

351

СООБЩЕНИЯ Объединенного института ядерных исследований дубна

14/1-83

P1-82-689

Б.Словинский, В.Чай, С.Пржибышевска-Чай*

ПОПЕРЕЧНОЕ РАЗВИТИЕ ЭЛЕКТРОННО-ФОТОННЫХ ЛИВНЕЙ, ОБРАЗОВАННЫХ ГАММА-КВАНТАМИ С ЭНЕРГИЕЙ Е у = (60-3000) МэВ

Институт физики Варшавского технического университета

1. ВВЕДЕНИЕ

Наряду с характеристиками продольного развития электроннофотонных ливней /ЭФЛ/, инициируемых гамма-квантами в плотных средах, большой практический интерес вызывают поперечные размеры ЭФЛ, т.е. размеры ЭФЛ в направлении, перпендикулярном направлению полета первичного гамма-кванта, или, что то же, направлению оси развития ливня /ОЛ/. Если от свойств распределения ливней вдоль ОЛ зависит, главным образом, точность определения энергии гамма-квантов, то поперечные размеры ЭФЛ накладывают ограничения на угловое разрешение детектора электромагнитного излучения высоких энергий. Последнее обстоятельство весьма существенно при изучении процессов множественного образования π° -мезонов и других частиц, распадающихся с участием гаммаквантов в конечном состоянии, а также при исследовании космических лучей.

Из-за больших расчетных и методических трудностей в настоящее время вопрос о поперечном развитии ЭФЛ далек от завершения^{/1/}. Лишь численным моделированием электромагнитного каскадного процесса по методу Монте-Карло можно получить достаточно подробные и надежные сведения о поперечных размерах ЭФЛ, хотя и этому методу свойственны существенные ограничения ^{/1,2/}.

В разрабатываемой нами феноменологической модели пространственного распределения ионизационных потерь ливневых электронов в $9\phi \Pi^{/2,3'}$ была введена функция распределения плотности средних ионизационных потерь на расстоянии ρ /в пространстве/ от 0Л, которую можно записать в следующем виде распределения условной вероятности:

$$F_{2}(E_{\gamma}, E_{0}, t | \rho) = \frac{1}{2\pi\sigma^{2}} \exp(-\frac{\rho^{2}}{2\sigma^{2}}), \qquad (1/2)$$

где E $_{\gamma}$ - энергия гамма-кванта, вызвавшего ливень, E $_0$ - энергия обрезания ливневых электронов,

$$\sigma = \mathbf{m} \left(\mathbf{E}_{\gamma}, \mathbf{E}_{0} \right) \mathbf{t} + \mathbf{b} \left(\mathbf{E}_{\gamma}, \mathbf{E}_{0} \right), \qquad /2/$$

t - глубина развития ливня, отсчитываемая от точки конверсии первичного гамма-кванта, вдоль ОЛ, m и b - параметры, подбираемые по экспериментальным данным. Формула /1/ удовлетворительно описывает зависимость от ρ плотности вероятности средних ионизационных потерь ливневых электронов на глубине t, в интервале значений энергии \mathbf{E}_{γ} =/65-2000/ МэВ^{/3/}, причем статистически обеспеченным в достаточной степени следует считать интер-

1

вал с верхней границей Е $\gamma \leq 1000$ МэВ. Целью настоящей работы является дальнейшее изучение, на увеличенной статистике экспериментального материала, поперечного развития ЭФЛ в интервале значений энергии Е γ =/60-3000/ МэВ.

ЭКСПЕРИМЕНТАЛЬНЫЙ МАТЕРИАЛ

Как и в более ранних работах $^{/2-4/}$, в качестве исходного экспериментального материала использованы снимки с ксеноновых пузырьковых камер /КПК/ ОИЯИ и ИТЭФ /Москва/. В результате просмотра снимков было отобрано 2045 случаев ЭФЛ, удовлетворяющих соответствующим критериям. В каждом отдельном случае измерялись, в плоскости проекции снимка, т.наз. частичные суммарные пробеги ливневых электронов, $\Delta\Sigma r_e(E_{\gamma},E_0,t,p)/\Delta t \Delta p$, наблюдаемые в прямоугольных клетках растра с координатами (t.t- Δt) вдоль ОЛ и (p, p – Δp) - в направлении, перпендикулярном ОЛ, причем было принято, что $\Delta t = 2\Delta p = 0,588$ рад.ед жидкого ксенона, т.е. 23,8 мм *.

