

ОБЪЕДИНЕННЫЙ Институт Ядерных Исследований

дубна

229 83

/ 1/3 83 P1-82-887

В.В.Архипов, Р.Г.Аствацатуров, Е.Кнапик, А.И.Малахов, Г.Л.Мелкумов, С.Н.Пляшкевич, М.Н.Хачатурян

ДИФФЕРЕНЦИАЛЬНОЕ СЕЧЕНИЕ РОЖДЕНИЯ **1** -МЕЗОНОВ НА УГЛЕРОДЕ **7**⁻-МЕЗОНАМИ ПРИ ИМПУЛЬСЕ 3,3 ГэВ/с

Направлено в журнал "Ядерная физика"

* Институт ядерных исследований, Сверк, ПНР.

1. ВВЕДЕНИЕ

Исследование процессов рождения нестабильных частиц на сложных ядрах при высоких энергиях является уникальным источником информации о взаимодействии короткоживущих частиц - резонансов с внутриядерными нуклонами. Эти данные позволяют получить сведения о свойствах резонансов, а также проверить применимость существующих теоретических моделей для описания таких процессов. Этим объясняется интерес к изучению процессов рождения резонансов на ядрах за последние несколько лет.

В настоящее время имеется значительное число экспериментальных работ по когерентному и некогерентному рождению векторных мезонов / ρ° , ω° , ϕ° и т.п./ и систем, состоящих из нескольких бозонов / 3π , 5π , $K_{\pi\pi}$ и т.п./, на ядрах в пучках гамма-квантов, пионов и каонов с импульсом, превышающим 2 ГэВ/с^{/1/}. Однако экспериментальных данных по рождению η -мезонов на ядрах в пучках π^- -мезонов существенно меньше^{/2-7/}. Что же касается исследований при энергиях порядка нескольких ГэВ, то данные о дифференциальных сечениях реакции в области малых передаваемых 4-импульсов |t| практически отсутствуют. С другой стороны, при $t \to 0$ ожидаются некоторые особенности в t-зависимости дифференциальных сечений, связанные с проявлением корреляций между нуклонами ядра из-за принципа Паули и спин-изоспиновой зависимости амплитуды реакции перезарядки ^{/8/}.

В настоящей работе приведены результаты измерений дифференциальных сечений реакции:

$$\pi^{-} + A_{Z} \rightarrow \eta + A_{Z-1}, \quad \eta \rightarrow \gamma\gamma \qquad /1/$$

на ядрах углерода в диапазоне $-t_{MNH} \le -t \le 0,4$ /ГэВ/с/² /- $t_{MNH} = 0,002$ /ГэВ/с/²/ при импульсе π^- -мезонов 3,3 ГэВ/с.

Измерения выполнены с помощью 90-канального черенковского массспектрометра /установка "Фотон" /9/ / на пучке синхрофазотрона ЛВЭ ОИЯИ. На этой же установке при импульсе пионов 3,3 ГэВ/с были проведены эксперименты по исследованию реакции:

$$\pi^{-} + p \rightarrow \eta + n, \quad \eta \rightarrow \gamma \gamma$$
 /2/

с использованием жидководородной мишени^{(10,11/}. Это позволило провести прямое сравнение сечений реакций /1/ и /2/ методом, свободным от влияния систематических погрешностей.

2. ПОСТАНОВКА ЭКСПЕРИМЕНТА

Схема эксперимента приведена на рис.1. В состав экспериментальной аппаратуры входят:

а/ пучковые детекторы /сцинтилляционные счетчики, пропорциональные камеры и черенковский газовый счетчик/,

б/ детекторы для определения углов вылета и энергий γ -квантов от распада рожденных в мишени резонансов /два идентичных плеча масс-спектрометра, расположенных симметрично по отношению к оси пучка/.

Рис.1. Схема эксперимента: С1-3 – мониторные сцинтилляционные счетчики; A1-2 – антисовпадательные сцинтилляционные счетчики; СГ1-20 – годоскопические сцинтилляционные счетчики; ПК1-6 – пропорциональные камеры; ИК1-32 – проволочные искровые камеры; К1-6 – медные конверторы; C_0 – газовый черенковский счетчик; С1-90 – черенковские гамма-спектрометры.

