СООБЩЕНИЯ ОБЪЕДИНЕННОГО ИНСТИТУТА ЯДЕРНЫХ ИССЛЕДОВАНИЙ

C346.46 T-362

201-175 P1 - 8236

198/2-75

К.Георгеску, А.Михул, И.В.Фаломкин, Ю.А.Щербаков

импульсное приближение в **П³не**-упругом рассеянии

ЛАБОРАТОРИЯ ЯДЕРНЫХ ПРОБЛЕМ

P1 - 8236

К.Георгеску, А.Михул, И.В.Фаломкин, Ю.А.Щербаков

импульсное приближение в **П³не**-упругом рассеянии

Георгеску К., Михул А., Фаломкин И.В., Шербаков Ю.А. Р1 - 8236

Импульсное приближение в π^3 Не -упругом рассеяния

Рассмотрено рассеяние пионов на ядре ³ Не в импульсном приближении. Использован метод парпиальных волн и взяты фазы свободного *п* N -рассеяния. Расчеты и параметризация сделаны для экспериментальных данных при энергии 98 МэВ. В качестве параметров взяты три величины: R₁ и R₂- два радиуса ядра ³ Не, соответствующие двум различным ядерным формфакторам этого ядра, а также фаза волны Р₃₃. Получено достаточно хорошее описание экспериментальных данных.

Сообщение Объединенного института ядерных исследований Дубна, 1974

P1 - 8236

Gheorgescu C., Mihul A., Falomkin I.V., Shcherbakov Yu.A.

> Impulse Approximation in the Elastic π^{3} He Scattering

The $\pi^3 H_e$ scattering has been considered in the impulse approximation. The partial wave method has been used and the phases of free πN scattering have been taken. The calculations as well as parametrization have been performed for experimental data at 98 MeV. Three values have been taken as the parameters: R_1 and R_2 - two radii of the ³He nucleus, corresponding to two different nuclear form factors of the nucleus, and also the P_{33} wave phase: A sufficiently good description of experimental data has been obtained.

Communications of the Joint Institute for Nuclear Research. Dubna, 1974

Введение

В последнее время появились первые экспериментальные данные по π^{\pm} ³Не -упругому рассеянию /1,2/ В нашей работе /3/ использовано импульсное приближение для расчетов дифференциальных сечений упругого π ⁴Не -рассеяния. При этом были использованы фазы из π N -рассеяния /только фаза δ_{33}^1 была взята в качестве параметра/. Оказалось, что таким образом довольно хорошо описываются дифференциальные сечения упругого рассеяния пионов на ядрах гелия-4. Поэтому интересно использовать аналогичный подход в случае упругого рассеяния пионов на ядрах гелия-3.

Однако ³Не отличается от ⁴Не, в частности, тем, что ядро ³Не имеет спин /равный 1/2/. Поэтому сечение будет определяться суммой квадратов двух членов:

 $\frac{\mathrm{d}\sigma^{\pm}(\theta)}{\mathrm{d}\Omega} = \{ [\mathbf{A} \cdot \mathbf{F}_{1}(\mathbf{q}^{2}) \mathbf{f}_{N}^{\pm}(\theta) + \mathbf{f}_{C}^{\pm}(\theta)]^{2} + [\mathbf{A} \cdot \mathbf{F}_{2}(\mathbf{q}^{2}) \mathbf{g}_{N}^{\pm}(\theta)]^{2} \}.$

Здесь знаки "+ " н "- " относятся, соответственно, к процессам π^+ ³Не и π^- ³Не; А - число нуклонов в ядре; f_N(θ) - кулоновская амплитуда; 8 $\binom{\theta}{N}$ н f $\binom{\theta}{0}$ - усредненные по всем изотопспиновым и спиновым состояниям амплитуды π N -рассеяния на нуклоне, соответственно, с переворотом спина и без него; F₁(q²) и F₂(q²) - два, вообще говоря, различных формфактора. Итак, в отличие от случая π^4 Не, в сечение здесь входят две ядерные амплитуды и два формфактора ядра ³Не. Вкладом кулоновской амплитуды во второй член пренебрегаем, т.к. в основном кулоновское взаимодействие осуществляется без поворота спина взаимодействующей системы.

