

3337

P1-83-140

Е.Балеа! О.Балеа. В.Болдеа. И.Н.Ерофеева? Д.К.Копылова, В.С.Мурзин,<sup>2</sup> Т.Понта,<sup>1</sup> С.Ю.Сивоклоков,<sup>2</sup> С.Хакман,<sup>1</sup> А.П.Чеплаков

# ИССЛЕДОВАНИЕ

НЕУПРУГИХ d(C3H8) -ВЗАИМОДЕЙСТВИЙ  $ΠΡИ P_d = 8 Γ_{9}B/c$ С ОБРАЗОВАНИЕМ БЫСТРЫХ ДЕЙТРОНОВ И КУМУЛЯТИВНЫХ ПРОТОНОВ ВПЕРЕД

1ЦИФИ, Бухарест. <sup>2</sup> НИИЯФ МГУ, Москва.



### ВВЕДЕНИЕ

, respirations include a particulation watching the

В изучаемых  $d(C_{3}H_{6})$ -взаимодействиях область импульсов вторичных быстрых частиц /кумулятивного протона  $p_{k}$  или быстрого дейтрона d' / составляет по  $\chi = P$  / $P_{d} = 0,65-0,9$ . Для того, чтобы образовать такие частицы, в дейтроне в момент соударений протон и нейтрон должны находиться друг от друга на малых расстояниях и взаимодействовать с ядром как единое целое.

Подобные процессы изучались электронной методикой в инклюзивной постановке. В этом случае в dA -взаимодействиях наблюдались  $p_k$  и d' под малыми углами при различных  $P_d$  и A  $^{/1,2/}$ . Особый интерес среди быстрых дейтронов представляют d' с большой передачей 4-импульса ядру  $t(d \rightarrow d') > 0,8$  /ГэВ/с/<sup>2</sup>. Возможно, такие дейтроны /"демоны"/ обладают необычными свойствами  $^{/3/}$ . Для объяснения образования кумулятивных частиц в ядерных взаимодействиях предложено много моделей  $^{/4-7/}$ , но пока еще нет единого теоретического объяснения этого процесса.

Наблюдение кумулятивных протонов вперед в пропановой камере, где регистрируются все вторичные частицы во взаимодействии, позволяет изучить корреляционные явления и дает возможность получить новые результаты, полезные для понимания механизма ядроядерных взаимодействий.

CARCELENANT OUT MANY S RADO L

ANATOMASSO PROTOCOLOGICAL BOSS &

# МЕТОДИЧЕСКИЕ ВОПРОСЫ

Изучение d ( $C_3H_8$ )-взаимодействий при  $P_d = 8,2$  ГэВ/с с вылетом одной быстрой частицы / P(1)>5,2 ГэВ/с/ проводилось в работе/8/. Среди отобранных 149 событий реакции

$$d + (C_3 H_8) \rightarrow 1 + \dots \rightarrow (p_k, d') + \dots$$

были найдены события, где образуется и вторая быстрая частица / P(2)>1,6 ГэВ/с/ /см. рис.1/:

$$d + (C_3 H_8) + 1 + 2 + \dots + (p_1, d') + p + \dots$$

Такие события составляют ~11% от событий реакции /1/ и число их путем специального отбора было увеличено до 112. В настоящей работе исследовались взаимодействия реакции /2/, а также проводилось их сравнение с событиями реакции /1/. После измерений в статистику вошли события любой множественности, где быстрые



111

/2/

ł



Рис.1. Схематическое изображение событий с быстрыми частицами.

частицы имеют импульсы  $P(1) \ge 5,2$  ГэВ/с и  $P(2) \ge 1,6$  ГэВ/с, измеренные с ошибкой  $\Delta P/P \le 15\%$  /  $\chi^2 \le 2,5/$ .

Реакции /1/ и /2/ не означают инклюзивную постановку опыта, а показывают, что отбираются только события с одной или двумя триггерными частицами, вылетающими под любыми углами, остальные частицы в звезде могут быть какими угодно. Все следы в событии измерялись, идентифицировались, затем событие целиком заносилось на ленту суммарных результатов.