Пучок π^- -мезонов с импульсом 3,3 ГэВ/с, падающий на углеродную мишень толщиной 14,3 г/см², мониторируется с помощью сцинтилляционных счетчиков размерами 5x5 см². Пропорциональные камеры ПК1-6 размерами 15x15 см² позволяют контролировать профиль пучка и определять траекторию налетающих на мишень π^- -мезонов. Черенковский пороговый счетчик C_0 используется для выделения в пионном пучке электронов с целью энергетической калибровки черенковских гамма-спектрометров.

Каждое плечо спектрометра состоит из: а/ 16 искровых камер с рабочей площадью 92х92 см², которые собираются в группы по четыре и разделяются медными конверторами толщиной 0,4 рад.ед., б/ 10 сцинтилляционных годоскопических счетчиков длиной 100 см, в/ 45 модулей черенковских гамма-спектрометров полного поглощения с радиаторами из свинцового стекла /рабочая площадь #100x100 см²/.

2

Установка работает на линии с ЭВМ HEWLETT-PACKARD 2116В, осуществляющей прием, накопление, контроль и предварительный отбор информации с детекторов и управление работой аппаратуры.

Эксперименты по исследованию реакций /1/ и /2/ проводились в одной и той же геометрии, в которой угол между осями двух плеч масс-спектрометра равен 22°, а расстояние между центром мишени и годоскопом черенковских гамма-спектрометров составляет 375 см.

Установка запускается, если имеет место совпадение /см.рис.1/: C1. C2.C3.A1-2.CГ1-10.CГ11-20.C1-45.C46-90 при условии, что энергия частиц, зарегистрированных черенковскими спектрометрами левого и правого плеча /соответственно E_1 и E_2 /, а также их сумма (E_1+E_2) превышают пороговые значения: E_1 , $E_2 \gtrsim 300$ МэВ, (E_1+E_2) $\gtrsim 2500$ МэВ.

В эксперименте с углеродной мишенью на магнитной ленте было записано 22116 триггеров.

3. ОБРАБОТКА ДАННЫХ

Экспериментальная информация обрабатывалась на ЭВМ CDC-6500 с помощью программ геометрической и энергетической реконструкции , событий^{/12/}.

Отбор двугаммных событий осуществлялся при условии, что

а/ в искровых камерах ИК1-4 и ИК17-20 /первые четверки ИК со стороны мишени/ отсутствуют треки заряженных настиц:

б/ в искровых камерах ИК5-16 и ИК21-32 зарегистрировано не менее двух треков заряженных частиц или ливней после i-го кон-вертора / i = 1,2,3 и 4,5,6/;

в/ имеются сигналы в годоскопических сцинтилляционных счетчиках СГ1-10 и СГ11-20, соответствующих пространственно трекам в искровых камерах;

г/ есть сигналы в гамма-спектрометрах Č1-45 и Č46-90, соответствующие трекам в искровых камерах.

Таким образом из экспериментального материала было отобрано 1209 уу-событий, распределенных в интервале эффективных масс 300÷700 МэВ.

При идентификации уу-событий, относящихся к реакции /1/, вводились ограничения по следующим кинематическим параметрам:

400 M3B $\leq E_{\chi I}(E_{\chi 2}) \leq 2800$	МэВ	$17^{\circ} \leq \Theta_{\gamma\gamma} \leq 26^{\circ}$
3000 MəB $\leq (E_{\gamma 1} + E_{\gamma 2}) \leq 3500$	МэВ	600 МэВ <i>≤</i> М _п ≤1100 МэВ
$E_{\gamma}^{M}/E_{\gamma}^{G}>0,2$		440 MəB \leq M _{yy} \leq 640 MəB,

где $E_{\gamma 1}$, $E_{\gamma 2}^{-}$ значения энергии γ -квантов, $(E_{\gamma 1} + E_{\gamma 2})$ - суммарная энергия обоих γ -квантов, $E_{\gamma}^{M}/E_{\gamma}^{O}$ - отношение меньшего из двух значений энергии γ -квантов к большему, $\Theta_{\gamma\gamma}$ - угол разлета γ квантов в л.с.к., M_n - недостающая масса, $M_{\gamma\gamma}^{-}$ эффективная масса системы двух γ -квантов.

