

Н.С.Ангелов, Н.О.Ахабабян, В.Г.Гришин

ИЗМЕНЕНИЕ ПРОСТРАНСТВЕННО-ВРЕМЕННЫХ ХАРАКТЕРИСТИК ОБЛАСТИ ИЗЛУЧЕНИЯ ВТОРИЧНЫХ 77 - МЕЗОНОВ, ОБРАЗОВАННЫХ В ПИОН-НУКЛОННЫХ ВЗАИМОДЕЙСТВИЯХ ПРИ ИМПУЛЬСЕ 40 ГэВ/с, В ЗАВИСИМОСТИ ОТ СИСТЕМЫ ОТСЧЕТА

Направлено в журнал "Ядерная физика"

ALL STATES AND AND A STATES AND A

§1. ВВЕДЕНИЕ

В работах / 1,2/ по интерференции тождественных частиц были исследованы размеры области излучения вторичных π^- -мезонов. образованных в π^- р -, π^- п - и π^- С -взаимодействиях при 40 ГэВ/с, в различных системах отсчета. Полученные результаты показывают, что пространственно-временные характеристики области генерации вторичных частиц существенно зависят от выбранной системы координат. Для пион-нуклонных соударений: значения среднеквадратичного радиуса исследуемой области имеют минимум в системе отсчета, совпадающей с системой центра инерции взаимодействующих кварков, что в аддитивной кварковой модели можно интерпретировать как проявление кварковой структуры первичных адронов во множественных процессах. Для л С -столкновений минимум размера области генерации смещен в сторону с.ц.и. "пионнуклон", что можно объяснить значительным вкладом многокварковых взаимодействий или перерассеянием в пион-ядерных столкновениях.

Однако использование стандартного метода ^{/3,4/} определения размеров области излучения частиц с помощью переменных d =

$$= \vec{q} - (\vec{q}\vec{n}), \vec{n} \quad \mu q_0 = E_1 - E_2(\vec{q} - \vec{p}_1 - \vec{p}_2), \vec{n} - \frac{\vec{p}_1 + \vec{p}_2}{|\vec{p}_1 + \vec{p}_2|}, E_1, E_2, \vec{p}_1, \vec{p}_2 - \frac{\vec{p}_1 + \vec{p}_2}{|\vec{p}_1 + \vec{p}_2|}$$

энергии и импульсы вторичных частиц) не позволяет детально и адекватно изучить установленный эффект. В работе^{/5/} был развит теоретический аппарат для исследования интерференции тождественных частиц в движущихся системах отсчета. Показано, что можно выделить такую систему отсчета, в которой процесс множественного образования частиц имеет кинематическую симметрию, а пространственно-временные параметры области излучения вторичных частиц имеют экстремальные значения.

В настоящей работе на основе этого подхода анализируется экспериментальный материал по π N°-взаимодействиям при p = =40 ГэВ/с, зарегистрированным с помощью 2-метровой пропановой пузырьковой камеры ЛВЭ ОИЯИ /6,7/*.

§2. ИНТЕРФЕРЕНЦИЯ ТОЖДЕСТВЕННЫХ ЧАСТИЦ В РАЗЛИЧНЫХ СИСТЕМАХ ОТСЧЕТА

X

Как известно^{/8/}, некоторые асимметрии, наблюдаемые в инклюзивных распределениях вторичных частиц, образованных во множественных процессах при высоких энергиях, снимаются, если перейти в другую систему отсчета. Выделение такой "симметричной" системы может представлять определенный интерес, поскольку различные физические процессы могут обладать свойством симметрии в различных системах отсчета. Например, когда переход от одной системы к другой осуществляется вдоль оси столкновения частиц, кинематические характеристики процесса будут иметь экстремальные значения, если скорость движения источника вторичных пионов \vec{v} =0. Как показано в/5/, экстремальные свойства должны иметь и пространственно-временные характеристики области излучения вторичных частиц.

