

В.Г.Гришин, З.Корбел, М.М.Муминов, Л.М.Мусалова, И.Сувонов, З.Трка, Я.Тркова, П.Холан, П.Яничко

ХАРАКТЕРИСТИКИ ВТОРИЧНЫХ НЕЙТРОНОВ В $\pi^- p_-, \pi^- n_-, \pi^{-12} C$ -ВЗАИМОДЕЙСТВИЯХ ПРИ **Р=40** ГэВ/с

Направлено в журнал "Ядерная физика"

1982

1. ВВЕДЕНИЕ

Исследование взаимодействий #--мезонов с p=40 ГэВ/с с помощью 2-метровой пропановой (С 3 Н 8) пузырьковой камеры позволяет, как было показано в $^{/1/}$, получить характеристики вторичных нейтронов в $\pi^- p_-$, $\pi^- n_-$, $\pi^- ^{12} C$ -взаимодействиях.

Для этой цели среди первичных взаимодействий # - мезонов:

7	+ p	-•	X,	/1/
π -	+ n	-+	X,	/2/
π-	+ 12) +	x.	/3/

необходимо выделить каналы с образованием нейтронов:

π_	+]	р	→ n	+ ۱	X							/1;	a/

- /2a/ $\pi^{-} + \mathbf{n} \rightarrow \mathbf{n} + \mathbf{x}$.
- $\pi^- + {}^{12}C \rightarrow kn + x, \quad k \ge 1.$ /3a/

 $B^{\prime 1\prime}$ были получены данные по среднему числу нейтронов < N $_{n}$ > на одно взаимодействие. В настоящей работе на большем статистическом материале получены < м_>и импульсные спектры нейтронов. Сначала /раздел 2/ излагается процедура получения набора первичных взаимодействий /1/-/3/ и характеристик быстрых вторичных нейтронов /p > 1 ГэВ/с/ с учетом фона от других нейтральных частиц и методических поправок. В разделе 3 приводятся физические результаты.

ОБРАБОТКА ЭКСПЕРИМЕНТАЛЬНОГО МАТЕРИАЛА

Для регистрации событий /1/-/3/ и для поиска вторичных звезд, вызванных нейтральными частицами /0 - звезды/, были дважды просмотрены стереоснимки с двухметровой пропановой пузырьковой камеры, облученной пучком л -мезонов при р =40 ГэВ/с. Всего было просмотрено 37809 рабочих кадров и найдено 11651 первичное взаимодействие. Эти события были по общепринятым критериям /2/ разделены по типам N(i), где i =1,2,3 соответствует реакциям /1/, /2/, /3/ /табл.1/*.

* В*я*⁻р-взаимодействиях часть событий / ≈ 44% ^{/8/} / связана с квазисвободными протонами ядра углерода 1

Gen pay in at

80 - MURICO **БИБ**ЛЧЫ Т<u>С</u> 12

Таблица I

Тип взаимо- действия	N(i)	No(i)
<i>π</i> -ρ	5422 <u>+</u> 74	206 <u>+</u> 14
π [−] n	2036 <u>+</u> 45	64 <u>+</u> 8
J ^{- 12} C	8615 <u>+</u> 93	476 <u>+</u> 22
Все события	11651 <u>+</u> 108	587 <u>+</u> 24
		-

Статистика событий

На этих же рабочих кадрах было найдено 587 вторичных взаимодействий /0 - звезд/ с числом заряженных лучей $N_{ch} \ge 3$. Они были по типу первичного взаимодействия распределены по $N_0(i)$, i = 1, 2, 3 /табл.1/.

Для каждой вторичной нейтральной звезды измерялся полный импульс заряженных частиц (p_{ch}). Кроме того, определялась эффективная длина пробега (L) нейтральной частицы, вызвавшей 0-звезду, от первичного взаимодействия до пересечения с границей эффективной области в камере.

Полный импульс всех вторичных частиц в 0-звезде p_n оценивался по формуле

$$\mathbf{p}_{n} = 1.5 \times \mathbf{p}_{ch} \quad . \tag{4}$$

Часть 0-звезд сN_{ch}=3 /по нашим данным ≈53%/ являются столкновениями со свободными протонами. В связи с этим для них использовались экспериментальные данные по пр-взаимодействиям^{74/}:

$$\mathbf{p}_{n} = \mathbf{F}(\mathbf{p}_{ch}).$$
 (5)

Расчеты, сделанные по формуле /4/ и с использованием комбинации /4/ + /5/, дали результаты, совпадающие в пределах статистических ошибок. Поэтому в дальнейшем приводятся все данные по варианту /4/.