3

Ядерные амплитуды и N - рассеяния при разложении по парциальным волнам имеют вид /4/:

$$f(\theta) = \sum_{\ell=0}^{\infty} \left[(\ell+1)f_{\ell^+} + \ell \cdot f_{\ell^-} \right] P_{\ell}(\cos\theta)$$

$$g(\theta) = i \sum_{\ell=0}^{\infty} (f_{\ell^+} + f_{\ell^-})\sin\theta \cdot P_{\ell}'(\cos\theta),$$

$$F_{\mathcal{A}} = \sum_{\ell=0}^{\infty} (f_{\ell^+} + f_{\ell^-})\sin\theta \cdot P_{\ell}'(\cos\theta),$$

гд

$$f_{\ell^{\pm}} = \frac{e^{2i\theta}\ell^{\pm} - 1}{2ik}$$

Здесь

$$\ell^{+} = \ell + \frac{1}{2}, \quad \ell^{-} = \ell - \frac{1}{2}, \quad \mathbf{P}_{\ell}' = \frac{\mathrm{d} \mathbf{P}_{\ell}(\cos\theta)}{\mathrm{d}(\cos\theta)}$$

Делая процедуру усреднения по всем состояниям. аналогично осуществленной в нашей работе 3/, получаем выражения для амплитуд в случае π^+ ³He - рассеяния:

$$f^{+}(\theta) = (7S_{31} + 2S_{11}) + (14P_{33} + 7P_{31} + 4P_{13} + 2P_{11}) \cdot \cos\theta + (14D_{33} + 21D_{35} + 6D_{15} + 4D_{13}) - \frac{3\cos^2\theta - 1}{2}$$

И

$$g^{+}(\theta) = (7P_{33} - 7P_{31} + 2P_{13} - 2P_{11})\sin\theta + 3(7D_{35} - 7D_{33} - 2D_{13} + 2D_{15})\sin\theta\cos\theta,$$

а также для π^{-3} Не -рассеяния:

$$\vec{f}(\theta) = (5S_{31} + 4S_{11}) + (10P_{33} + 8P_{13} + 5P_{31} + 4P_{11})\cos\theta +$$

+
$$(15D_{35} + 12D_{15} + 10D_{33} + 8D_{13}) - \frac{3\cos^2\theta - 1}{2}$$

И

H

$$g^{-}(\theta) = (5P_{33} + 4P_{13} - 5P_{31} - 4P_{11}) \sin \theta + 3(8D_{35} + 4D_{15} - 8D_{33} - 4D_{13}) \sin \theta \cos \theta.$$

Вычисление сечений

При вычислении дифференциальных сечений фазы *п*N рассеяния мы берем из работы /4/. Выражения для формфакторов берем в форме:

$$F_1(q^2) = \exp(-\frac{1}{6}q^2 R_1^2)$$

 $F_2(q^2) = \exp(-\frac{1}{6}q^2 R_2^2).$

При рассматриваемых энергиях вполне оправдан такой вид формфакторов, поскольку передачи импульсов малы. Поэтому нет необходимости использовать более сложный вид формфакторов, применяемый в интерпретаини e He - рассеяния при больших передачах импульса^{/5/}.

Кроме того, нам необходимо связать кинематические переменные для взаимодействий *п* N и *п* He. Полагаем:

$$q^{2} = q_{N}^{2} = q_{He}^{2}$$
.

Отсюда:

$$\cos\theta_{\rm N} = 1 - \frac{k_{\rm He}^2}{k_{\rm N}^2} (1 - \cos\theta_{\rm He}), \ \sin\theta_{\rm N} = \sin\theta_{\rm He}$$

При вычислениях используются все /и нефизические/ значения $\cos \theta_N$. Это позволяет улучшить согласие с эк-спериментом и в 2÷3 раза уменьшить значение χ^2 по сравнению со случаем $\cos \theta_{\rm N} = \cos \theta_{\rm He}$.

5

Результаты и сравнение с экспериментом

В данной работе расчеты и параметризация проведены для кинетической энергии пиона 98 *МэВ*. Сначала мы сделали попытку аппроксимировать экспериментальные данные ^{/1/}, используя те же параметры, что и в нашей первой работе ^{/3/}, относящейся к π^{4} Не -рассеянию, а именно: R, δ_{33}^{1} и ρ_{1} /т.е. приняли R_{1} = R_{2} /. Здесь R-радиус ядра Не, δ_{33}^{1} - фаза волны P_{33} , а ρ^{-} введенная в S- волну мнимая часть так, что S + i ρ . Результаты показаны на *рис. і* и в *табл. 1*. Видно, что такая параметризация неудовлетворительна и что в данном случае параметр ρ оказался плохим.