Для анализа экспериментальных данных в начальном приближении можно использовать достаточно простую модель пространственновременного распределения источников в области излучения, которая в общих чертах соответствует реальной ситуации /5/.Пусть в системе (*), в которой точечные излучатели покоятся, область излучения имеет пространственно-временные параметры, R, \tilde{R} и T, а излучатели с координатами x^* , y^* и z^* и соответствующими временами генерации r^* независимы и распределены по закону

$$\phi(\mathbf{x}^*, \mathbf{y}^*, \mathbf{z}^*) = \frac{1}{(2\pi)^{3/2} R^2 \tilde{R}} e^{-\frac{\mathbf{x}^*}{2R^2} - \frac{\mathbf{y}^*}{2R^2} - \frac{\mathbf{z}^*}{2\tilde{R}^2}}, /1/$$

$$\chi(\tau^*) = \frac{1}{\sqrt{2\pi} T} e^{-\frac{\tau^*}{2T^2}}.$$

В этом случае вероятность обнаружения пары тождественных пионов с разностью импульсов $\vec{q} = \vec{p_1} - \vec{p_2}_1$ в системе отсчета, движу; щейся с лоренц-фактором $\gamma = \frac{1}{\sqrt{1 - v^2/c^2}}$ относительно системы

(*) по направлению оси столкновения z, будет иметь вид

$$W \simeq 1 + \exp\{-q_{x}^{2}R^{2} - q_{y}^{2}R^{2} - \gamma^{2}[q_{z}(1-\beta\beta_{z}) - q_{x}\beta\beta_{x}]^{2}R^{2} - /3/ - \gamma^{2}[q_{z}(\beta-\beta_{z}) - q_{x}\beta_{x}]^{2}\rho^{2}\},$$

где $\beta_i = -\frac{v_i}{c}$, \vec{v} - скорость (π, π) -системы, $i = x,y,z, \ \rho = cT;$ здесь ось x выбрана в плоскости рождения пары , ось столкнове-

> Объединенный инстити истиных, иссля шов и

3

3. Car Bart Soll

. The second data the

2

^{*} Как показано в /2/, в пределах статистических ошибок значения определяемых величин для $\pi^- p - u \pi^- n$ -взаимодействий не отличаются друг от друга. Поэтому для увеличения статистики в дальнейшем используются все пион-нуклонные взаимодействия.

ния перпендикулярна оси z, ось у перпендикулярна плоскости $\{x, z\}$; для исследуемых нами процессов π N -взаимодействий направление импульса первичного пиона принимается за положительное направление оси z ($\beta > 0$).

Современный эксперимент из-за недостаточной статистики все еще не позволяет анализировать такие многомерные распределения, и поэтому рассматриваются пары пионов, для которых компоненты $q_k \simeq q_f \simeq 0$. Тогда из /3/ можно получить ^{/5/}:

$$W(q_{x}) = 1 + \exp\{-[R^{2} + \gamma^{2}\beta^{2}\beta_{x}^{2}\tilde{R}^{2} + \gamma^{2}\beta_{x}^{2}\rho^{2}]q_{x}^{2}\}$$
 /4/

при $q_y \simeq q_z \simeq 0;$ $W(q_y) \simeq 1 + \exp \{-R^2 q_y^2\}$ /5/

при $q_x \simeq q_z \simeq 0$;

$$W(q_{z}) \approx 1 + \exp\{-[\gamma^{2}(1 - \beta\beta_{z})^{2} R^{2} + \gamma^{2}(\beta - \beta_{z})^{2}\rho^{2}]q^{2}\}$$
 /6/

при $q_x \simeq q_z \simeq 0$.

Как видно из /4/-/6/, при выбранной ориентации координатной системы от лоренц-фактора γ зависят только пространственные компоненты в направлениях х и z. Они имеют экстремальные значения при β =0. "Поперечный" размер в направлении у не зависит от γ . В этом случае размер области излучения в направлени х всегда больше размера в направлении у или равен ему в зависимости от проявления временного фактора ρ в /4/.

Экспериментальное исследование сводится к построению и соответствующей аппроксимации одномерных распределений вида

$$R_{i}(q_{i}^{2}) = \frac{n_{\Phi}}{n} \frac{dN(q_{i}^{2})}{dN_{\Phi}(q_{i}^{2})} \simeq 1 + \lambda \exp\{-q_{i}^{2} \ell_{i}^{2}\}$$
 /7/

при $q_{k,\ell}^2 \leq \text{const}$ для различных систем отсчета, движущихся с лоренц-фактором у относительно выбранной системы (*). Фоновые распределения $\frac{1}{n_{\Phi}} dN_{\Phi}(\pi_i, \pi_j)$, как обычно, получаются из двучастичных комбинаций пионов из разных событий.

