СООБЩЕНИЯ ОБЪЕДИНЕННОГО ИНСТИТУТА ЯДЕРНЫХ ИССЛЕДОВАНИЙ ДУБНА

24/41-74

P1 - 8297

4923/2-23

Г.Т.Адылов, А.С.Водопьянов, В.Гаевски, Т.С.Нигманов, Э.Н.Цыганов

ВЫЧИСЛЕНИЕ ПОПРАВОК К ДИФФЕРЕНЦИАЛЬНОМУ СЕЧЕНИЮ В ЭКСПЕРИМЕНТЕ ПО П-е - РАССЕЯНИЮ ПРИ ЭНЕРГИИ 50 ГЭВ

ЛАБОРАТОРИЯ ВЫСОНИХ ЭНЕРГИЙ

P1 - 8297

Г.Т.Адылов, А.С.Водопьянов, В.Гаевски, Т.С.Нигманов, Э.Н.Цыганов

ВЫЧИСЛЕНИЕ ПОПРАВОК К ДИФФЕРЕНЦИАЛЬНОМУ СЕЧЕНИЮ В ЭКСПЕРИМЕНТЕ ПО П-е - РАССЕЯНИЮ ПРИ ЭНЕРГИИ 50 ГЭВ

Адылов Г.Т., Водопьянов А.С., Гаевски В., P1 - 8297 Нигманов Т.С., Цыганов Э.Н.

Вычисление поправок к дифференциальному сечению в эксперименте по *п*-е рассеянию при энергии 50 ГэВ

Описано вычисление поправок к дифференциальному сечению $\pi - e$ - рассеяния при энергии 50 ГэВ.

Сообщение Объединенного института ядерных исследований Дубна, 1974

Adylov G.T., Vodopianov A.S., Gajewsky W., P1 - 8297 Nigmanov T.S., Tsyganov E.N.

Calculation of the Corrections to Differential Cross Section in the 50 GeV *n-e* Scattering Experiment

The description of the calculation of the corrections to the differential cross section for $\pi - e$ scattering at 50 GeV is presented.

Communications of the Joint Institute for Nuclear Research. Dubna, 1974

введение

При вычислении дифференциального сечения какой-либо реакции по экспериментальным данным необходимо вводить поправки, учитывающие неидеальность аппаратуры и условий проведения опыта, фоновые процессы и т.д. В этой работе описывается процедура вычисления поправок к дифференциальному сечению в эксперименте по П-е рассеянию /I/, выполненном на ускорителе ИФВЭ, Серпухов. Напомним вкратце, что экспериментальная установка /2/ состояла из трёх блоков магнитострикционных искровых камер, жидководородной мишени, магнита и системы запуска, включавшей сцинтиляционные счётчики, черенковские ливневые спектрометры и соответствующую электронную логику (рис. I).

Радиационные поправки и сечения для точечного П-мезона вычислялись в соответствии с работой ^{/3/}, исходя из реальных условий эксперимента и кинематических и геометрических обрезаний, использованных в программе выделения событий П-е рассеяния ^{/4,5/}. При этом учитывалась вероятность регистрации χ - квантов, испускаемых в акте П-е рассеяния, счётчиком А5 с конвертором толщиной в две радиационные единицы. В качестве входных данных для программы Монте-Карло использовались параметры пучковых частиц, полученные в специальных сеансах при запуске установки от мониторного телескопа. При вычислении ожидаемых сечений учитывались радиоционные потери электрона в веществе мишени и спектрометра. Вычисление абсолотной эффективности спектрометра было связано с определенными трудностями в связи с наличием корреляций в работе искровых камер и детально рассмотрено в работах ^{/6,7/}.

Рис.I. Расположение экспериментальной аппаратуры на канале № 12 ускорителя ИФВЭ.

Рис.2. Распределение частиц первичного пучка по импульсам.