Рис.2. Распределения событий реакции $\pi^{-}A_{Z} \rightarrow \eta \cdot A_{Z-1}, \eta \rightarrow \gamma \gamma$ на ядре углерода по энергии $(E_{\gamma 1} + E_{\gamma 2})$, углу разлета $(\Theta_{\gamma \gamma})$, эффективной массе $(M_{\gamma \gamma})$ и углу вылета η -мезонов (Θ_{η}) . Сплошные кривые получены методом Монте-Карло. Штрихованные линии – пределы ограничений по кинематическим параметрам.

Критерии отбора определялись на основании моделирования методом Монте-Карло основных процессов, являющихся источником уу-

событий, регистрируемых установкой. В результате применения указанных критериев было идентифицировано 273 распада $\eta \rightarrow \gamma \gamma$ из реакции /1/. При этом, как показал результат моделирования, величина отношения фон/эффект составляет ~10%, а влияние фоновых событий на форму распределения $d\sigma/dt$ незначительно и находится в пределах ошибок измерений.

На рис.2 приведены экспериментальные распределения η -мезонных событий по величинам ($E_{\gamma 1}+E_{\gamma 2}$), $\Theta_{\gamma\gamma}$, $M_{\gamma\gamma}$ и по углу вылета η -мезона относительно направления движения налетающего пиона Θ_{η} . Вертикальными штрихованными линиями обозначены пределы ограничений по кинематическим параметрам. Распределения по величине ($E_{\gamma 1}+E_{\gamma 2}$) приведены как для 273 идентифицированных событий, так и для всех 1209 зарегистрированных уу-событий.

Сплошные кривые на рис.2 получены путем моделирования методом Монте-Карло реакции на свободном протоне с учетом условий настоящего эксперимента и нормированы на полное число событий в экспериментальных гистограммах. В ходе обработки данных реакции /2/ на водороде было получено хорошее согласие экспериментальных и моделированных распределений для всех кинематических параметров/14/.На рис.2 заметное различие экспериментальных и моделированных распределений наблюдается лишь для распределения по углу вылета η -мезонов в л.с.к. Θ_n .

4. РЕЗУЛЬТАТЫ ЭКСПЕРИМЕНТА .

4.1. Дифференциальное сечение $d\sigma/dt$

При вычислении дифференциальных сечений реакции /1/ эффективность регистрации событий в зависимости от передаваемого 4импульса |t| определялась моделированием.

Абсолютные значения дифференциальных сечений d_{σ}/dt реакции /1/ на углероде получены нормировкой на наши данные d_{σ}/dt реакции /2/ на водороде^{/11/}. При определении фактора нормировки были учтены различия в условиях экспериментов на углеродной и водородной мишенях, такие, как: эффективность регистрации событий по [t], геометрические размеры и тип мишени, вероятность конверсии уквантов в мишени, количество π^- -мезонов, прошедших через установку, и др.

Экспериментальные значения дифференциальных сечений do / dt рождения η -мезона на углероде пионами с импульсом 3,3 ГэВ/с в интервале $t_{\text{МИН}} \leq -t \leq 0,4$ /ГэВ/с/² приведены на рис.3 и в табл.1. Выбранные интервалы по |t| имеют величину, близкую к разрешающей способности аппаратуры. Указанные ошибки измерений do /dt- статистические. Сплошная кривая /1/ на рис.3 является результатом параметризации экспериментальных данных функцией do /dt = A(1-gct)e^{ct}. Методом наименьших квадратов для параметров A, g и с найдены значения: A = /0,012±0,009/ мб//ГэВ/с/², g = /240+163/, c = = /5,8+0,7/ /ГэВ/с/-².

Рис.3. Дифференциальное сечение d_{σ}/dt реакции $\pi^{-}A_{Z^{+}}\eta A_{Z^{-1}}$ на ядре углерода при импульсе пионов 3,3 ГэВ/с. Сплошные кривые: /1/ – получена параметризацией экспериментальных данных выражением d_{σ}/dt = = $A(1-gct)e^{ct}$, /2/ – то же самое для реакции $\pi^{-}p \rightarrow \eta n$, по данным работы/11/ Штрихованная кривая – результат умножения кривой /2/ на Z^{C} =3,2.