§3. РАЗМЕРЫ ОБЛАСТИ ИЗЛУЧЕНИЯ *π*⁻-МЕЗОНОВ В РАЗЛИЧНЫХ СИСТЕМАХ ОТСЧЕТА ⁻

В табл.1 и 2 представлены значения параметров ℓ_i /Фм/, полученные путем аппроксимации экспериментальных распределений функцией вида /7/ при ограничениях на $q_{k,\ell}^2 \leq 0,200$ /ГэВ/с/² и $q_{k,\ell}^2 \leq 0,020$ /ГэВ/с/², в зависимости от у системы, движущейся

Значения параметров ℓ_i /Фм/ для $\pi^- N$ -взаимодействий при $q_{k,\ell}^2 \leq 0,200$ /ГэВ/с/ 2

Y Y	lx	lz	ly
4,7	I,6 <u>+</u> 0,3	43x3	
I,8	I,5 <u>+</u> 0,3	0,9 <u>+</u> 0,2	I,I <u>+</u> 0,2
I, 5	I,7 <u>+</u> 0,3	0,8 <u>+</u> 0,4	I,I <u>+</u> 0,2
.I,2	I,8 <u>+</u> 0,3	0,8 <u>+</u> 0,I	I,2 <u>+</u> 0,2
I,I	I,9 <u>+</u> 0,4	0,8 <u>+</u> 0,I	I,4 <u>+</u> 0,3
I,05	2,0 <u>+</u> 0,4	0,8 <u>+</u> 0,I	I,5 <u>+</u> 0,3
I,02	I,9 <u>+</u> 0,4	0,9 <u>+</u> 0,I	I,4 <u>+</u> 0,2
I,00	I,8 <u>+</u> 0,3	I,İ <u>+</u> 0,2	I,3 <u>+</u> 0,2
I,02	I,9 <u>+</u> 0,4	I,3 <u>+</u> 0,2	I,3 <u>+</u> 0,2
I,05	I,8 <u>+</u> 0,3	I,4 <u>+</u> 0,8	I,3 <u>+</u> 0,2
I,I	I,9 <u>+</u> 0,4	I,4 <u>+</u> 0,2	I,3 <u>+</u> 0,2
I,2	I,8 <u>+</u> 0,4	I,3 <u>+</u> 0,2	I,3 <u>+</u> 0,2
I,5	I,6 <u>+</u> 0,3	I,0 <u>+</u> 0,I	I,2 <u>+</u> 0,2
I,8	I,6 <u>+</u> 0,3	0,9 <u>+</u> 0,I	I,2 <u>+</u> 0,2
4,7	I,5 <u>+</u> 0,2		I,2 <u>+0</u> ,2
$\langle \lambda_i \rangle$	0,20 <u>+</u> 0,04 [¥]	0 ,23<u>+</u>0,03	0,18 <u>+</u> 0,02 ^{***}

^{**R**} Kpome λ (4,7) =0,33+0,05.

ъж Кроме λ(4,7) =0,30+0,05.

Таблица 2

Значения параметров ℓ_i /Фм/ для π N-взаимодействий при $q_{k,f} \leq 0,020$ /ГэВ/с/2

Y	lx	lz	ly
4,7	I,6 <u>+</u> 0,4	I,0 <u>+</u> 0,2	0,8 <u>+</u> 0,2
I,8	I,4 <u>+</u> 0,3	0,8 <u>+</u> 0,3	0,9 <u>+</u> 0,3
I,5	I,6 <u>+</u> 0,3	0,8 <u>+</u> 0,2	0,8 <u>+</u> 0,2
1,2	I,7 <u>+</u> 0,3	0,9 <u>+</u> 0,2	0,8 <u>+</u> 0,2
I,I	I,6 <u>+</u> 0,3	0,9 <u>+</u> 0,2	I,0 <u>+</u> 0,2
I,05	I,6 <u>+</u> 0,3	I,0 <u>+</u> 0,2	I,0 <u>+</u> 0,2
I,02	I,8 <u>+</u> 0,4	I,3 <u>+</u> 0,2	1,0 <u>+</u> 0,2
I,0	I,8 <u>+</u> 0,4	I,4 <u>+</u> 0,2	2,0 <u>+</u> 0,2
I,02	I,9 <u>+</u> 0,4	2,I <u>+</u> 0,3	I,I <u>+</u> 0,2
I,05	2,I <u>+</u> 0,04	2,3 <u>+</u> 0,4	I,2 <u>+</u> 0,3
I,I	2,3 <u>+</u> 0,5	2,3 <u>+</u> 0,5	I,0 <u>+</u> 0,2
I,2	2,2 <u>+</u> 0,05	I,7 <u>+</u> 0,4	I,2 <u>+</u> 0,2
I ,5	2,0 <u>+</u> 0,4	I ,3<u>+</u>0,3	I,I <u>+</u> 0,2
I,8	I,3 <u>+</u> 0,2	I,3 <u>+</u> 0,2	I,3 <u>+</u> 0,3
4,7	I,0 <u>+</u> 0,I	I,0 <u>+</u> 0,2	I,3 <u>+</u> 0,3
<ìi>	0,48 <u>+</u> 0,05 [₩]	XX	0,33 <u>+</u> 0,04 ^{%##}

Ж Кроме λ(4,7)=0,60+0,08.