Область изменения импульсов частиц /1/ по  $\chi = P_{\rm H} / P_{\rm d}$  составляет /0,65-0,9/, или, если обозначить  $\chi' = P_{\rm H} / P_{\rm N}$ , то/1,3-1,8/. Частицы /1/ могут быть как кумулятивными протонами, так и дейтронами, а частицы /2/ являются, в основном, протонами /примесь  $\pi^+$  -мезонов ~10% при данном  $P_{\rm \Gamma P.} = 1,6$  ГэВ/с//8/. По сравнению с прежним отбором событий /8/ значение импульса быстрых частиц  $P_{\rm \Gamma P.}$  увеличено до 5,2 ГэВ/с, что уменьшает примесь стриппинговых протонов в кумулятивные /<10%/.

Разделение  $d(C_3H_8)$  событий по типам на dp – и dC -взаимодействия проводилось по суммарному заряду (Q) частиц в событии. В работе <sup>/9/</sup> описана стандартная процедура разделения событий по типам в пропановой камере. Если суммарный заряд Q = 2, то это могут быть взаимодействия со свободными протонами (dp) или с квазисвободными протонами в ядре (dp ). Если Q>2, то это – взаимодействия с несколькими нуклонами ядра – dC' -события. Так как в ядре углерода число взаимодействий на квазисвободных протонах и нейтронах должно быть одинаковым, то считалось, что N(dp<sub>e</sub>) = = N(dn<sub>e</sub>). Полное число dC -взаимодействий: 2N(dn<sub>o</sub>) + N(dC') и в реакции /1/ составляет ~49% от полного числа событий, а в реакции /2/~87%.Распределение частиц /1/ из реакции /2/ по азимутальному углу ф изотропно /  $\overline{d}$  = 3,15+0,16/.

Большую трудность в пузырьковых камерах представляет идентификация частиц с релятивистской ионизацией. В работах  $^{/8,10/}$  были рассмотрены некоторые способы статистического разделения быстрых частиц по массам (d, p,  $\pi$ ). Получено, что в реакции /1/ быстрые частицы являются в  $/100^{+0}_{-20}$ /% дейтронами.

В настоящей работе сделано разделение быстрых частиц на  $p_k$ и d' на основе данных электронных экспериментов /1,2/. В работе /1/ исследовались dC -взаимодействия с вылетом  $p_k$  и d' под 0° /частицы хорошо разделялись по массам/ в той же области импульсов  $\chi = /0,7-0,9/$  с  $P_d = 8,9$  ГэВ/с. Зная выход  $p_k$  и d' в зависимости от  $\chi$  /рис.2/, можно построить распределение 4-мерных пе-





редач от первичного d с  $P_d = 8$  ГэВ/с к вторичным  $p_k$  и d' раздельно, но в предположении, что их масса равна  $m_d$ . Затем полученные распределения t сравнивались с нашим экспериментальным распределением для частиц /1/ в предположении, что все эти частицы – d. На рис. За представлена гистограмма-распределение по t частиц /1/ из реакции /1/, на рис. Зб - гистограмма-распределение по t частиц /1/ из реакции /2/. Учет углового интервала вылета быстрых частиц /0-3°/, где находится их основная масса, приводит к тому, что в распределениях по t для d' и  $p_k$  образуются как бы своеобразные "коридоры", ограниченные сплошной кривой и осью у для d', пунктирными линиями – для  $p_k$  /рис. 3/.

При сравнении были сделаны предположения: считалось, что распределения по  $\chi$  для d' и p<sub>k</sub>, полученные в работе / 1/, не зависят от того, есть ли другая быстрая частица /2/ в том же взаимодействии или нет, а также от того, что вид распределений по  $\chi$  для d' и p<sub>k</sub> не зависит от угла вылета этих частиц. Второе предположение основано на том, что инвариантные сечения неупругих dC -взаимодействий с вылетом быстрых d' под углами 0°/1/ и 6°/2/ в пределах ошибок ложатся на одну кривую зависимости от t.

