

P1-83-386

В.В.Архипов, Р.Г.Аствацатуров, Е.Кнапик*, А.И.Малахов, Г.Л.Мелкумов, С.Н.Пляшкевич, М.Н.Хачатурян

ИССЛЕДОВАНИЕ РЕАКЦИИ РОЖДЕНИЯ 7/-МЕЗОНОВ НА ЯДРАХ АЛЮМИНИЯ И МЕДИ Я .-- МЕЗОНАМИ ПРИ ИМПУЛЬСЕ 3,3 ГэВ/с

Направлено в журнал "Ядерная физика"

* Институт ядерных проблем, Сверк, ПНР.

1983

1. ВВЕДЕНИЕ

В последние годы проявляется большой интерес к исследованиям процессов рождения резонансов на ядрах, которые прежде всего являются уникальным источником информации о взаимодействии короткоживущих частиц-резонансов с внутриядерными нуклонами.

В настоящей работе представлены результаты измерения сечений реакции

$$\pi^{-} + A_{z} \rightarrow \eta + A_{z-1}, \quad \eta \rightarrow \gamma \gamma,$$

$$A = A \ell C u$$
/1/

при импульсе π^- -мезонов 3,3 ГэВ/с в диапазоне переданных 4-импульсов $-t_{MUR} \le -t \le 0,4$ (ГэВ/с)² ($-t_{MUH} = 0,002$ (ГэВ/с)²),являющиеся продолжением выполненных нами ранее исследований реакции /1/ на ядрах углерода /1/.

Реакция /1/ рождения η -мезонов на ядрах С, А/ и Сu изучалась и при бо́льших энергиях^{/2-4/}, однако в области порядка нескольких ГэВ экспериментальные данные практически отсутствуют.

Эксперимент выполнен с помощью 90-канального черенковского масс-спектрометра /установка "Фотон" ^{/5.}/ на пучке *π*-мезонов синхрофазотрона Лаборатории высоких энергий ОИЯИ. Ранее на этой установке при импульсе пионов 3,3 ГэВ/с были проведены измерения дифференциальных сечений реакции

$$\pi^{-}$$
 + **p** \rightarrow η + **n**, $\eta \rightarrow \gamma \gamma$,

с жидководородной мишенью /результаты опубликованы в работах ^{6,7/} /. Это позволило провести прямое сравнение сечений реакции /1/ и /2/ методом, свободным от влияния многих систематических погрешностей.

В результате сравнения сечений рождения η -мезонов на ядрах С , Af и Cu, а также Xe^{/8/}с сечением рождения на свободных протонах на основе теории многократного дифракционного рассеяния ^{/9-12/} в работе определено сечение взаимодействия η -мезонов с нуклоном при энергии ~3 ГэВ.

2. ПОСТАНОВКА ЭКСПЕРИМЕНТА И ОБРАБОТКА ДАННЫХ

Схема и описание эксперимента, а также процедура обработки данных приведены в работе /1/. Эксперимент выполнен в геометрии,

/2/

Рис.1. Зависимость эффективности регистрации событий реакции /1/ от -t для трех положений мишени на пучке. Кривые получены путем моделирования.

в которой проводились исследования реакции /2/ на жидководородной мишени. В методических целях часть /~1/3/ экспериментального материала на ядрах Al получена с использованием одной мишени /Al -пластина толщиной 8,1 г/см² или 0,34 рад.ед., расположенная

в центре системы координат установки/, а другая /~2/3/ - с использованием двух мишеней, разнесенных по направлению пучка на расстояние 1 м /см. рис.1/.

Анализ результатов геометрической реконструкции событий, зарегистрированных в эксперименте с двумя мишенями, показал высокую степень надежности разделения событий по координатам точки взаимодействия частиц в первой и второй мишенях. Геометрическая и энергетическая реконструкция событий ^{/13}/,а также моделирование ^{/14/} осуществлялись отдельно для событий, относящихся к каждому из трех положений мишеней.

На этапе окончательного отбора уу-событий из реакции /1/ вводились ограничения по кинематическим параметрам:

где $E_{\gamma 1}(E_{\gamma 2})$ - значения энергий γ -квантов, $(E_{\gamma 1} + E_{\gamma 2})$ - суммарная энергия двух γ -квантов, $E_{\gamma}^{M}/E_{\gamma}^{0}$ - отношение меньшего из двух значений энергий γ -квантов к большему, $\theta_{\gamma\gamma}$ - угол разлета γ -квантов в л.с.к., M_n - недостающая масса к системе двух γ -квантов, $M_{\gamma\gamma}$ - эффективная масса двух γ -квантов.