^{жж} Систематическая зависимость $\lambda_i = f(\gamma)$. ^{жж} Кроме $\lambda_{(4,7)} = 0,64+0,12$.

относительно с.ц.и. *п* N*. Несмотря на значительные ошибки ** для некоторых значений ℓ_i , видно, что "поперечная" компоне́нта ℓ_y постоянна и не зависит от y и ограничений на $q_{k,\ell}$. Другая "поперечная" компонента ℓ_x также практически постоянна, хотя при q $_{\rm v,z}^2$ < 0,020 /ГэВ/с/2 имеется некоторая зависимость от γ . Самая заметная зависимость $\ell_i = f(\gamma)$ проявляется в "продольной" компоненте ℓ_z , особенно при q $\frac{2}{x,y} \leq 0,020$ /ГэВ/с/2. При этом в обоих случаях максимум ℓ_{π} смещен относительно с.ц.и. $\pi^{-}N$ в направлении с.ц.и. кварков. Кроме этого, надо отметить, что всегда $\ell_x \geqslant \ell_v$, что указывает на явное проявление временного фактора р в процессе образования вторичных отрицательных пионов. В последних строках таблиц представлены средние значения параметра λ_i для исследуемых зависимостей, когда изменения этого параметра не больше одной стандартной ошибки; значительные отклонения, которые проявляются при больших значениях у для некоторых компонент, приведены внизу таблиц. В настоящей работе мы не будем анализировать зависимость $\lambda_i = f(\gamma)$.

§4. РАЗМЕРЫ ОБЛАСТИ ИЗЛУЧЕНИЯ "-МЕЗОНОВ, ВЫЛЕТАЮЩИХ В РАЗЛИЧНЫХ УГЛОВЫХ ИНТЕРВАЛАХ, В РАЗНЫХ СИСТЕМАХ ОТСЧЕТА

Как было отмечено в работе^{/5/}, наиболее четко особенности в зависимости $\ell_i = f(\gamma)$ проявляются при изучении интерференции пионов, вылетающих под углами $\theta(\pi, \pi) \simeq 0$ и $\theta(\pi, \pi) \simeq \pi/2$ к оси столкновения первичных адронов / $\theta(\pi, \pi) = \gamma$ гол между $\vec{p} = \vec{p}_1 + \vec{p}_2$ и осью z /. Так для пар пионов с $\theta(\pi, \pi) \simeq 0$, $\beta_z = 1$, $\beta_{x'} \simeq 0$ из /4/-/6/ получается

$$\ell_{\mathbf{z}}^2 \simeq \gamma^2 (1 - \beta)^2 (\tilde{\mathbf{R}}^2 + \rho^2)$$
⁽⁸⁾

и

Значения ℓ_i приведены для одинаковых значений у относительно системы (). При выбранной ориентации осей координатной системы и направления движения для π N -взаимодействий при 40 ГэВ/с значения у =4,7 и β <0 соответствуют л.с.к.; у =1,02 и β >0 в аддитивной кварковой модели соответствуют с.ц.и. взаимодействующих кварков.

** Следует отметить, что приведенные ошибки в определении ℓ_i в разных системах отсчета сильно скоррелированы, и поэтому на самом деле относительные изменения ℓ_i определены с меньшими ощибками.

$$\ell_{\mathbf{x}}^2 \simeq \ell_{\mathbf{y}}^2 \simeq \mathbf{R}^2$$
.

