меньше скорость кластера. Анализ экспериментальных данных по рождению протонов, дейтронов и ядер трития показывает ^{/8/}, что здесь имеет место обратная зависимость - чем больше энергия фрагмента, тем выше скорость ''кластера''.

С другой стороны, нет и достаточных оснований считать ядерные фрагменты /протоны и, тем более, сложные ядерные образования/ кумулятивными частицами. Дело в том, что разность быстрот фрагмент - фрагментирующее ядро <1, так что можно ожидать сильных наложений за счет взаимодействий в конечном состоянии ^{/9/}. Кроме того, гипотеза "мягкой адронизации" в случае рождения ядер не столь очевидна, как при рождении элементарных частиц. Однако экспериментальные данные по рождению барионных систем показывают, что инклюзивные сечения подчиняются, в первом приближении, тем же закономерностям, что и кумулятивное рождение пионов. Это дает основание предполагать, что сечения рождения барионных систем также пропорциональны кварк-партонной структурной функции ядра^{/2/}. Интересно проанализировать, какую новую информацию о структурной функции ядра и зависимости сечений от поперечного импульса можно извлечь из экспериментальных данных по рождению ядер t , ³He, ⁴He.

Очевидно, что процесс рождения многонуклонных систем соответствует многонуклонным взаимодействиям. Это означает, что для рождения ядерного фрагмента с нулевым импульсом переменная $X_0 = B^{/2/}$, где B - число барионов в составе фрагмента. Можно смазать, что такой фрагмент существует в ядре с вероятностью "единица". Для описания рождения фрагментов с конечной энергией целесообразно ввести переменную X-B и, как прежде^{/2/}, вторую переменную - поперечный импульс. Такой выбор масштабной переменной допускает следующий механизм рождения ядерных фрагментов. Локальный взрыв при взаимодействии первичной частицы с X-B нуклонами "выталкивает" из ядра группу из В нуклонов.

На рис. 4 приведены экспериментальные данные по рождению ядер трития в зависимости от X-B. Из рисунка видно, что в зависимости от масштабного аргумента X-B, сечения при энергии 8,9 и 400 Гэв практически совпадают как для угла наблюдения 168°, так и для 90°. Из рисунка также видно, что все экспериментальные величины сечений, полученные под углом наблюдения 90°, соответствуют некумулятивному (X-B < 1) рождению и почти все данные для угла наблюдения 168° соответствуют кумулятивной генерации частиц (X-B > 1).

На рис. 5 и б приведены экспериментальные данные для ядер ³Не и ⁴Не соответственно. Из этих рисунков видно, что величины инклюзивных сечений рождения ядер ^{3,4}Не совпадают для первичных энергий 400 ГэВ ^{/4/} и 8,9 ГэВ /настоящая работа/ как для угла наблюдения 168°, так и для 90°. При описании экспериментальных данных для угла 168° экспоненциальной зависимостью вида

$$d\sigma \sim \exp\left(-\frac{\mathbf{X}}{\langle \mathbf{X} \rangle}\right)$$

значение параметра < X> ≃0,14÷0,15 для всех ядер фрагментов, что совпадает с соответствующей величиной для рождения пионов и каонов ⁷²⁷.

С другой стороны, из рис. 4-6 видно, что величины сечений для угла наблюдения 90° меньше соответствующих величин(при одинаковых аргументах X-B)сечений для угла наблюдения 168° , где поперечный импульс близок к нулю. Отношение сечений при фиксированном аргументе X-B определяет зависимость от поперечной составляющей импульса фрагмента:

$$\phi(\mathbf{p}_{\perp}^{2}) = \frac{E\frac{d\sigma}{d\vec{p}}(\mathbf{X}, \mathbf{p}_{\perp}^{2})}{E\frac{d\sigma}{d\vec{p}}(\mathbf{X}, \mathbf{0})}$$
 /6/

На рис. 7 приведена функция $\phi(p^2)$, найденная по экспериментальным данным для ядер ³Не и ⁴Не. На этом же рисунке приведена кривая, соответствующая зависимости от поперечного импульса рождения пионов и каонов ^{/2/}(π , K), и кривая для фрагментационной кварк-партонной модели Дара ^{/11/}. Из рисунка видно, что зависимость $\phi(p^2)$ для рождения ядер ³Не и ⁴Не не согласуется с указанными зависимостями.