Из сравнения t -распределений можно сделать вывод о том, что частицы, имеющие  $t(d \rightarrow d') < 0, 3 / [ ] B/c/2 и > 0, 8 / [ ] B/c/2 - дейт$ роны, а частицы, находящиеся в области t = /0,3-0,8/ / [ ] B/c/2, могут быть как р<sub>k</sub>, так и d', т.к. оба "коридора" в этой области перекрываются. В реакции /1/, как видно из рис.За, /70-75/% частиц /1/ являются d', что согласуется с прежней статистической оценкой.

В реакции /2/ - ~65% частиц /1/ находятся в области t = /0,3-0,8/ /ГэВ/с/<sup>2</sup>, т.е. являются  $p_k$ .Примесь d' в этой области составляет ~20% /рис.36/. Таким образом, можно сказать, что частицы /1/ в событиях реакции /2/ довольно хорошо разделяются по массам.

В работе<sup>/8/</sup> приводится распределение эффективных масс частиц /1/ и /2/ из реакции /2/ в предположении, что частица /1/ - d'. Статистическое разделение частиц /1/ по массам в реакции /2/ различными методами<sup>/8/</sup> /при  $P_d = 8,2$  ГэВ/с, 20 событий/ привело & оценке доли d' среди частиц /1/, равной  $R_d = 1^{+0}_{-0.4}$  и  $\alpha_d =$ 

= 0,78+0,3. Теперь, после увеличения статистики и применения вышеописанного метода разделения частиц по массам, можно сказать, что область эффективных масс (d'p) = /2,8-3/ ГэВ описывается фоновой кривой.

#### ХАРАКТЕРИСТИКИ БЫСТРЫХ ЧАСТИЦ И ИХ СРАВНЕНИЕ

## а/ Кумулятивные протоны

Было сделано сравнение характеристик  $p_k$ , летящих вперед /реакция /2//, и стриппинговых протонов из d ( $C_3H_8$ )-взаимодействий с  $P_d = 8,2$  ГэВ/с /рис.4/. При аппроксимации  $T_a$  -распределений /где  $T_a$  - кинетическая энергия р в системе покоя d / функцией



Рис.4. Инвариантное сечение протонов в переменных  $T_a:a/$  стриппинговые протоны из  $d(C_3H_8)$ взаимодействий; б/ кумулятивные протоны из событий реакции /2/.

f (T<sub>a</sub>) =:Ae<sup>-aTa</sup>, значения а для стриппинговых и кумулятивных протонов отличаются в ~10 раз /наклон экспоненты а для р<sub>st</sub> ~ 300, для  $p_k \simeq 30$ /. Получены значения a = 349+17 для  $p_{st}$  и a =33,8+1,8 для  $p_k$ ,что хорошо согласуется с литературными данными /11-13/.

Выбранное граничное значение импульса  $P_{\Gamma P.} = 5,2$  ГэВ/с для отбора  $p_k$  соответствует кинетической энергии  $p_k$  в антилабораторной системе  $T_a^{\Gamma P.} = 0,035$  ГэВ /  $P_{IIP.} = 0,28$  ГэВ/с/, что выше значения  $T_a$ , где наблюдается изменение наклонов при переходе от  $p_{st}$  к  $p_k.$ 

Для  $p_k$  строилось распределение по  $P_1^2$ . Кривая аппроксимировалась экспоненциальной функцией  $f = A_1 e^{-A_2 P_1^2}$ , где наклон  $A_2 =$ 

= 15+2.6.