Среди зарегистрированных 0-звезд имеются фоновые события N $_{\rm th}(i, p_n)$:

$$N_{dr}(i, p_{-}) = N_{co}(i, p_{-}) + N_{s}(i, p_{-}),$$
 /6/

где N₍₀₎ (i, p_n) - число зарегистрированных О-звезд, вызванных нейтральными частицами, не связанными с событиями /1/-/3/, и N_S (i, p_n) - число О-звезд, вызванных взаимодействиями Λ -, K_S-,K_L - частиц / Λ - гипероны составляют $\leq 10\%$ от Λ -частиц $^{/5/}$.

Для определения $N_{(0)}(i,p_n)$ на стереоснимках без первичных взаимодействий / ~ 10000 кадров/ было найдено 39 событий типа 0-звезд. Отсюда был сделан вывод, что они составляют ~3% от N_0 .

Число звезд, вызванных нейтральными странными частицами, оценивалось по формуле

$$N_{s}(i, p_{n}) = N(i) < N'_{s}(i, p_{n}) > < Q_{s}(p_{n}) > , /7/$$

где $<N'_{S}(i, p_{n})>$ – среднее число странных частиц с импульсом p_{n} на одно взаимодействие типа і /взято из работы $^{5/}$ и $<Q_{S}(p_{n})>$ – вероятность того, что частица S с импульсом p_{n} образовала в эффективной области камеры 0-звезду с $N_{ch}>3$. Сечения взаимодействия S-частиц на водороде взяты из работ $^{6,7/}$. Для сечения взаимодействия S-частиц на углероде взято соотношение $^{8/}$:

$$\sigma_{\rm hC} = 9.7 \sigma_{\rm hH} \qquad (8/$$

Отсюда было получено число зарегистрированных нейтронов N_n' (i,p_n):

$$N'_{n}(i,p_{n}) = N_{0}(i,p_{n}) - N_{\phi}(i,p_{n}).$$
 (9/

Для определения полного числа вторичных нейтронов в /1/-/3/ были введены геометрические веса w_n:

$$w_n = 1/(1 - e^{-\ell}), \qquad \ell = L/L_n, \qquad /10/$$

где L_n - длина свободного пробега нейтрона. Величина L_n вычислялась с учетом сечений взаимодействий нейтронов с ядрами водорода $^{/4,9/}$ и с ядрами углерода /8/.

Веса w_n вычислялись для всех $N_0(i, p_n)$, и определялся средний вес $< w_n(i, p_n) >$. В результате были получены значения

$$N_{n}(i, p_{n}) = N_{n}'(i, p_{n}) < w_{n}(i, p_{n}) > .$$
 (11)

Полные числа нейтронов N_n(i) вместе с N(i) приведены в табл.2.

Полученный нами экспериментальный материал по 0-звездам позволяет ввести поправки к распределениям событий по типам первичных взаимодействий /1/-/3/.

Были найдены взаимодействия

 $\pi^- + (\mathbf{N}) \rightarrow \mathbf{p} + \mathbf{n} + \mathbf{x}, \qquad /12/$

где р - идентифицированный протон в первичном взаимодействии.

Такие события естественно отнести к взаимодействиям пионов с ядром углерода. Всего было найдено 25 взаимодействий /12/ среди реакций /1/ и 3 - среди /2/. Они составляют незначительную долю от числа событий /1/ и /2/, но с учетом веса -7% от событий /1а/ и 3% - от /2а/.

Учет двойных 0-звезд /10 событий типа /1/, /2// привел к поправке того же порядка, как события /12/. Числа первичных событий N(i) и числа нейтронов N_n (i) с учетом указанных поправок приведены в табл.2 / n -поправки/.

Кроме того, вводились поправки к распределению взаимодействий по типам і, связанные с потерями медленных протонов при

Тип взаимо-	νί	Nn (i)	1 -1	оправки	абион – Д	BICI
ценствии			(7),V	Nn(c)	NIL	Nn(i)
JI'P	5422-74	1694 <u>+</u> 220	5195 <u>+</u> 72	1467 <u>+</u> 191	5126-70	1422 <u>+</u> 185
2_5	2036+45	753 <u>+</u> 151	1993 <u>+</u> 45	716 <u>+</u> 144	1710 <u>+</u> 38	613+125

Статистика событий с учетом весов и поправок

Таблица

5030±500

8779+95

5003496

874 2±93

4878+862

8615<u>+</u>93

120

просмотре^{/1/},Числа N(i) и N_(i) с учетом этих поправок приведены в табл.2 /р -лоправки/.