Таким образом, в этом случае лишь "продольная" компонента $\ell_{f z}$ зависит от γ , а "поперечные" компоненты ℓ_x и ℓ_y разны между собой и постоянны. Для пар пионов с $\theta(\pi, \pi) \simeq \rho/2$, $\beta_{x} \simeq 1$,

/9/

β	$ \substack{\mathfrak{l} = 0 \text{ imperse } \\ \mathfrak{l}_{\mathfrak{r}}^2 \simeq \mathfrak{R}^2 + \gamma^2 (\beta^2 \widetilde{\mathfrak{R}}^2 + \rho^2), $		/10/
	$\ell_{\rm E}^2 \simeq \gamma^2 (\tilde{\rm R}^2 + \beta^2 \rho^2) , \qquad$		-/11/
	$\ell_v^2 \simeq \mathbf{R}^2$.	<i>.</i>	/12/

В этом случае от γ зависят две компоненты, ℓ_x и ℓ_z , а попереч-

ная компонента ("-постоянна. В связи с этим анализировались экспериментальные данные для пар при пар при страни правлении при паравлении паравлении при паравлении п θ (π , π) $\leq 30^{\circ}$ и θ (π , π) \geq 150°. Полученные значения параметров в зависимости от у -фактора движения относительно системы (*) приведены в табл.3 и 4 при ограничениях на $q_{k,\ell}^2 \leq 0,200$ /ГэВ/с/ 2 и $q_{k,\ell}^2 \leq 0,020$ /ГэВ/с/ 2 соответственно. В общих чертах поведение $l_i = f(y)$ такое же, как и без ограничения на угол вылета пары пионов: примерное постоянство поперечных размеров l_x и l_y и указание на широкий максимум по l_x , котторый более заметно проявляется при q $_{x,y}^2 \leq 0,020$ /ГэБ/с/2 При

этом экспериментальные значения $\ell_{\mathbf{z}}$ достигаются в случае y > 1и β>0.

Более четкие зависимости $\ell_i = f(y)$ обнаруживаются при анализе пар пионов, летящих в интервале углов 60° ≤θ(ππ) ≤ 120,° /табл.5 и 6/. При q² (\leq 0,200 /ГэВ/с/2 поперечные компоненты

 ℓ_x и ℓ_y переходят через широкие максимумы, а продольная компо-нента ℓ_z - постоянна. В случае q $_{k,\ell}^2 \leq 0,020$ /ГэВ/с/ 2 имеется явно выраженный минимум для l x и плавный максимум для l z; компонента l, изменяется от 0,8 до 2,8 фм*.При этом экстремумы зависимостей $l_i = f(y)$ всегда смещены относительно системы (*) /c.u. π N/ в сторону $\gamma > 1$ и $\beta > 0$.

Как уже упоминалось/1,2/, минимальный размер области генерации вторичных отрицательных частиц, образованных в пион-нуклонных взаимодействиях, получается в системе отсчета, в которой отношение импульсов сталкивающихся адронов R = pp/pm=3/2. В адЗначения параметров l; /Фм/ для л N-взаимодействий при $q_{k,\ell}^2 \leq 0,200 / \Gamma э B/c/2$ для пар π^- -мезонов, летящих в угловых интервалах θ (π , π) <30 ° И θ (π , π) > 150 °

	8	lx	lz	ky	
	4,7 I,8 I,5 I,2 I,1 I,05 I,02 I,00 I,02 I,05 I,1 I,2	$I,4\pm0,2$ $I,8\pm0,3$ $2,I\pm0,4$ $2,2\pm0,4$ $2,3\pm0,5$ $2,5\pm0,6$ $2,4\pm0,4$ $2,4\pm0,5$ $2,7\pm0,5$ $2,7\pm0,5$ $2,4\pm0,5$ $2,3\pm0,4$ $2,1\pm0,4$	- 0,8±0,3 0,8±0,2 0,8±0,2 I,I±0,3 I,3±0,3 I,6±0,3 I,7±0,4 2,6±0,6 2,3±0,5 I,7±0,3 I,7±0,3 I,7±0,3 I,7±0,3	$ \frac{-}{1,0\pm0,2} \\ 1,1\pm0,3 \\ 1,1\pm0,3 \\ 1,0\pm0,2 \\ 1,0\pm0,2 \\ 1,0\pm0,2 \\ 1,0\pm0,2 \\ 1,1\pm0,3 \\ 1,0\pm0,2 \\ 0,9\pm0,2 \\ 0,9\pm0,2 \\ 0,9\pm0,2 \\ 1,0\pm0,2	
	1,5 1.8	I,9 <u>+</u> 0,3 I.4+0.3	I,4 <u>+</u> 0,2 I,0+0,2	0,9 <u>+</u> 0,2 0,8 <u>+</u> 0,2	
	4,7	I,3 <u>+</u> 0,3	0,9 <u>+</u> 0,2	0,8 <u>+</u> 0,3	
<	$\langle \lambda_i \rangle$	0,22 <u>+</u> 0,04	0,26 <u>+</u> 0,05	0 ,2 5 <u>+</u> 0,05	

^{*} К сожалению, экспериментальные ошибки в определении l; и ограниченная разрешающая способность использованной методики/7/ не позволяют более четко определить характер этих зависимостей.