По измеренным значениям $\Delta \Sigma \mathbf{r}_{e} (\mathbf{E}_{\gamma}, \mathbf{E}_{0}, \mathbf{t}, \mathbf{p}) / \Delta t \Delta \mathbf{p}$ определялись т.наз. частичные суммарные ионизационные потери электронов лавин, $\Delta e (\mathbf{E}_{\gamma}, \mathbf{E}_{0}, \mathbf{t}, \mathbf{p}) / \Delta t \Delta \mathbf{p}$, в плоскости проекции, которые затем пересчитывались, как и ранее ^{/3-5/}, по отношению к трехмерному пространству, на основе свойства осевой симметрии ЭФЛ. Итак, если обозначить функцию плотности вероятности распределения - в плоскости проекции снимка - средних ионизационных потерь ливневых электронов на глубине t развития ливня, в направлении, перпендикулярном ОЛ, через $f_{2}(\mathbf{E}_{\gamma}, \mathbf{E}_{0}, t | \mathbf{p})$, то

$$f_{2}(E_{\gamma}, E_{0}, t | p) = \frac{\Delta e(E_{\gamma}, E_{0}, t, p)}{\Delta t \Delta p} / \sum_{p} \left(\frac{\Delta e(E_{\gamma}, E_{0}, t, p)}{\Delta t \Delta p} \right) \Delta p, \qquad /3/$$

где частичные ионизационные потери $\Delta {f e}$ усреднены по всей выборке ЭФЛ, соответствующей данному энергетическому интервалу

значений
$$E_{\gamma} \pm \frac{1}{2} \Delta E^{/2-5/}$$
. Таким образом, функция /3/ нормиро-

вана на единицу при каждом значении глубины t. Пространственным отображением этой функции будет функция $F_2(E_{\gamma}, E_0, t|\rho)$ плотности средних ионизационных потерь ливневых электронов в кольце радиусом ρ и толщиной $\Delta \rho$, на глубине t развития ЭФЛ. В случае справедливости гипотезы о том, что $f_2(E_{\gamma}, E_0, t|p)$ есть гауссово распределение,

 $\mathbf{f}_{2}(\mathbf{E}_{\gamma}, \mathbf{E}_{0}, \mathbf{t} | \mathbf{p}) = \mathbf{N}(0; \sigma^{2}), \qquad (4/4)$

конкретный вид функции $F_2(E_\gamma, E_0, t|\rho)$ дается выражением /1/. Более подробно экспериментальная процедура описана в /4,5/.

ФУНКЦИЯ ПЛОТНОСТИ СРЕДНИХ ИОНИЗАЦИОННЫХ ПОТЕРЬ

Детальный статистический анализ экспериментальных данных, выполненный на увеличенном экспериментальном материале, показал, что аппроксимация /4/ хорошо описывает результаты измерений средних ионизационных потерь ливневых электронов вплоть до значения энергии Е, гамма-квантов, образующих ЭФЛ. $E_{\nu} \lesssim 700$ МэВ. При больших значениях энергии E_{γ} в развитии каскадного электромагнитного процесса часть энерговыделения в виде ионизационных потерь ливневых электронов распределена внутри конуса с большим углом раствора, чем это следовало бы из формулы /1/. Вместе с тем остальная доля ионизационных потерь сосредоточена, как и при Еу≲700 МэВ, вблизи оси лавины, т.е. внутри конуса с углом раствора $\phi \simeq 2 \arctan (E_{\nu}, E_0)$. Такая картина характерна для интервала значений глубины t развития ЭФЛ вблизи положения t_{макс}максимума ливня. При t<t_{макс}существенно преобладает приосевая коллимация /ПК/. При больших значениях t процесс ЭФЛ развивается почти исключительно неколлимированным образом /НСР/. В связи с этим в качестве функции $f_2(E_{\gamma}, E_0, t|p)$ поперечного развития ливней целесообразно принять суперпозицию двух нормальных распределений:

$$f_2(E_{\gamma}, E_0, t | p) = A_0 \{ N(0; \sigma_1^2) + a N(0; \sigma_2^2) \},$$
 (5/