В работе, где изучались СС-взаимодействия при P = 4 ГэВ/с.N, для протонов, вышедших за кинематический предел N-N -взаимодействий, получено значение наклона  $A_2 = 11,8+2/14/.$ 

Число событий реакции /2/, где кроме  $p_k$  образуется еще быстрый протон, составляет 25% от числа событий реакции /1/. Поясним подробнее: в реакции /1/ - /25-30/% событий с  $p_k$ . В реакции /2/ - 65% событий с  $p_k$ , что составляет ~7% /0,65x0,11/ от числа событий реакции /1/. А ~7% - это есть ~25% от числа событий с  $p_k$ . В силу изотопической симметрии dC -взаимодействий должно быть ~25% событий, где вылетают  $p_k$  и быстрый в, т.е. ~50% наблюдаемых  $p_k$  скоррелированы с быстрым нуклоном. Этот факт интересен для понимания механизма образования  $p_k$ .

#### б/ Вторичные дейтроны

На рис.5 представлено распределение вторичных d' из реакций /1/ и /2/ по P<sub>1</sub><sup>2</sup>. Распределение аппроксимировалось тремя экспонентами

$$f = Ae^{-aP_1^2} + Be^{-bP_1^2} + Ce^{-cP_1^2}.$$

Получены значения наклонов: a = 11+1,8; b = 3,5+1,1; c = -0,08+1,0;  $\chi^2/n \le 1$ .



Рис.5. Распределение вторичных дейтронов из реакций /1/ и /2/ по  $P_i^2$ .

При изучении СС-взаимодействий с  $P = 4 \ \Gamma \Im B/c \cdot N^{/14/} B$  распределении по  $P_{\perp}^2$  для протонов получены наклоны, соответствующие по значениям  $P_{\perp}^2$  дейтронным: b = = 8,7+1,3; c = 2,4+0,2. Для р наблюдается увеличение наклонов в ~2 раза, что и должно быть в модели "слипания" с постоянным коэффициентом / 15/.

Сечение образования дейтрона выражается через нуклонные сечения, где импульс нуклона равен P<sub>d</sub> /2



Из рис.3, где представлены распределения t(d  $\rightarrow$  d') для событий реакций /1/ и /2/, видно, что в событиях реакции /2/ практически нет d', имеющих t < 0,3 /ГэВ/с/<sup>2</sup>, а доля d' с t > 0,8 /ГэВ/с/<sup>2</sup> увеличивается.

События реакции /1/ являются, в основном, периферическими процессами с малой передачей /t < 0,3 /ГэВ/с/<sup>2</sup>/ /рис.3а/. Вторая быстрая частица образуется в dC -взаимодействиях, где передачи от первичного к вторичному d'> 0,3 /ГэВ/с/<sup>2</sup>. Число событий реакции /2/ составляет - 5% от числа событий реакции /1/ или -10% с учетом вылета быстрого нейтрона. Таким образом, только в -10% случаев быстрый d' сопровождается быстрым нуклоном. Наблюдаются события, где образуется d' с t > 1 /ГэВ/с/<sup>2</sup>.

На рис.6 приводятся угловые распределения  $p_k$  и d' из событий реакций /1/ и /2/. Происходит перекрытие угловых интервалов для этих частиц /область t = 0,3-0,8 /ГэВ/с/<sup>2</sup>/. Считаем, что импульс частиц > 6,3 ГэВ/с наиболее вероятен у d' и поэтому относим их к распределению d'/заштрихованные события на рис.6/. В распределении  $p_k$  есть примесь d'. Угловое распределение d' шире, чем  $p_k$ , которое близко к угловому распределению стриппинговых протонов.

Для сравнения характеристик событий с вылетом  $p_k$  и d' приведена таблица. В ней для  $p_k$  из реакции /1/ нет данных, т.к. в области передач 0,3 <t < 0,8 /ГэВ/с/<sup>2</sup> разделить быстрые частицы



Рис.6. Угловые распределения быстрых частиц из реакций /1/ и /2/; a/ d'; б/  $p_k$ . Заштрихованы события, где быстрая частица имеет /0,3 <t < 0,8/ /ГэВ/с/<sup>2</sup> и P(1)>6,3 ГэВ/с.