Таблица 1

Дифференциальное сечение do/dt реакции /1/ на углероде при импульсе Р_=3,3 ГэВ/с

∆ t /ГэВ/с/ ²	<u>-</u> т /ГэВ/с/ ²	d <i>σ/</i> dt мб∙/ГэВ/с/ ^{−2}
0-0,02	0,01	0,14 <u>+</u> 0,05
0,02-0,04	0,03	0,43+0,09
0,04-0,06	0,05	0,68+0,12
0,06-0,08	0,07	0,75+0,14
0,08-0,10	0,09	0,82 <u>+</u> 0,16
0,10-0,14	0,12	0,95 <u>+</u> 0,14
0,14-0,18	0,16	1,36+0,20
0,18-0,22	0,20	0,93+0,20
0,22-0,28	0,25	0,90+0,21
0,28-0,34	0,31	0,76 <u>+</u> 0,25
0,34-0,40	0,37	0,81 <u>+</u> 0,37

Чтобы сравнить дифференциальные сечения реакций на углероде и водороде, на рис.3 приводятся данные для водорода, взятые из работы^{/ 11/}/кривая /2//. Из рисунка видно, что при $t \rightarrow 0$ минимум в дифференциальном сечении для реакции /1/ выражен значительно сильнее, чем для реакции /2/. Аналогичный результат получен при импульсе налетающих π^- -мезонов 40 ГэВ/с^{/7/}.

Экспериментальные результаты измерений не корректировались на эффекты, связанные с разбросом по импульсу ферми-движения нуклонов в ядре. Однако оценки, полученные при моделировании t -зависимости эффективности регистрации событий, показывают, что учет движения нуклонов в ядре приводит к некоторому размытию распределений кинематических параметров реакции, но в пределах статистических ошибок не влияет на форму кривой /1/.

4.2. Экспериментальное определение $Z^{C}_{3\Phi\Phi}$

В теории многократного дифракционного рассеяния $^{/15-17/}$ вводится понятие эффективного числа протонов /нуклонов/ в ядре $Z_{3\phi\phi}$, а дифференциальное сечение реакции на ядре в некотором приближении описывается формулой:

$$(d\sigma/dt)_{\text{sdpo}} = (d\sigma/dt)_{\text{H}} \cdot Z_{3\varphi\varphi} (A, \sigma_1, \sigma_2),$$
(3/

где $(d\sigma/dt)_{\rm Ядро}$ - сечение реакции на ядре, $(d\sigma/dt)_{\rm H}$ - сечение реакции на свободном протоне, σ_1 и σ_2 - соответственно сечения взаимодействия налетающих и рожденных частиц с нуклонами ядра, А - массовое число. В предположении, что $Z_{3\varphi\varphi}(t) = {\rm const.}$ экспериментальное определение $Z_{3\varphi\varphi}$ для данного ядра сводится к задаче сравнения сечений реакции на ядре и на водороде в заданном диапазоне переданных 4-импульсов. Такая простая зависимость сечений имеет место в случае, если пренебречь многократным перерассеянием на нуклонах ядра налетающей и рожденной частиц, что справедливо лишь для событий со сравнительно малыми переданным 4-импульсами. С другой стороны, при очень малых значениях |t| на амплитуду реакции рождения частиц на ядрах начинают влиять принцип Паули и спин-изоспиновая зависимость, что приводит к уменьшению $(d\sigma/dt)_{\rm ядро}$ при $t \to 0^{/8}$.

Поэтому для определения эффективного числа протонов в ядре углерода $Z^{C}_{\Theta \varphi \varphi}$, мы сравнивали наши данные по сечениям реакций на углероде и водороде, проинтегрированные в диапазоне $0,1 \leq -t \leq 0,4$ /ГэВ/с/². Полученное значение для $Z^{C}_{\Theta \varphi \varphi}$, равно:

$$Z_{3\phi\phi}^{C} = \frac{\sigma^{C}(0,1 \le -t \le 0,4)}{\sigma^{H}(0,1 \le -t \le 0,4)} = 3,2 \pm 0,7.$$
 (4/

Для более наглядной иллюстрации различий в поведении дифференциальных сечений реакции рождения η -мезонов на углероде и водороде при t \rightarrow 0, на рис.3 приводится штрих-пунктирная кривая, полученная, согласно выражению /3/, умножением дифференциального сечения реакции на водороде /кривая /2// на $Z_{0,0,0}^{C}$ = 3,2.