где в силу нормировки $2\int f_{0}(E_{y},E_{0},t|p)dp = 1$

$$A_{0} = \frac{1}{\sqrt{2\pi}} \frac{1}{\sigma_{1} + a \sigma_{2}} .$$
 /6/

Здесь σ_1 и σ_2 означают дисперсии, соответствующие процессам НСР и ПК, а определяет долю ПК в ЭФЛ. Численные оценки параметров σ_1 , σ_2 и а подбираются при статистическом анализе гипотезы /5/ по экспериментальным данным.

На основании выполненных расчетов можно сделать вывод о том, что на уровне значимости в среднем не ниже 0,6 нет основания для отклонения гипотезы /5/ в интервале значений $E_y = /700-3000/$ МэВ и интервале значений глубины t от 2 до ~9 рад.ед.

В качестве конкретного вида зависимости σ_1 и σ_2 от t приняты, как и ранее $^{/2-4/}$, линейные функции:

$$\sigma_{1} = m_{1} (E_{\gamma}, E_{0}) t + b_{1} (E_{\gamma}, E_{0}), \qquad /7/$$

$$\sigma_{2} = m_{2} (E_{\gamma}, E_{0}) t + b_{2} (E_{\gamma}, E_{0}).$$
(8)

Вероятность такой параметризации дисперсий σ_1 и σ_2 составляет, в среднем, 0,52 и 0,62 соответственно. Тем не менее следует отметить, что из-за больших флуктуаций ионизационных потерь в конце ливня численные оценки величин σ_1 и σ_2 сильно разбросаны при больших значениях $t/t \ge 7$ рад.ед./. Это в свою очередь означает, что для более надежного определения зависимости

- 3

^{*} Это равенство: $\Delta t = 23,8$ мм, а также $\Delta p = 11,9$ мм в жидком ксеноне, исправляет соответствующую опечатку в $^{/8/}$, с. 1231.

дисперсий σ_1 и σ_2 от t необходимо располагать достаточно большими выборками случаев ЭФЛ /несколько сот и выше/. По аналогичной причине можно лишь приблизительно оценить зависимость параметров m_i и b_i /i =1; 2/ функций /7/ и /8/ от энергии E_{γ} . Наиболее предпочтительными оказались следующие аппроксимации:

$$m_1(E_{\gamma}, E_0) = /0,047 \pm 0,023 / \pm /3,6 \pm 1,1 / \cdot 10^{-5} E_{\gamma},$$
 /9/

 $b_1(E_{\gamma},E_0) = 0,996\pm0,309,$ /10/

 $m_2(E_{\gamma}, E_0) = 0,042\pm0,013,$ /11/ $b_2(E_{\gamma}, E_0) = 0,46\pm0,10.$ /12/

Здесь Е_у выражено в МэВ, t - как и ранее, в единицах, равных

0,588 ра́д.ед. Зависимости от \mathbf{E}_0 величин m_i и b_i /i=1; 2/ при достигнутой точности эксперимента не наблюдается.

Доля а коллимированного приосевого выделения средних ионизационных потерь уменьшается с ростом t. В качестве функции, аппроксимирующей зависимость a от t, принято соотношение: -

$$a = A t^{-B}$$
, /13/

где параметры A и B в общем случае могут зависеть от E_y и E_0 . Значение, тестовой статистики χ^2 для гипотезы /13/ оказалось равным χ_n^2/n =1,5/7. При этом численные оценки величин A и B равны: A =83+51, B =1,42+0,10. Значительные ошибки численных значений этих параметров обусловлены, как уже упоминалось ранее, большими флуктуациями ионизационных потерь в конце ЭФЛ.