| Peakuus  | Nda                                                       | Nr       | P(1)      | P(2)   | Nch                    | N,      | P(1)      | P(2)     |
|----------|-----------------------------------------------------------|----------|-----------|--------|------------------------|---------|-----------|----------|
|          | $P_{e} (0.5 < t < 0.8) \left(\frac{r_{b0}}{c}\right)^{2}$ |          |           |        | d' (t <q3;t>q8)</q3;t> |         |           |          |
| 1.8      | 10.5                                                      | 48       | e eg      |        | 3,9±0,18               | 041=01  | 6,51±Q,1  | 2,9±0,2  |
| 2        | 5,96±012                                                  | Q,53±Q08 | 5,68+0,12 | 2,7203 | 4,1±Q17                | 0,77±04 | 5,96±0,48 | 3,1± 0,4 |
| d (C3Ha) | 37:007                                                    | Q,54±Q02 |           |        |                        | 11      |           |          |

на  $p_k$  и d' нельзя /рис.3а/. Из таблицы видно, что в событиях реакции /2/, где образуются d', вылетает  $\pi^-$ -мезонов больше, чем в событиях реакции /1/. В событиях реакции /2/, как уже указывалось, d' имеет соответственно и большие передачи.

Средняя множественность заряженных частиц в событиях с образованием d' выше, чем в событиях с образованием  $p_k$ , несмотря на то, что в пределах ошибок  $\vec{P}(d') = \vec{P}(p_k)$ .В последней строке таблицы для сравнения, приводятся  $\vec{N}_{ch}$  и  $\vec{N}_{\pi}$ - для всех  $d(C_3H_8)$ взаимодействий.

# выводы

Найдено, что неупругие d(C<sub>3</sub>H<sub>8</sub>) -взаимодействия с P<sub>d</sub> = 8 ГэВ/с с вылетом быстрой частицы в области  $\chi = P_{\rm H}$  /P<sub>d</sub> = 0,65-0,9, в ~11% случаев сопровождаются вторым быстрым протоном / $\vec{P}_{\rm p}$  = 2,9 ГэВ/с/. Такие события являются dC -взаимодействиями /~87% случаев/.

На основе данных электронных экспериментов / 1/ вторичные быстрые частицы /  $\chi = 0,65-0,9$ / были частично разделены по массе на

кумулятивные протоны (p) и дейтроны (d'). Получено совпадение характеристик р. с характеристиками кумулятивных протонов из других работ. Кумулятивные протоны в ~ 50% случаев образуются с другим быстрым нуклоном.

Быстрый дейтрон (d') в большинстве своем имеет малые передачи  $t(d \rightarrow d') < 0.3 / ГэВ/с/2 Появление второй быстрой частицы в 10%$ случаев происходит во взаимодействиях с t > 0,3 /ГэВ/с/2. Наблюдаются d' c t > 1 /ГэB/c/2.

Значения наклонов экспонент в распределениях по P,<sup>2</sup> для d' и протонов из СС-взаимодействий / 14/ отличаются в пределах ошибок в два раза, что согласуется с ядерной моделью "слипания" с постоянным коэффициентом / 15/.

Авторы благодарят Р.Ледницкого, В.Л.Любошица, В.Н.Печенова за помощь в работе, В.А.Никитина, Е.А.Строковского, Ю.А.Трояна за полезные обсуждения и замечания, а также выражают благодарность коллективу 2-метровой пропановой камеры и лаборантам отдела за получение и обработку снимков.