Та́блица 4

١

Значения параметров $\ell_i / \Phi_M / для \pi N$ -взаимодействий при $q_{k,\ell}^2 \leq 0,020 / \Gamma$ эВ/с/² для пар π -мезонов, летящих в угло- вых интервалов $\theta(\pi,\pi) \leq 30^\circ$ и $\theta(\pi,\pi) \geq 150^\circ$

Таблица 5

Значения параметров li	/Фм/	для	η ⁻ Γ	-взаим	одействий	і при
$q_{2\rho}^2 \le 0,200 / \Gamma = B/c/^2$	для	пар 👖	r" - 1	иезонов,	летящих	в
угловом интервале 60°	≤ θ(π	$\pi, \pi) \leq 1$	120°			

				ji i	_			المحادثة الأكفية المياذ بواحديث المياذيين المهجمي
8	loc	lz	ly		Ŷ	lx	lz	ly
4,7 I,8 I,5 I,2 I,I	I,9 <u>+</u> 0,4 I,6 <u>+</u> 0,3 I,8 <u>+</u> 0,3 I,9 <u>+</u> 0,2 2,3+0,5	I,0 <u>+</u> 0,3 I,2 <u>+</u> 0,3 I,0 <u>+</u> 0,2 0,9 <u>+</u> 0,2 I,I+0,2	0,8 <u>+</u> 0,2 0,8 <u>+</u> 0,2 0,9 <u>+</u> 0,2 I,0 <u>+</u> 0,2 I,2 <u>+</u> 0,3		4,7 I,8 I,5 I,2	- I,2 <u>r</u> 0,2 I,3 <u>+</u> 0,3	- I,0 <u>+</u> 0,2 0,9 <u>+</u> 0,2	- 0,9 <u>+</u> 0,2 0,8 <u>+</u> 0,2
I,05 I,02 I,00	2,4 <u>+</u> 0,4 2,6 <u>+</u> 0,5 2,3+0,5	I,3 <u>+</u> 0,3 I,4 <u>+</u> 0,3 I.3+0.2	$1,0\pm0,2$ $0,9\pm0,2$ $0,8\pm0,2$		I,I I,05 I,02	I,2 <u>+</u> 0,2 I,2 <u>+</u> 0,3 I,3 <u>+</u> 0,3	0,9 <u>+</u> 0,2 0,9 <u>+</u> 0,2 0,9 <u>+</u> 0,I	0,8 <u>+</u> 0,2 0,8 <u>+</u> 0,2 I,2 <u>+</u> 0,3
I,02 I,05 I.I	2,6 <u>+</u> 0,6 2,4 <u>+</u> 0,5 2,5+0,5	2,2 <u>+</u> 0,6 2,3 <u>+</u> 0,6 2,3 <u>+</u> 0,6	0,8 <u>+</u> 0,2 0,8 <u>+</u> 0,2	8	I,00 I,02 I,05	I,4 <u>+</u> 0,4 I,4 <u>+</u> 0,4 2,0 <u>+</u> 0,3	I,0 <u>+</u> 0,I 0,9 <u>+</u> 0,I I,0 <u>+</u> 0,2	I,6 <u>+</u> 0,4 I,9 <u>+</u> 0,5 2,2 <u>+</u> 0,5
I,2 I,5 I,8 4,7	2,6 <u>+</u> 0,5 2,4 <u>+</u> 0,5 2,5 <u>+</u> 0,5 2,6 <u>+</u> 0,6	2;2 <u>+</u> 0,6 2,I <u>+</u> 0,5 I,9 <u>+</u> 0,3 0,9 <u>+</u> 0,3	I,0 <u>+</u> 0,2 0,8 <u>+</u> 0,2 0,8 <u>+</u> 0,2 I,3 <u>+</u> 0,4		I,I I,2 I,5 I,8 4,7	2,4 <u>+</u> 0,4 2,6 <u>+</u> 0,4 2,5 <u>+</u> 0,4 I,6 <u>+</u> 0,4	0,9 <u>+</u> 0,2 0,9 <u>+</u> 0,2 0,9 <u>+</u> 0,2 I,0 <u>+</u> 0,2	2,I <u>+</u> 0,5 I,6 <u>+</u> 0,4 0,9 <u>+</u> 0,5 0,8 <u>+</u> 0,2
(<i>λ</i> ;>	XX	0,60 <u>+</u> 0,I0 [#]	ж		$\langle \lambda i \rangle$	0,2I <u>+</u> 0,03	0,28 <u>+</u> 0,03	0,22 <u>+</u> 0,0

.