В результате обработки было идентифицировано 218 событий реакции /1/ рождения η -мезона на ядрах $A\ell$ и 66 событий - на ядрах Cu.

Распределение событий по эффективной массе двух γ -квантов из реакции /1/ на \mathbb{A}^{ℓ} -мишени приведено на рис.2, здесь же представлена кривая, полученная путем моделирования и нормированная на полное число событий в экспериментальной гистограмме.

Для вычисления дифференциальных сечений методом Монте-Карло определялись t-зависимости эффективности регистрации событий Рис.2. Распределение по эффективной массе двух У-квантов в реакции $\pi^- A_z \to \eta A_{z-1}$, $\eta \to \gamma \gamma$ для ядер алюминия. Сплошная кривая получена путем моделирования методом Монте-Карло и нормирована на полное число событий в гистограмме.

реакции /1/ ϵ (t) в каждой геометрии, соответствующей определенному положению мишени на пучке частиц /рис.1/. Зависимость ϵ (t) для Си-мишени совпадает с аналогичной зависимостью для

 $A\ell$ -мишени, установленной в точке z = 0 /кривая 2 на рис.1/, то есть в основной геометрии эксперимента.

Абсолютные значения дифференциальных сечений реакции /1/ на ядрах $d\sigma/dt$ получены нормировкой на соответствующие значения $d\sigma/dt$ реакции /2/ на водороде ^{77/}. При определении фактора нормировки были учтены различия в условиях измерений на водородной, медной и алюминиевой мишенях. К основным из них относятся: эффективность регистрации событий по ¹, геометрические размеры, тип и место расположения мишени, вероятность конверсии у-квантов в мишени, количество пионов, прошедших через мишени.

3. РЕЗУЛЬТАТЫ ЭКСПЕРИМЕНТА

3.1. Дифференциальные сечения do/dt

Значения дифференциальных сечений $d\sigma/dt$ реакции рождения η -мезонов /1/ на ядрах алюминия и меди пионами с импульсом 3,3 ГэВ/с в интервале $-t_{MNH} \leq -t \leq 0,4$ /ГэВ/с/² приведены на рис.3 и в табл.1а,б, здесь же указаны их статистические ошибки. Выбранные интервалы по t для данных, относящихся к реакции на алюминии, имеют величину, близкую к разрешающей способности аппаратуры. Значения $d\sigma/dt$ для реакции /1/ на меди из-за малости статистики усреднялись для больших интервалов по t. Ширина этих интервалов указана на рис.3 и в табл.16.

Экспериментальные данные параметризовались функцией $d\sigma/dt = A(1 - gct)e^{-ct}$. Величины параметров A и g были вычислены методом наименьших квадратов и приведены в табл.2. В расчетах было использовано значение параметра c = 5,6 (ГэВ/с)⁻², измеренное в работе^{/7/}. Полученные в результате параметризации зависимости

Рис. 3. Лифференциальные сечения $d\sigma/dt$ реакций $\pi^{-}A_{z} \rightarrow \eta A_{z-1}$ на ядрах алюминия (x) и меди (D) при импульсе пионов 3.3 ГэВ/с. Сплошные кривые - результат параметризации экспериментальных данных выражением $d\sigma/dt =$ = $A(1 - gct)e^{ct}$ для $A_z \equiv A\ell$ /кривая а/ и А, = Сц /кривая б/. Штриховая кривая - то же самое для реакции $\pi^{-}p \rightarrow \eta n^{/7/}$.

Таблица la

Дифференциальные сечения do/dt реакции п А z → η A z-1 на ядрах алюминия при импульсе Р_= 3,3 ГэВ/с

Δ-t (ГэВ/с) ²	-Ŧ (ГэВ/с) ²	dø/dt мб•(ГэВ/с) ²
0 - 0,02	0,01	0,38 ± 0,12
0,02 - 0,04	0,03	0,90 ± 0,18
0,04 - 0,06	0,05	0,93 ± 0,20
0,06 - 0,08	0,07	0,79 ± 0,21
0,08 - 0,10	0,09	1,02 ± 0,25
0,10 - 0,14	0,12	1,58 ± 0,26
0,14 - 0,18	0,16	1,75 ± 0,34
0,18 - 0,22	0,20	1,73 ± 0,41
0,22 - 0,28	0,25	1,12 ± 0,35
0,28 - 0,34	0,31	1,34 ± 0,49