I. Пучковые частицы, имеющие импульс вне кинематических обрезаний, и распады П-мезонов.

Во время экспозиции для определения параметров пучка регулярно проводились сеансы запусков установки от мониторного телескопа. Эти данные обрабатывались затем специальной программой, восстанавливающей траектории первичных частиц и определяющей их импульсн. На рис.2 приведено полученное таким образом импульсное распределение пучковых частиц. Доля частиц, импульсы которых лежат внутри использовенных при отборе событий упругого П-е-рассеяния кинематических обрезаний, 48 ГэВ/с < Р < 52 ГэВ/с, составляет 0,958, что даёт поправочный коэффициент, равный 1,043.Интересно отметить, что хвост импульсного распределения на рис.2 обрывается около 27 ГЭВ/с, что соответствует минимальной энергии µ - мезонов от распадов первичных П-мезонов с импульсом 50 ГэВ/с. Пучковые пионы, распавшиеся, приблизительно, до середины первого блока, так же, как и П-мезоны, распавшиеся до установки, учтечы, таким образом, в поправки на пучковые частицы, выходящие за пределы кинематических обрезаний по импульсу. Распады пионов от середины первого блока до центра мишени в Этой процедуре не учитываются, вследствие того, что геометрическая программа не могла находить треки, испытавшие излом. Поправка на такие распады составляет около 0,2%.

Для оценки количества случаев П-е-рассеяния, потерянных из-за распада вторичного П-мезона, была разработана специальная Монте-Карло-программа. Она генерировала П-е-события с обязательным распадом вторичного писна равновероятно вдоль его траектории от центра мишени до последней искровой камеры. События, разыгранные

в типичных фоновых условиях, затем анализировались по программам поиска и реконструкции событий. Полученная таким образом вероятность нахождения этих событий в зависимости от энергии электрона представлена на рис.З. Зная эту вероятность, энергию распавшегося пиона и расстояние от центра мишени до последней искровой камеры, получаем соответствующие поправки (табл.І).

2. Поглощение П-мезонов.

Для вычисления поправок на поглощение П-мезонов использовались неупругие б_а и полные б_{тот} сечения взаимодействия пионов с ядрами, полученные в работах ^{/8,9/}.Зависимость как полных сечений, так и сечений поглощения от атомного номера ядра хорошо аппроксимируется выражением b= bo A⁴. На рис.4 для примера привелена зависимость полного сечения взаимодействия П-мезона с ядрами в зависимости от атомного номера для первичного импульса 25 ГЭВ/с. Исходя из такой зависимости, мы вычислили неупругие и полные сечения для различных ядер и разных энергий. Значения О и 🖌 для разных начальных импульсов были получены линейной интерполяцией. Затем мы вычислили сечения упругого рассеяния bel=btot-ba и доли є сечений упругого взаимодействия, которые соответствуют рассеянию пиона на ядре на угол больше 2 мрад, в предположении, что дифференциальное сечение упругого рассеяния описывается выражением $\exp(-10 \cdot A^{2/3} \cdot P_0^2 \cdot \Theta^2)$. Для водорода ε предполагалось равным І. Если пион рассеялся на угол больше 2мрад, то такое событие считалось потерянным, в соответствии с кинематическими критериями отбора. Таким образом, Эффективные сечения, определяющие поправки на поглощение, равны $b_{eff} = b_{n} + \epsilon \cdot b_{eff}$

Е _е Гэ в	Распады П-мезонов, %	Поглощение П-мезонов, Я	Примесь µ-е событий,%
I2,5	0,57	4.73	I.00
13,5	0,59	4,74	I.00
I4,5	0,61	4,75	I.00
I5,5	0,63	4,76	I.00
16,5	0,65	4,77	I.00
17,5	0,67	4,78	0,96
I 8,5	0,70	4,79	0,96
19,5	0,72	4,80	0,97
20,5	0,75	4,8I	I,02
21,5	0,78	4,82	I,I2
22,5	0,81	4,83	I,23
23,5	0,84	4,84	I,30
24,5	0,88	4,85	I,4I
25,5	0,92	4,87	I,48
26,5	0,97	4,89	I,54
27,5	I,OI	4,9I	I,30
28,5	I,06	4,93	I,07
29,5	I,I2	4,95	0,51
30,5	I,I8	4,97	0,24
3I,5	I,25	5,00	0,02
32,5	I,30	5,02	0,00
33,5	I,33	5,04	0,00
34,5	I,3I	5,07	0,00
35.5	I.24	5.10	0.00