ж Кроме $\lambda(4,7) = 0,33+0,07.$ нх Систематическая зависимость $\lambda_i = f(\gamma)$.

10

Таблица 6

Значения параметров $\ell_i/\Phi_M/$ для π^- N-- взаимодействий при q $_{k,\ell}^2 \leq 0,020$ /ГэВ/с/ для пар π^- -мезонов, летящих в уг-ловом интервале $60^\circ \leq \theta(\pi,\pi) \leq 120^\circ$

Y	lsc`	lz	ly
4,6			
I,8			-
I,5	I,6 <u>+</u> 0,4	0,8 <u>+</u> 0,2	0,8 <u>+</u> 0,2
I,2	I,3 <u>+</u> 0,3	0,9 <u>+</u> 0,2	0,8 <u>+</u> 0,2
I,I	I,I <u>+</u> 0,3	0,9 <u>+</u> 0,2	0,8 <u>+</u> 0,2
I,05	I,2 <u>+</u> 0,3	0,8 <u>+</u> 0,2	0,9 <u>+</u> 0,2
I,02	I,I <u>+</u> 0,2	0,9 <u>+</u> 0,2	0,8 <u>+</u> 0,2
I,00	0,9 <u>+</u> 0,2	I ,2<u>+</u>0,2	0,8 <u>+</u> 0,2
I,02	0,7 <u>+</u> 0,I	I,6 <u>+</u> 0,3	I,I <u>+</u> 0,2
I,05	0,8 <u>+</u> 0,2	I,4 <u>+</u> 0,2	I,2 <u>+</u> 0,3
I,I	I,I <u>+</u> 0,2	I;2 <u>+</u> 0,3	I,7 <u>+</u> 0,4
I,2	2,0 <u>+</u> 0,4	0, 9<u>+</u>0, 02	2,I <u>+</u> 0,5
I , 5	2,6<u>+</u>0,5	0,8 <u>+</u> 0,2	2,I <u>+</u> 0,6
I,8	-	-	- ,
4,7	-	-	-
<7i>	*	0,50 <u>+</u> 0,06	0 ,4 5 <u>+</u> 0,I0
- i	an a		

Систематическая зависимость $\lambda_i = f(\gamma)$.

Рис.1. Значения параметров $\ell_x(_0)$, $\ell_z(\bullet)$ и $\ell_y(\Delta)$ для пар π^- -мезонов, летящих в интервале углов 60° $\leq \theta(\pi,\pi) \leq 120^\circ$ при $q_{k,\ell}^2 \leq 0,020$ /ГэВ/с/2, для

различных значений у -фактора относительно кварковой системы отсчета. Для наглядности экспериментальные значения соединены кривыми, проведенными от руки.

Рис.2. Экспериментальные значения $R(q_x^2)$ и аппроксимирующие кривые /// для поперечной компоненты ℓ_x области излучения при $q_{z,y}^2 \leq 0,020$ /ГэВ/с/² для γ (q,q) =1,0 и γ (q,q)=1,1.

дитивной кварковой модели взаимодействия частиц эта система является системой центра инерции взаимодействующих кварков. В связи с тем, что в приведенных в настоящей работе результатах экстремумы зависимостей $\ell_i = f(\gamma)$ смещены в сторону движения "вперед" / $\beta > 0$ / относительно с.ц.и. πN , некото-

рые из полученных зависимостей были пересчитаны относительно "кварковой" системы отсчета /система (qq) /. На рис.1 представлены значения параметров ℓ_1 для пар π^- -мезонов, летящих в угловом интервале $80^\circ \le \theta$ ($\pi\pi$) $\le 120^\circ$, при $q_{k,\ell}^2 \le 0,020$ /ГэВ/с/², определенные относительно этой системы (qq). Виден хорошо выраженный минимум для компоненты ℓ_x и широкий максимум для ℓ_z при γ (qq)-1. В качестве иллюстрации на рис.2 представлены экспериментальные значения отношения /7/ для компоненты ℓ_z при $q_{\gamma,z}^2 \le 0,020$ /ГэВ/с/² при двух значениях γ : γ (q,q) =1,0 и 1,1 /относительно системы (qq)/.