4

Таблина 16

14,1+2,1

на ядрах меди при импульсе Р _= 3,3 ГэВ/с

	$\Delta -t$ ($\Gamma \Rightarrow B/c$) ²	-ī (ГэВ/с) ²	dơ/dt мб•(ГэВ/с) ⁷²	
	0 - 0,04	0,02	1,32 ± 0,40	
	0,04 - 0,08	0,06	1,56 ± 0,45	
	0,08 - 0,14	0,11	2,99 ± 0,66	
	0,14 - 0,22	0,18	3,20 ± 0,90	
	0,22 - 0,40	0,31	2,19 ± 0,90	
			Таблица 2	
Az	мб/(ГэВ/с) ²		g	
Al	0,20	0,20+0,01		
Cu	0.50	+0.06	14 1+2 1	

 $d\sigma/dt$ от -t для $A_z \equiv A\ell \mu$ Cu приведены на рис.3 в виде сплошных кривых /соответственно "а" и "б"/. На этом же рисунке приведено дифференциальное сечение do/dt реакции /2/, измеренное на водороде /7/ /штриховая кривая/. Сравнение кривых "а" и "б" со штриховой кривой показывает. Что при t - 0 минимум в дифференциальных сечениях $d\sigma/dt$ на ядрах $A\ell$ и Cu выражен сильнее, чем на ядрах водорода. Аналогичное поведение do/dt на ядрах углерода на-Блюдалось при 3,3 ГэВ/с/1/ и 40 ГэВ/с/15/. Однако следует заметить, что из-за малой статистики событий, зарегистрированных на медной мишени, вывод о поведении do/dt на ядре Cu носит в значительной степени качественный характер.

0,50+0,06

3.2. Экспериментальное определение Zodd.

В рамках теории многократного дифракционного рассеяния, развитой в работах /9-12/, дифференциальное сечение реакции типа /1/ в некотором приближении можно описать формулой

$$(d\sigma/dt)_{A} = (d\sigma/dt)_{H} \cdot Z_{3\phi\phi}(A, \sigma_{1}, \sigma_{2}),$$
 (3/

5

где $(d\sigma/dt)_A$ - сечение реакции на ядре, $(d\sigma/dt)_H$ - сечение реакции на свободном протоне, σ_1 и σ_2 - соответственно сечения взаимодействия налетающих и рожденных частиц с нуклонами ядра, A массовое число ядра-мишени.

Эффективное число протонов в ядре-мишени $Z_{9\dot{\Phi}\dot{\Phi}}$ определяется экспериментально путем сравнения сечений реакций /1/ и /2/, проинтегрированных в заданном диапазоне переданного 4-импульса |t|. В соответствии с результатами анализа зависимости $Z_{9\dot{\Phi}\dot{\Phi}}$ от -t в работе^{/1/} нами были выбраны следующие пределы интегрирования сечений: $0,1\leq -t\leq 0,4$ (ГэВ/с)²,для которых экспериментально подтверждается предположение $Z_{9\dot{\Phi}\dot{\Phi}} = Z_{9\dot{\Phi}\dot{\Phi}} = const$.

Значения $Z_{9\dot{\Phi}\dot{\Phi}}$ для ядер алюминия и меди, вычисленные в том же интервале – t, равны

$$Z_{0,0,0}^{AV} = \sigma^{AV}(0,1 \le -t \le 0,4) / \sigma^{H}(0,1 \le -t \le 0,4) = 4,4 \pm 0,5,$$
 (4/

$$Z_{9\Phi\Phi}^{Cu} = \sigma^{Cu}(0,1 \le -t \le 0,4) / \sigma^{U}(0,1 \le -t \le 0,4) = 8,2 \pm 2,2.$$
 /5/

Для сравнения в табл.3 приведены величины $Z_{\Im \varphi \varphi}$, для Al и Cu, полученные в экспериментах при более высоких энергиях $^{/2-4/}$. Зависимость эффективного числа нуклонов в ядре-мишеми N $_{\Lambda}$, σ_1 и σ_2 была впервые рассчитана авторами работы $^{/9/\varphi}$ для нескольких ядер в диапазоне $20 \le A \le 208$.

