

21/ P1-83-14/3-

1983

М.Карабова,* В.А.Лескин, К.Д.Толстов

ИМПУЛЬСЫ И БЫСТРОТЫ 77 ± -МЕЗОНОВ и протонов В СТОЛКНОВЕНИЯХ ЯДЕР ¹²С С ЯДРАМИ ФОТОЭМУЛЬСИИ ПРИ 54 ГэВ/с

Университет им. И.Шафарика, Кошице, ЧССР.

В настоящей работе рассматриваются импульсные и угловые спектры вторичных релятивистских протонов и пионов, испускаемых при взаимодействии ядер ¹²С с импульсом 54 ГэВ/с с ядрами фотоэмульсии,и распределения этих частиц по быстроте. В работе использованы материалы, полученные при исследовании стандартных эмульсий типа БР-2, облученных ядрами ¹²С на синхрофазотроне ОИЯИ/1/ Работа выполнена в ЛВЭ ОИЯИ и Университете им. И.Шафарика,г.Кошице, ЧССР.

Для проведения анализа были отобраны следы однозарядных релятивистских частиц, рожденных в неупругих взаимодействиях, из которых были измерены следы с углами наклона к плоскости фотоэмульсии, меньшими граничного $\alpha_{
m rn}$, выбранного в ЛВЭ равным 7° и в г.Кошице - равным 5°. Ограничения на регистрацию следов с углами наклона учтены введением статистического веса К = = $\pi/2 \arcsin(\sin \alpha_{rn}/\sin \theta)$ для каждого следа. Величины Р β частиц в ЛВЭ определялись методом многократного кулоновского рассеяния в режиме полуавтоматической регистрации.Программа обработки дан-ных измерений описана в^{/2/}.Оснащение программы набором средств контроля и диагностики позволило следить за правильностью действий оператора и работы полуавтомата в целом. Из набора частиц с измеренными величинами Р β частицы, летевшие в конусе $\theta \leq 3^{\circ}$ и одновременно имевшие значения РВ > 2,25 ГэВ/с, были отнесены к протонам из ядра-снаряда, т.е. к не испытавшим неупругих взаимодействий частицам, и исключены из рассмотрения. Суммарный спектр РВ приведен на рис.1 /сплошная линия/. Для сравнения на этом же рисунке показан аналогичный спектр, полученный при исследовании взаимодействий протонов с импульсом 4,5 ГэВ/с с ядрами фотоэмульсии /пунктирная линия/, полученный на основе экспериментального материала работы / 3/. Средние значения Р В для протонного и углеродного распределений оказались соответственно равными:

 $<P\beta>_{p} = 1,26\pm0,07$ F3B/c; $<P\beta>_{12_{C}} = 1,38\pm0,07$ F3B/c.

Последующий анализ проведен относительно протонов, испытавших взаимодействия, и π^{\pm} -мезонов. Это условие выполняется введением ограничения Р <4,0 ГэВ/с при отборе частиц. Средние значения Р $_{\beta}$ для выделенных таким образом протонов и пионов из протонного и углеродного распределений равны соответственно:

<P $\beta_{\pi,p}$ > = 1,13+0,06 F3B/c; <P $\beta_{\pi,p}$ > 12 = 1,09+0,05 F3B/c.

© Объединенный институт ядерных исследований Дубна, 1983.

1

現在のできた

В интервале 0,68 ≤ Pβ≤1,2 ГэВ/с в случае изучения ядер ¹²C вторичные частицы были разделены на протоны и $\pi^{\pm}-$ мезоны путем проведения ионизационных измерений на исследуемых и реперных /протоны с Рβ≃4 ГэВ/с/ следах и использования эталонных зависимостей вида g/go=f(P B), соответствующих природе исследуемых частиц. Величина g/go - относительная ионизация на измеряемом следе. На рис.2 дано суммарное импульсное распределение протонов и π^{\pm} -мезонов, рожденных в неупругих столкновениях ядер с ядрами эмульсии /сплошная линия/, вклады идентифицированных протонов показаны черными прямоугольниками. В интервале распределения 1<Р ≤1,2 ГэВ/с идентифицированы все частицы. В интервале 1,2 <P ≤ 1,6 ГэВ/с однозначно были идентифицированы только некоторые частицы, т.к. кривые ионизационных потерь для протонов и пионов сближаются при РВ>1 ГэВ/с. Величины импульсов были определены по значениям РВ при некоторых заключениях о соответствии следов тому или иному классу частиц. Частицы с Рβ ≤ ≤0,68 ГэВ/с являются π[±]-мезонами, так как используемое в качестве критерия отбора релятивистских следов соотношение g/go < 1,4 для релятивистских протонов соответствует значениям PB>0,68 ГэВ/с. С учетом результатов ионизационных измерений предварительно частицы с РВ<1,4 ГэВ/с считались пионами /за исключением идентифицированных протонов/, частицы с РВ>1,4 ГэВ/с и идентифицированные протоны были отнесены к группе протонов. При таком раз-

3,0 3,6

P(F3b/c)

42 48

 $P_{12c} = 54 \ \Gamma_{3}B/c$.