В опубликованных ранее работах авторы приводят значения $Z_{,9\varphi\varphi}$, определенные без учета структуры дифференциальных сечений при

 $-t \leq 0,1$ /ГэВ/с/². Для сравнения полученного значения $Z_{9\phi\phi}^{C}$ с результатами других экспериментов /см. табл.2/ $Z_{9\phi\phi}^{C}$ было вычистиено в диапазоне $0 \leq -t \leq 0,5$ /ГэВ/с/²: $Z_{9\phi\phi}^{C}$ /0+0,5/ = 3,0+0,6.

-		~				<u>_</u>
ΥĽ.	aı	٦Ť	ĩu	TΤ	а.	
-	u,	-	***	щ	c.	-

						· · · · · · · · · · · · · · · · · · ·	
р _п - (ГэВ/с)	3,0	3,3	7,82	40,0	40,0	48,0	
<mark>zс</mark> эфф 0≼-t≰0,5 (ГэВ/с) ²	2,7 <u>+</u> 0,1	3,0 <u>+</u> 0,6 3,2 <u>+</u> 0,7 /*/	3,3 <u>+</u> 0,4 /**/	2,7 <u>+</u> 0,7	3,15 <u>+</u> 0,06	3,7 <u>+</u> 0,3 /***/	
Ссылка	3.	данная работа	2.	6.	7.	4.	
/*/ $0, I \leq -t \leq 0, 4 (\Gamma \circ B/c)^{2}$ /**/ $0, 0 \leq -t \leq 0, 75 (\Gamma \circ B/c)^{2}$ /**/ $0, 0 \leq -t \leq 2, 0 (\Gamma \circ B/c)^{2}$							

Рис.4. Зависимость $Z_{9\phi\phi}^{C}$ от t для реакции $n A_7 \rightarrow \eta A_{7-1}$ на ядре углерода при импульсе пионов 3,3 ГэВ/с.

На рис.4 приведена t-зависимость значений $Z_{3\phi\phi}^{C}$, определенных на основании /3/, по данным для углерода и водорода, в диапазоне переданных 4-импульсов $0 \le -t \le 0, 4$ /ГэВ/с/² На том же рисунке указаны уровни постоянных значений $Z_{3\phi\phi}^{C}$. = 3,2 и 3,0. Видно, что предположение $Z_{3\phi\phi}^{C}$ (t) = const, существенное для экспериментального определения числа нуклонов в ядре, сильно нарушается в области $-t \le 0, 1$ /ГэВ/с/².

5. ЗАКЛЮЧЕНИЕ

Представленные в работе результаты экспериментального исследования реакции /1/ на ядрах углерода при импульсе пионов 3,3 ГэВ/с сравниваются с результатами, полученными ранее на той же установке для реакции на свободных протонах /2/. В дифференциальном сечении реакции /1/, измеренном в интервале $t_{MИH} \leq -t \leq \leq 0,4$ /ГэВ/с/², обнаружен минимум в переднем направлении, который в области $-t \leq 0,2$ /ГэВ/с² проявляется значительно сильнее, чем для реакции на водороде. Анализ структуры дифференциальных сечений позволил определить область переданных импульсов, в которой, в рамках глауберовского подхода к теории процессов рождения частиц на ядрах, вычисление эффективного числа протонов в ядре $Z_{3\phi\phi} = \sigma (\pi^{-}A_{Z^{-1}})/\sigma (\pi^{-}p \rightarrow \eta n)$ является более корректным. Найдено значение $Z_{3\phi\phi}^{-} = 3, 2\pm 0, 7,$ согласующееся в пределах экспериментальных ошибок с результата: ми при других энергиях.

В заключение авторы пользуются случаем, чтобы поблагодарить А.М.Балдина за поддержку и внимание, В.И.Иванова, В.А.Крамаренко, В.И.Прохорова, Б.М.Старченко за участие в измерениях и В.М.Изъюрова за помощь в фитировании экспериментальных данных на ЭВМ.