Таблица І

6

Таблица	Γ
---------	---

- TONOTE	Вещество, г/см ²	
ONEMERI	I блок	П+Ш блок
II	0,099	0,029
He	0,065	0,216
С	I,605	0,495
N	0,319	0,214
0	0,200	0,178
Ne	0,022	0,031
Al	0,004	0,004
Ar	0,005	0,004
Cu	0,110	0,157
Bcero	2,429	I,337
<u>form-a</u> f _{p.e})/
		+ +
2		
•1		
	<u>. </u>	

Рис.3. Вероятность нахождения событий, в которых вторичный П-мезон распался, в зависимости от энергии электрона.

Зная эти сечения, а также состав и количество вещества в спектрометре (табл.П), можно легко вычислить поправки на поглощение П-мезонов. Вычисленные поправки на поглощение вторичного пиона приведены в табл.І. Поправка для первичного пиона, вычисленная с учётом вещества до середины мишени, оказалась равной 5,0%.

3. 5 - Электроны.

Первичный П-мезон и вторичные электрон и П-мезон могут образовать в мишени S – электроны, которые, попав в антисовпадательный счётчик A5, подавят запуск установки. При этом необходимо иметь в виду, что перед счётчиком стоял латунный конвертор толщиной 25 мм. Для учёта этого эффекта была разработана специальная программа, которая генерировала S – электроны от первичной и вторичных частиц в соответствии с видом дифференциального сечения П-е-или е-е-рассеяния. При попадании S – электрона в счётчик учитывалась эффективность регистрации счётчиком S – электрона данной энергии. Поправка получилась равной 1,65% и 1,00% для двух сеансов набора статистики, отличающихся позицией счётчика А5.

4. <u>Фон от пустой мишени и потери событий из-за</u> обрезаний по Z - координате.

Фон от пустой мишени был определен в специальном сеансе и составлял 3,9%. Съда входит фон от стенок мишени и от событий П-е-рассеяния на атомах воздуха, попадающих в границы обрезаний по Z. Границы обрезаний отстояли от границ водорода на 25 см. При ограниченной точности определения Z – координаты вершины

Рис.5. Поправки на обрезания по Z - координате, полученные фитированием экспериментальных данных.

события это приводило к потере некоторой доли случаев.

В одном из экспериментальных сеансов (~ 30% статистики) мишень была модифицирована таким образом, что её внешние вакуумные стенки были вынесены на расстояние 100 см от границ области, заполненной водородом. В этом сеансе границы обрезаний по Z были выбраны отстоящими на 75 см от границ водорода, что гарантировало отбрасывание фона от воздужа и внешних стенок водородной мишени и не приводило к потерям рабочей статистики. Фон от пустой мишени в этом сеансе рассчитывался и составлял 0,99%. Данные этого сеанса были использованы для определения поправок, связанных с Z - обрезаниями в остальной части статистики.

На рис.5 приведены отношения числа событий, найденных в этом сеансе в пределах <u>+</u> 75 см от краев мишени, к числу событий в пределах <u>+</u> 25 см от краев мишени.

Мы фитировали эти данные, предполагая, что для тонкой мишени $N(Z) \sim \exp[-(Z-Z_o)^2 \cdot \Theta^2/C^2]$, где Θ - угол раскрытия, а C -свободный параметр, характеризурщий точность определения вершины события в плоскости XY. Сплошной линией приводятся результаты фитирования, т.е. Z - поправки для событий с различной энергией вто-ричного Электрона.

5. <u>Определение мисла µ – мезонов в пучке и учёт</u> примеси <u>µ – е событий</u>.

Содержание µ - мезонов с энергией от 48 Гэв до 52 Гэв в первичном пучке было определено с помощью регистрации событий µ - е рассеяния. События µ - е рассеяния с энергией вторичного электрона больше, чем 22 ГэВ, были выделены с помощью

кинематики. На рис.6 приведено распределение событий по массе первичной частицы, вычисленной по параметрам вторичных частиц в предположении упругой кинематики. Лля более надёжного отбора событий μ - е-рассеяния требовалось, чтобы в этом запуске сработал счётчик A_{μ} (марка о срабатывании этого счётчика содержалась на магнитной ленте). На рис.6 видно отчётливое отделение μ - мезонов от П-мезонов. По этим данным было оценено, что доля μ - мезонов с энергией от 48 ГэВ до 52 ГэВ в первичном пучке составляет 0,80%.