делении частиц средний импульс "-мезонов равен: <P, >12 = = 0,64+0,03 ГзВ/с. Для уточнения это распределение было сопоставлено со спектром "- мезонов, полученным на основе материалов работ /4,5/ по изучению инклюзивных реакций пр → л + Х при импульсе налетающего нейтрона, равном: P_n≃4,46 ГэВ/с. На рис.2 пунктирной линией представлен спектр инклюзивных пионов, отнормированный по части углеродного импульсного спектра, содержащей только идентифицированные пионы. Средний импульс π^{\pm} -мезонов, оцененный для этого распределения, оказался равным <P_n > = = 0,64+0,03 ГэВ/с. После предварительного разделения частиц результаты были использованы для более точной идентификации и получения импульсных спектров вторичных протонов и #-мезонов во взаимодействиях ядер ¹²С с ядрами фотоэмульсии. Уточнение спектров проведено в области перекрытия импульсного распределения пионов и протонов, содержащей неидентифицированные частицы, с использованием спектра инклюзивных пионов. Уточненные импульсные спектры π^{\pm} -мезонов и протомов даны соответственно на рис.3,4. Причем на рис.4 добавлен интервал импульсов 0.8÷1 ГэВ/с, взятый

из работы /7/, полученный для спектра протонов в ионизационных измерениях. Этот интервал показан пунктирной линией. Можно заметить, что результаты, приведенные на рис.⁴, находятся в согласии. Среднее значение импульса для спектра π^{\pm} -мезонов /рис.3/ равно: $<P_{\pi}>_{12}$ = 0,71+0,03 ГэВ/с, для протонов (без интервала 0,8÷1 ГэВ/с) $<P_{p}>_{12}$ = 2,22+0,06 ГэВ/с. Представленный на рис.2 сплошной линией спектр является уточненным суммарным импульсным спектром протонов и пионов. На рис.5 дано распределение протонов и π^{\pm} -мезонов по пространственному углу вылета θ . Средние величины углов вылета, найденные для этих распределений, равны: $<\theta_{p}>_{12}$ = 15±1°, $<\theta_{\pi}>_{12}$ = 22±2°. На рис.6 представлены распределе-

ния протонов и π^{\pm} -мезонов по быстроте $Y = \frac{1}{2} \ln \frac{E+P}{E-P}$, получен-

ные на основании проведенного разделения. Распределение протонов показано пунктиром. Средние значения быстрот равны соответственно $\langle Y_p \rangle_{12_C} = 1,38\pm0,03$; $\langle Y_\pi \rangle_{12_C} = 1,27\pm0,04$. Сопоставление угловых и быстротных распределений протонов и пионов указывает на близость средних быстрот $\langle Y_p \rangle_{12_C}$ и $\langle Y_\pi \rangle_{12_C}$ при существенных различиях в угловых распределениях. При сравнении величин $\langle P\beta_\pi \rangle_n$ и $\langle P\beta_\pi \rangle_{12_C}$ можно отметить незначительное смещение спектра пионов в случае исследования ядер 12 С в сторону больших энергий и совпадение величин $\langle P\beta_{\pi,p} \rangle_n$ и $\langle P\beta_{\pi,p} \rangle_{12_C}$ в пределах приведенных в работе ошибок. Таким образом, имеет место некоторая зависимость энергий вторичных протонов и пионов от массы ядра-снаряда.

В заключение авторы выражают благодарность А.Абдивалиеву, А.В.Никитину и Ю.А.Трояну за консультации и помощь в работе, а также И.И.Сосульниковой за проведение измерений.

ЛИТЕРАТУРА

- 1. Марин А. и др. ЯФ, 1979, 29, с.105.
- 2. Лескин В.А. и др. ОИЯИ, 10-80-300, Дубна, 1980.
- 3. Банник Б.П. и др. ОИЯИ, Р1-13055, Дубна, 1980.
- 4. Абдивалиев А. и др. ОИЯИ, Р1-81-437, Дубна, 1981.
- 5. Абдивалиев А. и др. ОИЯИ, 1-8565, Дубна, 1975.
- 6. Абдивалиев А. и др. ОИЯИ, Р1-82-507, Дубна, 1982.
- 7. Антончик В.А. и др. ОИЯИ, Р1-12111, Дубна, 1979.

Рукопись поступила в издательский отдел 11 января 1983 года.

НЕТ ЛИ ПРОБЕЛОВ В ВАШЕЙ БИБЛИОТЕКЕ?

Вы можете получить по почте перечисленные ниже книги,

если они не были заказаны ранее.