Итак, установив соотношения /5/-/13/, мы полностью определили функцию $f_2(E_\gamma, E_0, t|p)$ условной вероятности распределения средних ионизационных потерь ливневых электронов, наблюдаемых в плоскости снимка в направлении, перпендикулярном ОЛ. Чтобы получить соответствующую функцию $F_2(E_\gamma, E_0, t|\rho)$ плотности вероятности в плоскости, перпендикулярной ОЛ, воспользуемся сле́дующим преобразованием ^{/2/}:

$$f_2(E_\gamma, E_0, t | p) = 2 \int_p^{\infty} F_2(E_\gamma, E_0, t | \rho) \frac{d\rho}{\sqrt{1 - p^2 / \rho^2}}$$
 (14/

Решением интегрального уравнения /14/, где $f_2(E_{\gamma}, E_0, t|p)$ дано выражением /5/, является искомая функция:

$$\mathbf{F}_{2}(\mathbf{E}_{\gamma}, \mathbf{E}_{0}, t | \rho) = \frac{1}{2\pi (\sigma_{1} + \mathbf{a}\sigma_{2})} (\frac{1}{\sigma_{1}} e^{-\rho^{2}/2\sigma_{1}^{2}} + \frac{a}{\sigma_{2}} e^{-\rho^{2}/2\sigma_{2}^{2}}). \quad /15/$$

Эта функция полностью определяет поперечное развитие ЭФЛ, вызванных гамма-квантами с энергией E_{γ} от ~700 МэВ по крайней мере, до3 ГэВ. В интервале значений $E_{\gamma} = /65-700/$ МэВ поперечное распределение средних ионизационных потерь ливневых электронов описывает функция /2/. Так как дисперсия σ_1 неколлимированного стохастического развития в среднем не менее, чем в 2,5 раза, превышает дисперсию σ_2 , соответствующую приосевой коллимации ионизационных потерь, то поперечные размеры ЭФЛ будут определяться в основном процессом НСР. Из формулы /15/, а также соотношений /9/-/12/,можно получить вид поверхности, ограничивающей объем,внутри которого выделяется в среднем доля A(0 < A < 1) ионизационных потерь при каждом значении глубины t развития ливня. Этот объем представляет собой фигуру вращения /вокруг ОЛ/, сечением которой в плоскости, перпендикулярной ОЛ, является круг радиусом ρ , при каждом значении t. Поскольку функция /15/ нормирована на едини-

цу, т.е. $2\pi \int_{0}^{r} F_2(E_{\gamma}, E_0, t|r) r dr = 1$, то вид кривой вращения определяется зависимостью $\rho = \rho(E_{\gamma}, E_0, A|t)$, вытекающей из уравнёния

$$A = 2\pi \int_{0}^{\rho} F_{2}(E_{\gamma}, E_{0}, t | r) r dr = 1 - \frac{\sigma_{1} e^{-\rho^{2}/2\sigma_{1+a}^{2} \sigma_{2} e^{-\rho^{2}/2\sigma_{2}^{2}}}{\sigma_{1} + a \sigma_{2}} \cdot \frac{16}{\rho^{2}}$$

Поскольку в интервале значений энергии $E_{\gamma} = /700-2000/$ МэВ отношение $\sigma_1/\sigma_2 \ge 2,5$ и увеличивается с ростом $E_{\gamma}/при E_{\gamma=3}$ ГэВ $\sigma_1/\sigma_2 \ge 3/$, то для приблизительных оценок формулу /16/ можно упростить, пренебрегая членом с $e^{-\rho \frac{2}{2}\sigma_2^2}$. В результате получается, что

$$A = 1 - \frac{\sigma_1}{\sigma_1 + a\sigma_2} e^{-\rho^2/2\sigma_1^2}.$$
 /17/

В простейшем случае, если принять, что $\sigma_1 = 2,5$ σ_2 и $a = \overline{a} = -7,5+0,5$, то из формулы /16/ следует, что внутри конуса с углом раствора