Для учёта μ - е-событий, зарегистрированных как П-е-события, была подсчитана вероятность их регистрации программами, разработанными для поиска и выделения событий П-е-рассеяния. Для этого специальной программой генерировались события μ - е-рассеяния в условиях средней интенсивности. Вероятность регистрации μ -есобытий по программам, разработанным для поиска П-е-событий, представлена на рис.7. Видно, что до энергии вторичного электрона 25 ГэВ события μ -е-рассеяния при использовенных кинематических критериях практически не отделяются от П-е-событий. В области от 25 ГэВ до 32 ГэВ такие события регистрируются частично, а для $E_e > 32$ ГэВ отделяются полностью. Зная эту вероятность, ожидаемые μ - е-сечения, вычисленные для точечного μ -мезона в однофотонном приближении, и доло μ - мезонов в пучке, мы рассчитали поправки на примесь μ - е-событий (табл. I).

Заключение

В связи с тем, что в этом эксперименте требовалось знание абсолютной величины дифференциального сечения П-е-рассеяния с

Рис.6. Распределение событий с энергией электрона больше, чем 22 Гэв, по массе первичной частицы.

Рис.7. Вероятность регистрации µ - е-событий по программам, разработанным для поиска П-е-событий.

высокой точностью, был проведён аккуратный учёт всех возможных эффектов, влияющих на величину сечения. Кроме описанных выше поправок, была введена поправка на примесь К -мезонов и антипротонов в первичном пучке в соответствии с работой ^{/8/}. Для определения подавления событий случайными отсчётами в антисовпадательных счётчиках производилось непрерывное мониторирование этого эффекта с помощью регистрации задержанных совпадений сигналов с этих счётчиков с сигналом мастерной схемы. Ширина кривой антисовпадений была также тщательно измерена. Аналогичным образом учитывались просчёты мониторной схемы, связанные с разрешающим временем мастерной схемы совпадений.

Тщательное рассмотрение всех этих эффектов позволило определить дисференциальное сечение П-е-рассеяния с систематической ошибкой в нормализации около + 3%.

Авторам приятно поблагодарить Ф.К.Алиева, И.Иоана, Б.А.Кулакова, Л.Дрики, Э.Далли, А.Либермана, Дж.Томпкинса, П.Шепарда за полезные обсуждения и помощь в работе.

ЛИТЕРАТУРА

- I. G.T.Adylov et al. "The pion radius", JINR report, E1-8047, Dubna (1974)
- G.T.Adylov et al. "Experimental setup in a π -e-scattering experiment at 50 Gev/c", JINR report, E13-6749, Dubna (1972)
- 4. Г.Т.Адылов и др." Программы поиска и восстановления событий в эксперименте по П-е-рассеянию при энергии 50 Гэв. I. ", сообщение ОИЯИ, I-80II, Дубна (1974).
- 5. Г.Т.Адилов и др. "Программы поиска и восстановления событий в эксперименте по П-е-рассеянию при энергии 50 Гэв. П.", сообщение ОИЯИ, I-8012, Дубна (1974).
- 6. Г.Т.Адылов и др. "Определение характеристик детекторов и восстановление других параметров, необходимых для корректного вычисления эффективности спектрометра в опыте по П-е-рассеянию при энергии 50 Гэв", сообщение ОИЯИ, I-8105, Дубна (1974).
- Г.Т.Адылов и др. "Определение эффективности спектрометра в опыте по П-е-рассеянию при энергии 50 Гэв", сообщение ОИЯИ, I-8123, Дубна (1974).
- 8. D.Б.Бушнин и др. ЯФ, 16, 1224 (1972).
- 9. Дж.Аллаби и др. ЯФ, I2, 3 (1970).

Рукопись поступила в издательский отдел 2 октября 1974 г.