-		-					2
1.	2	n	17	7.8	11	2	- 1
	a	v		rı	4	a	-

Р ₁₁ - ГэВ/с	3,3	7,8	40,0	48,0
- t /ГэВ/с/ ²	0,1 + 0,4	0,0 + 0,75	0,0 + 0,5	0,0 + 2,0
Z ≜l ∋∯∯.	4,4 ± 0,5	4,7 ± 0,7	4,6 ± 1,4	4,7 ± 0,7
z ^{Cu} əфф.	8,2 ± 2,2	5,5 ± 0,9	8,9 ± 2,7	4,0 ± 2,1
сснлка	данная работа	.12/	/3/	/4/

Рис.4. Сравнение экспериментальных значений эффективного числа нуклонов $N_{3\phi\phi}$. в ядрах C, Al, Cu и Xe с результатами расчетов зависимости $N_{3\phi\phi} = N_{3\phi\phi} (A, \sigma_1, \sigma_2)$ по теории Глаубера. Сплошные кривые – теоретическая зависимость $N_{3\phi\phi} = N_{3\phi\phi} (A, \sigma_2)$ при $\sigma_1 = \sigma(\pi^- p) = 32$ мб, σ_2 – сечения взаимодействия η -мезонов с нуклонами. X – экспериментальн

с нуклонами. × - экспериментальные значения для ядер С^{/1/}, Ає и Сu - наши данные, п - для ядра Хе - данные работы^{/8/}.

Рис.4 иллюстрирует зависимости $N_{3\varphi\varphi}$, $N_{3\varphi\varphi}$, (A, σ_1, σ_2) , рассчитанные при заданной величине $\sigma_1 = \sigma(\pi^-p)=32 \text{ мб}(P_-=3,22 \ \Gamma 3B/c)^{/16/2}$ для нескольких значений $\sigma_2 = \sigma$ (η – нуклон) – сечений взаимодействия η -мезона с нуклоном. В области A < 20 кривые получены интерполированием в предположении, что $N_{3\varphi\varphi}=1$ для A=Z=1. Экспериментальные значения $N_{3\varphi\varphi}$, представленные на рис.4, определены как $N_{3\varphi\varphi}$, $Z_{3\varphi\varphi}$, A/Z, где $Z_{3\varphi\varphi\varphi}$, – измеренные нами эффективные числа протонов для ядер C, $A\ell$ и Cu при импульсе 3,3 Γ эB/c. Точка для ядра Xe соответствует значению $Z_{3\varphi\varphi}$. = = 9,01+1,58 и получена в эксперименте на ксеноновой пузырьковой камере при импульсе 3,2 Γ эB/c/8/.

Аппроксимация указанной совокупности экспериментальных данных функцией $N_{9\varphi\varphi}(A,\sigma_1,\sigma_2)/$ штриховая кривая на рис.4/ позволяет определить сечение взаимодействия η -мезона с нуклоном $\sigma_2 = = \sigma(\eta$ -нуклон) = (13^{+6}_{-5}) мб при энергии $\simeq 3$ ГэВ.

4. ЗАКЛЮЧЕНИЕ

Сравнение дифференциальных сечений взаимодействия π^- -мезонов с импульсом 3,3 ГэВ/с со свободными протонами и протонами в ядрах А ℓ и Сu в интервале $-t_{MRH} \leq -t \leq 0,4$ (ГэВ/с)² показывает, что для реакции /1/ минимум в сечении рассеяния вперед / $-t \leq \leq 0,1$ (ГэВ/с)² / выражен сильнее, чем для реакции /2/. Этот эффект может быть следствием проявления спин-изоспиновой зависимости амплитуды перезарядки и влияния принципа Паули в ядре/17/.

В результате сравнения сечений реакции /1/ и /2/, проинтегрированных в интервале 0,1 \leq -t \leq 0,4 (ГэВ/с)², найдены значения эффективного числа протонов в ядре алюминия и меди: $Z_{-9\varphi\varphi}^{A\ell} =$ = 4,4+0,5; $Z_{-9\varphi\varphi}^{Cu} =$ 8,2+2,2. В рамках глауберовского подхода к теории рождения частиц на ядрах с использованием измеренных в экспериментах величин $Z_{-9\varphi\varphi}$, для ядер C, Al, Cu, Xe и результатов теоретических расчетов Кольбига и Марголиса /9/ получена оценка сечения взаимодействия η -мезонов с нуклонами: $\sigma(\eta N) = (13^{+6}_{-5})$ мб при импульсе~3 ГэВ/с.