ДЗ-11787	Труды III Международной школы по нейтронной физике. Алушта, 1978.	3	p.	00	к.
Д13-11807	Труды III Международного совещания по пропорциональ- ным и дрейфовым камерам. Дубна, 1978,	6	р.	00	к.
	Труды VI Всесоюзного совещания по ускорителям заря- женных частиц. Дубна, 1978 /2 тома/	7	р.	40	к.
Д1,2-12036	Труды V Международного семинара по проблемам физики высоких знергий. Дубна, 1978	5	p.	00	к.
Д1,2-12450	Труды XII Международной школы молодых ученых по физике высоких энергий. Приморско, НРБ, 1978.	3	p.	00	к.
	Труды VII Всесоюзного совещания по ускорителям заря- женных частиц, Дубна, 1980 /2 тома/	8	р.	00	к.
Д11-80-13	Труды рабочего совещания по системам и методам аналитических вычислений на ЗВИ и их применению в теоретической физике, Дубна, 1979	3	р.	50	к,
д4-80-271	Труды Международной конференции по проблемам нескольких тел в ядерной физике. Дубиа, 1979.	3	p.	00	к.
Д4-80-385	Труды Международной школы по структуре ядра. Алушта, 1980.	5	р.	00	к.
12-81-543	Труды VI Международного совещания по проблемам кван- товой теории поля. Алушта, 1981	2	р.	50	к.
10,11-81-622	Труды Неждународного совещания по проблемам математи- ческого моделирования в ядерно-физических исследова- ниях. Дубна, 1980	2	р.	50	к.
Д1,2-81-728	Труды VI Международного семинара по проблемам физики высоких энергий. Дубна, 1981.	3	р.	60	к.
Д17-81-758	Труды II Международного симпозиума по избранным проблемам статистической механики. Дубна, 1981.	5	р.	40	к.
Д1,2-82-27	Труды Международного симпозиума по поляризационным явлениям в физике высоких знергий. Дубна, 1981.	3	р,	20	к.
P18-82-117	Труды IV совещания по использованию новых ядерно- Физических методов для решения научно-технических и народнохозяйственных задач. Дубна, 1981.	3	D.	80	к.
Д2-82-568	Труды совещания по исследованиям в области релятивистской ядерной физики. Дубна, 1982.	1	р.	75	к.
д9-82-664	Труды совещания по коллективным методам ускорения. Дубна, 1982.	3	р.	30	к.
ДЗ,4-82-704	Труды IV Международной школы по нейтронной Физике. Дубна, 1982.	5	p.,	00	к.

Заказы на упомянутые книги могут быть направлены по адресу: 101000 Москва, Главпочтамт, п/я 79 Издательский отдел Объединенного института ядерных исследований

ТЕМАТИЧЕСКИЕ КАТЕГОРИИ ПУБЛИКАЦИЙ ОБЪЕДИНЕННОГО ИНСТИТУТА ЯДЕРНЫХ ИССЛЕДОВАНИЙ

Индек	с Тематика
1.	Экспериментальная физика высоких энергий
2.	Теоретическая физика высоких энергий
3.	Экспериментальная нейтронная физика
4.	Теоретическая физика низких энергий
5.	Математика
6.	Ядерная спектроскопия и радиохимия
7.	Физика тяжелых ионов
8.	Криогеника
9.	Ускорители
10.	Автоматизация обработки экспериментальных данных
11.	Вычислительная математика и техника
12.	Химия
13.	Техника физического эксперимента
14.	Исследования твердых тел и жидкостей ядерными методами
15.	Экспериментальная физика ядерных реакций при низких энергиях
16.	Дозиметрия и физика защиты
17.	Теория конденсированного состояния
18.	Использование результатов и методов фундаментальных физических исследований в смежных областях науки и техники
19.	Биофизика

Карабова М., Лескин В.А., Толстов К.Д. Импульсы и быстроты π^{\pm} -мезонов и протонов в столкновениях ядер 12 С с ядрами фотоэмульсии при 54 ГэВ/с

Сообщаются результаты определения импульсных спектров и быстрот во взаимодействии с ядрами фотоэмульсии ядер 12 С при импульсе 4,5 ГэВ/с на муклон. Средние значения быстрот равны соответственно: $\langle Y_p \rangle_{12} = 1,38\pm0,03;$ $\langle Y_p \rangle_{12} = 1,27\pm0,04$. Приводятся сравнения с данными для аналогичных взаимодействий протонов, а также для нейтрон-протонных взаимодействий при том же импульсе.

P1-83-14

14

Работа выполнена в Лаборатории высоких энергий ОИЯИ.

Сообщение Объединенного института ядерных исследований. Дубна 1983

Karabova M., Leskin V.A., Tolstov K.D. #[±]-Meson and Proton Momenta and Rapidities in the Interactions of ¹²C with Photoemulsion Nuclei at 54 GeV/c

Data are presented on the measurement of momentum spectra and rapidities in the interactions of ${}^{12}C$ nuclei with photoemulsion for 4.5 GeV/c per nucleon momentum. The average rapidities of π^{\pm} -mesons and protons are equal to $<Y_{\pi}>_{12}C=1.27\pm0.04$ and $<Y_{p}>_{12}C=1.38\pm0.03$. A comparison is made with data for similar interactions of protons and also for neutron-proton interactions at the same momentum.

The investigation has been performed at the Laboratory of High Energies, JINR.

Communication of the Joint Institute for Nuclear Research. Dubna 1983

Перевод О.С.Виноградовой.