§5. ЗАКЛЮЧЕНИЕ

Проведенный анализ экспериментальных данных по множественному рождению л⁻⁻мезонов в пион-нуклонных взаимодействиях при импульсе 40 ГэВ/с указывает на существенную зависимость пространственно-временных характеристик области генерации вторичных частиц от рассматриваемой системы отсчета. В общих чертах установленные зависимости $\ell_i = f(\gamma)$ подтверждают теоретические предсказания, полученные в работе^{/5/}. При разных ограничениях на компоненты импульсов и углы вылета пары пионов в $\ell_i = f(\gamma)$ проявляются экстремумы, которые, как правило, смещены относительно с.ц.и. π N в сторону кварковой системы отсчета. Полученные результаты можно интерпретировать как проявление кварковой структуры взаимодействующих адронов во множественных процессах при высоких энергиях /1,2/. Отмеченный результат ($\ell_x > \ell_y$), связанный с проявлением временной компоненты в ℓ_x , вероятно, определяется существенным влиянием резонансов в рассматриваемом процессе, что было показано в предыдущих работах /9,10/.

На данном этапе исследований мы не можем дать более полной интерпретации полученных результатов. Ясно, что действительность намного сложнее, чем предположения простой модели, лежащей в основе теоретических рассмотрений. Поэтому необходимы как аналогичный анализ других типов частиц и первичных адронов, так и дальнейшие теоретические рассмотрения более конкретных моделей множественного образования частиц.

Авторы глубоко благодарны М.И.Подгорецкому за постоянный интерес к работе и стимулирующие обсуждения во время проведения исследований.

ЛИТЕРАТУРА

- 1. Ангелов Н., Ахабабян Н., Гришин В.Г. Докл. Болг.АН, 1982, 35, с. 620.
- 2. Ангелов Н., Ахабабян Н., Гришин В.Г. ОИЯИ, P1-82-334, Дубна, 1982.
- 3. Копылов Г.И., Подгорецкий М.И. ЯФ, 1972, 15, с. 392.
- 4. Kopylov G.I. Phys.Lett., 1974, 50B, p.412.
- 5. Подгорецкий М.И. ОИЯИ, Р1-82-398, Дубна, 1982.
- 6. Ангелов Н. и др. ЯФ, 1975, 21, с. 328.
- 7. Ангелов Н. и др. ОИЯИ, Р1-81-496, Дубна, 1981.
- 8. Диденко Л.А., Мурзин В.С., Сарычева Л.И. Асимметрия адронных взаимодействий. "Наука", М., 1981.
- 9. Ангелов Н. и др. ЯФ, 1982, 35, с. 76.
- 10. Ахабабян Н., Гришин В.Г., Ковальски М. ОИЯИ, 1-81-723, Дубна, 1981.

Рукопись поступила в издательский отдел 20 сентября 1982 года. Ангелов Н.С., Ахабабян Н.О., Гришин В.Г. Р1-82-559 Изменение пространственно-временных характеристик области излучения вторичных π^- -мезонов, образованных в пион-нуклонных взаимодействиях при импульсе 40 ГэВ/с, в зависимости от системы отсчета

На основе анализа экспериментальных данных по множественному образованию частиц в пион-нуклонных взаимодействиях при 40 ГэВ/с установлена зависимость параметров ℓ_i области образования вторичных π -мезонов от γ -фактора рассматриваемой системы отсчета. В установленных зависимостях $\ell_i = f(\gamma)$ проявляются экстремумы, которые смещены относительно с.ц.и. π N в сторону с.ц.и. взаимодействующих кварков, что можно интерпретировать как проявление кварковой структуры первичных адронов во множественных процессах.

Работа выполнена в Лаборатории высоких энергий ОИЯИ.

Препринт Объединенного института ядерных исследований. Дубна 1982

Angelov N., Akhababian N., Grishin V.G. P1-82-559 Dependence of Space-Time Characteristics of Radiation Region of Secondary π^- -Mesons, Produced in Pion-Nucleon Interactions at 40 GeV/c, on Reference Frame

From an analysis of the experimental data on multiparticle production in pion-nucleon interactions at 40 GeV/c a dependence of the space-time dimensions of the secondary π^- -emission region of the y factor of a given reference frame is established. The obtained dependences $\ell_i = f(\gamma)$ of the parameters ℓ_i , describing the radiation region, show up extrema, shifted from the " π -N" c.m.s. towards the c.m.s. of the collising quark. This fact may be interpreted as a manifestation of the quark structure of the primary hadrons in multiple processes.

The investigation has b High Energies, JINR.

ł

Preprint of the Joint Inst

Перевод О.С.Виноградовой.

14