В заключение авторы пользуются случаем, чтобы поблагодарить А.М.Балдина за поддержку и внимание к работе, В.И.Иванова, В.А.Крамаренко, В.И.Прохорова, Б.М.Старченко за участие в измерениях и В.М.Изъюрова за помощь в фитировании экспериментальных данных на ЭВМ.

ЛИТЕРАТУРА

- 1. Архипов В.В. и др. ОИЯИ, Р1-82-887, Дубна, 1982.
- 2. Guisan O. et al. Nucl.Phys., 1971, B32, p.681.
- 3. Болотов В.Н. и др. ЯФ, 1974, 20, с.949.
- 4. Апокин В.Д. и др. ЯФ, 1982, 35, с.382.
- 5. Аверичев С.А. и др. ПТЭ, 1979, № 4, с.57.
- 6. Аствацатуров Р.Г. и др. ЯФ, 1978, 27, с.401.
- 7. Arkhipov V.V. et al. JINR, E1-11596, Dubna, 1978.
- 8. Бармин В.В. и др. Препринт ИТЭФ, № 22, М., 1977.
- 9. Kolbig K.S., Margolis B. Nucl. Phys., 1968, B6, p.82.
- 10. Глаубер Р. УФН, 1971, 103, с.641.
- 11. Геворкян С.Р., Тарасов А.В. ОИЯИ, Р2-5752, Дубна, 1971.
- 12. Геворкян С.Р. и др. ОИЯИ, Р2-6581, Дубна, 1972.
- 13. Мелкумов Г.Л., Хачатурян М.Н. ОИЯИ, 10-8170. Дубна, 1974.
- 14. Мелкумов Г.Л., Хачатурян М.Н. ОИЯИ, 10-7960, Дубна, 1974.
- 15. Апокин В.Д. и др. Препринт ИФВЭ, № 82-48, Серпухов, 1982.
- 16. Citron A. et al. Phys.Rev., 1966, 144, p.1101.
- 17. Коротких В.Л. Рождение резонансов на ядрах пионами высоких энергий. МГУ, М., 1973.

Архипов В.В. и др. P1-83-386 Исследование реакции рождения η -мезонов на ядрах алюминия и меди π^- -мезонами при импульсе 3,3 ГэВ/с

Представлены результаты экспериментального исследования реакций рождения η -мезонов на ядрах алюминия и меди пионами при импульсе 3,3 ГэВ/с. Полученные значения дифференциальных сечений $d\sigma/dt$ реакций в интервале переданных импульсов - $t_{MHH} \leq -t \leq 0,4$ (ГэВ/с)² сравниваются с результатами, полученными ранее для реакции на свободном протоне. Определены значения эффективного числа протонов в ядре алюминия и меди. В рамках глауберовского подхода к теории рождения частиц на ядрах по экспериментальным значениям $Z_{Эф\phi}$ для ядер С, $A\ell$, Си, Хе получена оценка сечения σ (η -нуклон) при энергии ~3 ГэВ.

Работа выполнена в Лаборатории высоких энергий ОИЯИ.

Препринт Объединенного института ядерных исследований. Дубна 1983

Arkhipov V.V. et al. P1-83-386 Study of η Production Reaction on Aluminium and Copper Nuclei in a \overline{m} -Beam at 3.3 GeV/c

The $\pi^{-}A_{z} \rightarrow \eta A_{z-1}$, $\eta \rightarrow y\gamma$ reaction on Al and Cu nuclei at a 3.3 GeV/c beam momentum has been studied over a range of t from t_{min} to -0.4 (GeV/c)². The results are compared with previous ones obtained during measurements of the reaction $\pi^{-}p \rightarrow \eta n$ with liquid-hydrogen target. In the differential cross section for the reaction on nuclear targets, a minimum in the forward direction at $-t \leq 0.1$ (GeV/c)² is deeper than for hydrogen. In the framework of incoherent particle production theory, the measured effective numbers of protons in aluminium and copper nuclei are $Z_{eff}^{Aff} = 4.4 \pm 0.5$; $Z_{eff}^{Cp} = 8.2 \pm 2.2$. Our results, together with other ones obtained from measurements on carbon and xenon nuclei, allows a determination of the η -nucleon cross section $\sigma = (13_{-r}^{+6})$ mb at = 3 GeV.

The investigation has been performed at the Laboratory of High Energies, JINR.

Preprint of the Joint Institute for Nuclear Research. Dubna 1983

Перевод О.С.Виноградовой.

8