$$\phi = 2 \arctan m_1, \qquad /18/$$

осью, лежащей на ОЛ и вершиной в точке, находящейся на ОЛ на расстоянии

 $\tau = b_1 / m_1$ /19/

до точки конверсии гамма-кванта, инициирующего ливень, содержится в среднем доля $A_{\pm}0,85$ суммарных ионизационных потерь электронов лавины. Угол ϕ / $A_{\pm}0,85$ / раствора конуса, в котором выделяется в среднем $A_{\pm}0,85$ суммарных ионизационных потерь в ливне, увеличивается с ростом энергии E_y гамма-кванта, создающего ливень. Положение τ вершины этого конуса все более приближается к точке конверсии первичного гамма-кванта. Численные оценки величин ϕ / $A_{\pm}0,85$ / и τ для нескольких значений E_y приведены в таблице.

Следует подчеркнуть, что вследствие значительных ошибок, с которыми определены аппроксимации /9/-/12/, численные значения величин $\phi/A_{a}0,85/$ и τ имеют в основном оценочный характер.

Таблица

Численные оценки угла раствора $\phi/A \le 0,85/$ и положения *г* на ОЛ вершины конуса, внутри которого выделяется в среднем доля $A \ge 0,85$ суммарных ионизационных потерь в ливне, вызванном гамма-квантом с энергией E_{γ}

Еγ /ГэВ/	ф /A <u>_</u> 0,85/, град	-т /рад.ед./*		
0,7	8 +3	8,1+2,6		
1	10 +3	7,0+2,3		
2	14 +4	4,9+1,5		
3	18 <u>+</u> 6	3,8+1,2		
10	44 <u>+</u> 12	1,4 <u>+</u> 0,4		

*Знак "-" означает, что вершина конуса находится раньше точки конверсии первичного гамма-кванта на ОЛ.

выводы

На основании выполненных в настоящей работе исследований поперечного распределения ионизационных потерь ливневых электронов в ЭФЛ, вызываемых гамма-квантами с энергией $E_{\gamma} = /60-3000/$ МэВ, можно сделать следующие заключения:

ŧ,

1. Условное распределение плотности вероятности средних ионизационных потерь в плоскости, перпендикулярной 0Л, удов- $_{\rm }$ летворительно описывает функция /1/ в интервале ${\rm E_y}$ =/65-700/МэВ.

2. При значениях энергии $E_{\gamma} \geq 700$ МэВ в поперечном развитии ЭФЛ можно заметить, что преобладающая часть ионизационных потерь сосредоточена вблизи оси ливня, в то время как относительно небольшая их доля распределена со значительно большей дисперсией. Условное поперечное распределение средних ионизационных потерь в этом интервале энергий, т.е. при E_{γ} =/700-3000/ МэВ, удовлетворительно описывает функция /15/.

ЛИТЕРАТУРА

- 1. Иваненко И.П. Электромагнитные каскадные процессы. Изд-во МГУ, М., 1972.
- Словинский Б. В кн.: Математическое моделирование в ядернофизических исследованиях. ОИЯИ, Д10-11-81-622, Дубна, 1981, с. 178.

3. Словинский Б., Чай В. Изв. АН́ СССР, сер.физ., 1981, т. 45, №7, с. 1230.

1

- 4. Банцерек А. и др. СИЯИ, Р1-81-599, Дубна, 1981.
- 5. Словинский Б., Чай В. ОИЯИ, Р1-80-341, Дубна, 1980.

Рукопись поступила в издательский отдел 18 октября 1982 года,

6

НЕТ ЛИ ПРОБЕЛОВ В ВАШЕЙ БИБЛИОТЕКЕ?

Вы можете получить по почте перечисленные ниже книги, если они не были заказаны ранее.