## ЛИТЕРАТУРА

- 1. Аблеев В.Г. и др. ОИЯИ, 1-82-278, Дубна, 1982; Е1-82-377. Дубна, 1982.
- 2. Ажгирей Л.С. и др. ЯФ, 1978, т.27, с.1027; ОИЯИ, Е1-12296. Дубна, 1979.
- 2. Fredriksson S., Jändel M. Phys.Rev.Lett., 1982, 48, p.14.
- 4. Балдин А.М. ЭЧАЯ, 1977, т.8, вып.3.
- 5. Стрикман М.И., Франкфурт Л.Л. Материалы Х школы ЛИЯФ. Изд-во ЛИЯФ., Л., 1975, т.2, с.449; ЯФ, 1979, 29, с.490; Материалы XII школы ЛИЯФ. Изд-во ЛИЯФ, Л., 1977, с.132.
- Копелиович Б.З., Нидермайер Ф. ОИЯИ, Е2-82-420, Дубна, 1982.
- 7. Ефремов А.В. ЭЧАЯ, 1982. т.13. вып.3.
- 8. Cheplakov A.P. et al. JINR, E1-80-711, Dubna, 1980; Копылова Д.К. и др. ЯФ. 1981. т.34. вып.2/8/.
- Абдурахимов А.К. и др. ОИЯИ, Р1-6277, Дубна, 1972; ОИЯИ. Р1-6326, Дубна, 1972.
- 10. Абдивалиев А. и др. ОИЯИ, 1-11590, Дубна, 1978.
- 11. Балдин А.М. ДАН СССР, 1975, 222, с.1064.
- 12. Аладашвили Б.С. и др. ОИЯИ, Р1-10719, Дубна, 1977; ЯФ, 1978, 27, c.704.
- 13. Ставинский В.С. ЭЧАЯ, 1979, т.10, вып.5.
- 14. Akhababian N. et al. JINR, E1-82-510, Dubna, 1982.
- 15. Kapusta J. Phys.Rev., 1980, C21, No.4, p.1301.

Рукопись поступила в издательский отдел 9 марта 1983 года.

## Е.Балеа и др.

P1-83-140

Исследование неупругих d(C<sub>2</sub>H<sub>8</sub>) -взаимодействий при P<sub>d</sub> = 8 ГэВ/с с образованием быстрых дейтронов и кумулятивных протонов вперед

На снимках с 2-метровой пропановой камеры исследовались неупругие d (C<sub>2</sub>H<sub>g</sub>) взаимодействия с P<sub>4</sub> = 8 Гэв/с с вылетом быстрых дейтронов d' и кумулятивных протонов  $p_k$  в области  $\chi(p_k,d')=P_{d}/P_{d}=0,65-0,9$ . В отобранных событиях, на основании данных электронных экспериментов, сделано частичное разделение вторичных быстрых частиц по массам на p, и d':

 $d + (C_2 H_p) + (p_1, d') + ...$ 

В ~11% событий, которые являются dC -взаимодействиями, образуется вторая. быстрая частица - протон / Р = 2,9 ГэВ/с/:

 $d + C + (p_{1}, d') + p + ...$ 

Таких событий отобрано 112. Найдено, что кумулятивный протон образуется с другим быстрым нуклоном (р.д.) в ~50% случаев, а быстрый дейтрон - только ~ в 10%. Дано сравнение характеристик взаимодействий с рь и d'.

Работа выполнена в Лаборатории высоких энергий ОИЯИ.

Сообщение Объединенного института ядерных исследований. Дубна 1983

#### Balea E. et al.

P1-83-140 Study of Inelastic d(C3H8) Interactions with the Production of Fast Deuterons and Forward Cumulative Protons at  $P_d=8$  GeV/c.

Using pictures from the 2m propane bubble chamber, inelastic  $d_{2}(C_{2}H_{0})$ interactions at  $P_d = 8$  GeV/c with the emission of fast deuterons d' and cumulative protons  $p_k$  have been studied in the  $\chi(p_k,d') = P_d / P_d = 0.65 - 0.9$ region. Using the data of electronic experiments, in the events selected secondary trigger fast particles are in part divided according to their masses:

 $d + (C_3H_g) \rightarrow (p_1, d') + ...$ 

A second fast particle (proton with  $P_p=2.9$  GeV/c) is produced in 11% of the events (112) which are dC interactions:

 $d + C + (p_1, d') + p + ...$ 

It has been found that a cumulative proton is produced with another fast nucleon (p,m) in approx. 50% of the events and a fast deuteron only in 10%. The characteristics of interactions with  $p_k$  and d' are compared. The investigation has been performed at the Laboratory of High

Energies, JINR. Communication of the Joint Institute for Nuclear Research. Dubna 1983

Перевод О.С.Виноградовой.