Для ядер ⁴ Не функция $\phi(p_{\perp}^2)$ в интервале $5 \le p_{\perp}^2 \le 10 (ГэВ/с)^2$ практически равна константе:

 $\phi\left(\mathbf{p}_{_{1}}^{2}\right)\simeq4\cdot10^{-3}$.

выводы

1. Получены подробные экспериментальные данные по энергетическим спектрам ядер трития, ⁸ Не и ⁴Не для углов наблюдения 168° и 90° при взаимодействии протонов с импульсом 8,9 Гэв/с с ядрами свинца, меди и алюминия.

2. Сравнение с соответствующими экспериментальными данными при энергии 400 ГэВ показывает, что наклон спектров /их температура/ зависит от первичной энергии так, что сечения в жесткой части спектров отличаются в ~10 раз.

3. Анализ экспериментальных данных в переменных X-B и p_{\perp}^2 показывает, что сечения рождения ядерных фрагментов масштабноинвариантны, но их зависимость от p_{\perp}^2 имеет сложный характер. Для значения параметра наклона найдено значение

 $< X > = 0,14 \div 0,15$,

что хорошо согласуется с соответствующей величиной для пионов и каонов.

ЛИТЕРАТУРА

- 1. Baldin A.M. JINR, E1-80-545, Dubna, 1980.
- 2. Baldin A.M. et al. JINR, E1-82-472, Дубна, 1982.
- 3. Аверичева Т.В. и др. ОИЯИ, 1-11317, Дубна, 1978.
- 4. Frankel S. et al. Phys.Rev. C, 1979, v. 20, No. 6, p.2257.
- 5. Лексин Г.А. Труды XVIII Межд.конф. по физике высоких энергий, Тбилиси, 1976. ОИЯИ, Д1,2-10400, Дубна, 1977, с. Аб-3.
- Богатин В.И. и др. ОИЯИ, 1-81-106, Дубна, 1981; Мурин Ю.А.и др.Препринт РИ-138 Радиевого института им. В.Г.Хлопина.Л., 1980.
- 7. Калинкин Б.Н., Шмонин В.Л. ОИЯИ, P2-80-145; P2-80-176; P2-80-727; P2-80-797, Дубна, 1980.
- 8. Ставинский В.С. ОИЯИ, Р2-80-767, Дубна, 1980.
- 9. Балдин А.М. ЭЧАЯ, 1977, т. 8, вып. 3, с. 429.
- 10. Ставинский В.С. ЭЧАЯ, 1979, т. 10, вып. 5, с. 949.
- 11. Barlad G. et al. Phys.Rev. D, 1980, v. 22, No. 7, p. 1547.

Рукопись поступила в издательский отдел 23 июня 1983 года.

Балдин А.М. и др. Кумулятивное рождение ядер трития, ³Не и ⁴Не

Получены подробные экспериментальные данные по энергетическим спектрам ядер трития, ⁸Не, ⁴Не для углов наблюдения 168° и 90° при взаимодействиях протонов с импульсом 8,9 ГэВ/с с ядрами свинца, меди, алюминия. Анализ экспериментальных данных в переменных (X-B) показывает, что сечения рождения ядерных фрагментов масштабно-инвариантны, но зависимость их от P^2 имеет сложный характер. Для значения параметра наклона найдено значение <X> = 0,14+0,15, что хорошо согласуется с соответствующей величиной для пионов и каонов.

Работа выполнена в Лаборатории высоких энергий ОИЯИ.

Сообщение Объединенного института ядерных исследований. Дубна 1983

Baldin A.M. et al. Cumulative Production of Tritium, ⁸He, ⁴He Nuclei

Experimental data on the energy dependence of the tritium, ⁸He and ⁴He production cross sections at 168° and 90° emission angle, in proton (8.9 GeV/c) nucleus (Pb, Cu, Af) interactions are obtained. The X-B analysis indicates a scale invariance dependence of the nuclear fragment cross section, but p_1^2 dependence is difficult to interpret. The slope parameter has the value <X> = 0,14±0,15, which is in good agreement with pion and kaon data.

The investigation has been performed at the Laboratory of High Energies, JINR.

Communication of the Joint Institute for Nuclear Research. Dubna 1983

Перевод О.С.Виноградовой.

E

P1-83-431

P1-83-431