<u>д13-11182</u>	Труды IX Международного симпозиума по ядерной элект- ронике. Варив, 1977.	5	p.	00	к.
A17-11490	Труды Международного симпозиума по избранным пробле- мам статистической механики. Дубна, 1977.	6	p.	00	к.
A6-11574	Сборник аннотаций XV совещания по ядерной спектроско- пии и теории ядра. Дубна, 1978.	2	. p .	50	к.
A3-11787	Труды III Международной школы по нейтронной физике. Алушта, 1978.	3	p.	00	к.
Д13-11807	Труды III Международного совещания по пропорциональ- ным и дрейфовым камерам. Дубна, 1978.	6	p.	00	к.
	Труды VI Всесоюзного совещания по усморителям заря- женных частиц. Дубна, 1978 /2 тома/	7	p.	40	к.
A1,2-12036	Труды V Международного семинара по проблемам физики высоких энергий. Дубна, 1978	5	p.	00	к.
A1,2-12450	Труды XII Международной школы молодых ученых по физике высоких энергий. Приморско, НРБ, 1978.	3	p.	00	к.
	Труды VII Всесоюзного совещания по ускорителям заря- женных частиц, Дубна, 1980 /2 тома/	8	p.	00	к.
A11-80-13	Труды рабочего совещания по системам и методам аналитических вычислений на ЗВМ и их применению в теоретической физике, Дубна, 1979	3	p.	50	к.
<u>д4-80-271</u>	Труды Международной конференции по пробленам нескольких тел в ядерной физике. Дубна, 1979.	3	р.	00	к.
д4-80-385	Труды Международной школы по структуре ядра. Алушта, 1980.	5	p.	00	к.
Д2-81-543	Труды VI Международного совещания по проблемам кван- товой теории поля. Алушта, 1981	2	р.	50	к.
A10,11-81-622	Труды Международного совещания по проблемам математи- ческого моделирования в ядерно-физических исследова- ниях. Дубна, 1980	2	р.	50	к.
Д1,2-81-728	Труды VI Международного семинара по проблемам физики высоких энергий. Дубна, 1981.	3	р.	60	к.
Д17-81-758	Труды II Международного симпозиума по избранным проблемам статистической механики. Дубна, 1981.	5	p.	40	к.
Д1,2-82-27	Труды Международного симпозиума по поляризационным явлениям в физике высоких энергий. Дубна, 1981.	3	р.	20	к.
P18-82-117	Труды IV совещания по использованию новых ядерно- физических методов для решения научно-технических и народнохозяйственных задач. Дубна, 1981.	3	p.	80	к.

Заказы на упомянутые книги могут быть направлены по адресу: 101000 Москва, Главпочтамт, п/я 79 Издательский отдел Объединенного института ядерных исследований Словинский Б., Чай В., Пржибышевска-Чай С. P1-82-689 Поперечное развитие электронно-фотонных ливней, образованных гаммаквантами с энергией Е. =/60-3000/ МэВ Приведены результаты исследования распределения ионизационных потерь ливневых электронов в направлении, перпендикулярном оси развития /0Л/ электронно-фотонных лавин /ЭФЛ/, вызываемых гамма-квантами с энергией Е.= =/60-3000/ МэВ в жидком ксеноне. Получены формулы, описывающие распределение средних ионизационных потерь в плоскости, перпендикулярной ОЛ. В Зависимости от расстояния от точки конверсии гамма-кванта, инициирующего ЭФЛ, вдоль ОЛ. В качестве исходного экспериментального материала использованы снимки с ксеноновых пузырьковых камер ОИЯИ и ИТЭФ /Москва/. Работа выполнена в Лаборатории вычислительной техники и автоматизации ОИЯИ и Институте физики Варшавского технического университета. Сообщение Объединенного института ядерных исследований. Дубна 1982 P1-82-689 Słowinski B., Czaj W., Przybyszewska-Czaj S. Transversal Development of Electromagnetic Showers Produced by Gamma-Quanta within the Energy $E_v = (60-3000)$ MeV Energy Range The results of investigation of shower electron ionization losses distribubution in the direction perpendicular to the development axis (DA) of electromagnetic showers (ES) created by gamma-guanta within the E_=(60-3000) energy range in liquid xenon are presented. Formula describing the average lonization losses distribution in a plane perpendicular to the DA with respect to the distance from conversion point of ES producing gammaquanta along the DA are obtained. The investigation has been performed at the Laboratory of Computing Techniques and Automation, JINR and at the Physical Institute of the Warsaw Technical University.

Communication of the Joint Institute for Nuclear Research. Dubna 1982

Перевод О.С.Виноградовой.