ЛИТЕРАТУРА

- 1. Зайцев Ю.М. В сб.: Элементарные частицы. Атомиздат, М., 1975, вып.1, с.45.
- 2. Guisan O. et al. Nucl.Phys., 1971, B32, p.681.
- 3. Caldwell D.O. et al. Preprint Univ. of California, 1973; II Aix-en-Provance Int.Conf. on Elementary Particles, contributed paper. Journ.de Phys., 1973, 34, C1-503.
- 4. Болотов В.Н. и др. ЯФ, 1974, 20, с.949.
- 5. Бармин В.В. и др. Препринт ИТЭФ, № 22, М., 1977.
- 6. Апокин В.Д. и др. ЯФ, 1982; 35, с.382.
- /. Апокин В.Д. и др. Препринт ИФВЭ № 82-48, Серпухов, 1982.
- 8. Коротких В.Л. Рождение резонансов на ядрах пионами высоких энергий. Изд-во МГУ, М., 1973.
- 9. Аверичев С.А. и др. ПТЭ, 1979, № 4, с.57.
- 10. Аствацатуров Р.Г. и др. ЯФ, 1978, 27, с.401.
- 11. Arkhipov V.V. et al. JINR, E1-11596, Dubna, 1978.
- 12. Мелкумов Г.Л., Хачатурян М.Н. ОИЯИ, 10-8170, Дубна, 1974.
- 13. Мелкумов Г.Л., Хачатурян М.Н. ОИЯИ, 10-7960, Дубна, 1974.
- 14. Мелкумов Г.Л. ОИЯИ, 1-13014, Дубна, 1979.
- 15. Kolbig K.S., Margolis B. Nucl. Phys., 1968, B6, p.82.
- 16. Глаубер Р. УФН, 1971, 103, с.641.
- 17. Геворкян С.Р. и др. ОИЯИ, Р2-6581, Дубна, 1972.

Архипов В.В. и др. P1-82-887 Дифференциальное сечение рождения η -мезонов на углероде π^- -мезонами при импульсе 3,3 ГэВ/с

Представлены результаты экспериментального исследования реакции $\pi^-A_Z \to \eta A_{Z-1}, \eta \to \gamma\gamma$ на ядре углерода при импульсе пионов 3,3 ГэВ/с. Дифференциальное сечение $d\sigma/dt$ этой реакции в области квадратов переданных 4-импульсов $t_{MHH} \leq -t \leq 0, 4/\Gamma$ эВ/с/² сравнивается с дифференциальным сечением реакции на свободном протоне, измеренным при том же импульсе пионов. В дифференциальном сечении в области $-t \leq 0, 1/\Gamma$ эВ/с/² обнаружен минимум, который для углерода проявляется значительно сильнее, чем в реакции $\pi^-p \to \eta$ п. Сравнением сечений двух реакций в рамках теории многократного дифракционного рассеяния определено эффективное число протонов в ядре углерода $Z_{9 d \Phi}^{C}$.

Работа выполнена в Лаборатории высоких энергий ОИЯИ.

Преприна Объединскиюто института вдерных исспедований Дубна 1982

Arkhipov V.V. et al. P1-82-887 Differential Cross Section of η Production on Carbon in π^- -Beam at 3.3 GeV/c

 $\pi^-A_{Z^+}\eta A_{Z-1}$ differential cross section has been measured on carbon nuclei at 3.3 GeV/c beam momentum in range of -t from t_{min} to -0.4 (GeV/c)² The results are compared with the previous ones, obtained during the measurements of the reaction $\pi^-p \to \eta n$ with liquid-hydrogen target. In the differential cross section for the reaction on carbon a minimum in the forward direction, much deeper than for hydrogen was observed. In the framework of incoherent particle production theory the measured effective number of protons in carbon nuclei is Z_{eff}^{C} = 3.2+0.7. The experimentally determined Z_{eff}^{C} (t) -dependence for 0 < -t < 0.4 (GeV/c)² is presented.

The investigation has been performed at the Laboratory of High Energies, JINR.

Preprint of the Joint Institu

Перевод О.С.Виноградовой.

А