В случае ³Не естественно ввести в качестве параметров два различных ядерных формфактора, поскольку здесь распределение протонов и нейтронов несимметрично. Кроме того, в качестве третьего параметра оставим δ_{33}^1 . Результаты показаны на *рис. 2* и в *табл. 2*. Таким путем получается удовлетворительное описание экспериментальных данных.

Значения δ_{33}^{1} оказались по величине заключенными между значениями δ_{33}^{1} для π^{4} Не и δ_{33}^{1} для свободного πN - рассеяния. Такого эффекта и следовало ожидать из-за меньшей связанности нуклонов в ядре гелия-3. Интересно отметить, что значение R_{1} оказывается довольно близким к электрическому раднусу гелия-3 / $R_{e} = 1,97 \pm 0,10$ Fm / ^{/6/}. Вообще говоря, раднусы R_{1} и R_{2} не соответствуют буквально электрическому и магнитному радиусам ядра гелия-3 (R_{e} , R_{m}), поэтому различие между этими парами величин неудивительно. Чтобы точнее определить значения R_{1} и R_{2} и установить, что они не зависят от энергии налетающих частиц, необходимо произвести измерения при различных энергиях,

Рис. 1. Аппроксимация экспериментального углового распределения π^{-3} Не - упругого рассеяния при энергии 98 МэВ с тремя параметрами (R, δ_{33}^{1} , ρ) для a/π^{-3} Не и б/ π^{+3} Не.

Таблица 1

.

	R, Fm	δ_{33}^{1} , rad	d	$\chi^2/n_{\rm DF}$
_π - ³ Не	1,65 + 0,25	0,27 + 0.04	-0,37 +1.34	10,0
π^+ ³ He	1,78	0,25	-0 , 28	45,5
	+0,17	+0,05	<u>+</u> 1,60	

1

Таблица II

			بعارضه بالمراجع والمربق وتنبار بماريتها والمراجع والمراجع	
	R ₁ ,	ا مع rad	R2 , Fm	$\chi^{2/n_{\rm DF}}$
He	1,81	0,30	2,24	1,6
	+0,03	+ 0,01	+0,08	
ę	1,93	0,31	3,11	2,7
	<u>+</u> 0,02	+ 0,01	<u>+</u> 0,13	

8

9

Рис. 2. Аппроксимация π^{3} Не - рассеяния при энергии 98 МэВ с тремя параметрами ($R_{1}, R_{2}, \delta_{33}^{1}$) для а/ π^{-3} Не и б/ π^{+3} Не.

тогда можно будет сопоставить R₁ и R₂, с одной стороны, и R_e и R_m - с другой. Следует отметить, что учет двух формфакторов в ³Не оказался более важным, чем учет поглощения в S - волне / параметр ρ /.

В заключение авторы хотели бы выразить благодарность В.Б.Беляеву, Ф.Никитиу и Р.А.Эрамжяну за полезные обсуждения.

Литература

- I.V.Falomkin, R.Garfagnini, C.Georgescu, M.M.Kulyukin, V.I.Lyashenko, A.Mihul, F.Nichitiu, G.Piragino, G.Pontecorvo, Yu.A.Scherbakov. Lett.Nuov.Cim., 5, 1121 (1972).
- М.Альбу, Т.Бешлиу, Р.Гарфаньини, М.М.Кулюкин, В.И.Ляшенко, А.Михул, Ф.Никитиу, Г.Пираджино, Д.Б.Понтекорво, И.В.Фаломкин, Ю.А.Щербаков. Препринт ОИЯИ, Р1-7742, Дубна, 1974.
- 3. К.Георгеску, А.Михул, И.В.Фаломкин, Ю.А.Щербаков. Препринт ОИЯИ, Р1-8235, Дубна, 1974.
- 4. D.J.Herndon, A.Barbaro-Galtieri, A.H.Rosenfeld. Partial-Wave Amplitudes (a Compilation). Preprint UCRL 20030 (1970).
- 5. R.Hofstadter et al. Rev. Mod. Phys., 28, 214 (1956).
- 6. H.Colland et al. Phys.Rev.Lett., 11, 132 (1963).

Рукопись поступила в издательский отдел 30 августа 1974 года.