3. РЕЗУЛЬТАТЫ И ВЫВОДЫ

Исходя из полученных значений N(i) и N n(i) с учетом поправок, мы определили среднее число нейтронов на одно взаимодействие:

 $< N_{n}^{f}(i) > = N_{n}(i)/N(i).$ /13/

Среднее число $< N_n^f(i) >$ на самом деле относится к быстрым нейтронам / $p_n \ge 1$ ГэВ/с/. Это связано с методикой регистрации 0-звезд / $N_{ch} \ge 3$ /. В программе обработки 0-звезд введен порог для $p_n \ge 1$ ГэВ/с. Значения $< N_n^f(i) >$ приведены в табл.3. Чтобы найти среднее число всех нейтронов на одно взаимодей-

ствие < N_n (i)>, мы должны учесть среднее число медленных нейтронов с $p_n < 1$ ГэВ/с. Из экспериментальных данных работы /10/ с учетом геометрических и методических поправок найдено

$$\frac{N(\pi^{-}n \rightarrow p + x, p_{p} < 1 \Gamma \beta B/c)}{N(\pi^{-}n)} = 9\%,$$

$$\frac{N(\pi^{-}p \rightarrow p + x, p_{p} < 1 \Gamma \beta B/c)}{N(\pi^{-}p)} = 27\%.$$

Исходя из этих данных, можно получить

$$< N_n (1) > = < N_n^{t} (1) > + 0,09$$
,
 $< N_n (2) > = < N_n^{f} (2) > + 0,27$.

Для событий /3/ предполагается одинаковый выход медленных нейтронов и протонов на одно взаимодействие. В результате получено /10/

 $\langle N_n(3) \rangle = \langle N_n^f(3) \rangle + 0.75.$

Средние значения <N_n(i)> и < P_n (i) >

	Тип взаи- одействия	$< N_n^{+}(i)>$	< N _n (i)>	$\langle P_n^{f(i)} \rangle$	<pn(i)></pn(i)>	
)	π⁻P	0,28 <u>+</u> 0,04	0,37 <u>+</u> 0,04	2,8 <u>+</u> 0,2	2 ,2 <u>+</u> 0,I	
	π ⁻ r	0,36 <u>+</u> 0,07	0,63 <u>+</u> 0,07	2,6 <u>+</u> 0,3	I,7 <u>+</u> 0,2	
	π ⁻¹² C	0,57 <u>+</u> 0,06	I,32 <u>+</u> 0,06	3,2 <u>+</u> 0,I	I,7 <u>+</u> 0,I	

4

Рис.1. Распределение нейтронов по импульсам в л ¬р -взаимодействиях при р=40 ГэВ/с.

Полные средние числа нейтронов <N (i) > приведены в табл.3. Коэффициенты перезарядки, полученные по этим данным для процессов /1/, /2/, соответственно равны

$$a (p \rightarrow n) = 0,37\pm0,04,$$

$$a (n \rightarrow p) = 0,37 + 0,07,$$

а их соотношение

$$\beta = a (p \rightarrow n) / a (n \rightarrow p) = 1,00+0,22.$$

Эти результаты находятся в хорошем согласии с данными работы $^{/1\prime}$. В работе $^{/1\prime}$ были определены средние числа быстрых протонов /p >0,7 ГэВ/с/ на одно взаимодействие $<N\frac{f}{p}(i)>$ для событий /1/ и /2/ при p=40 ГэВ/с по числу вторичных π -мезонов

Рис.2. Распределение нейтронов по импульсам в *т*-п-взаимодействиях при p=40 ГэВ/с.

 $/ < N_p^f$ (1) > = =0,40+0,04; < N_p^f (2) > =0,25+0,03/. Для сравнения данных по быстрым нуклонам используем соотношения

$$< N \frac{f}{p}(1) > = < N \frac{f}{n}(2) > ,$$

 $< N \frac{f}{n}(1) > = < N \frac{f}{p}(2) > .$

Вводя поправку в $< N_n^{\,f} \, (i) >$ на число нейтронов в интервале р $_n$ =/0,75 - 1/ ГэВ/с, получим

$$< N_{n}^{f}(1) > / < N_{n}^{f}(2) > = 0,98\pm0,21,$$

 $< N_{n}^{f}(2) > / < N_{n}^{f}(1) > = 0,86\pm0,14.$

На рис.1,2,3 приводятся полученные импульсные спектры нейтронов для π^-p_- , π^-n_- и π^- ¹²С-взаимодействий. Для интервалов импульсов $p_n = /0 \div 1/$ ГэВ/с использовались данные по протонам с $p_n < 0.7$ ГэВ/с.

7

В табл.3. приводятся средние значения импульсов быстрых нейтронов $< p_n^f(i) > и$ всех нейтронов $< p_n(i) >$.

Как и ожидалось, спектр нейтронов от перезарядки $(p \rightarrow n)$ в /1/ является более жестким, чем в /2/.

Авторы признательны участникам сотрудничества по исследованию множественных процессов на 2-метровой пропановой пузырьковой камере за полезные обсуждения и помощь в работе. Нам приятно поблагодарить лаборантов ЛВЭ ОИЯИ. кафедры ядерной физики математико-физического факультета Карлова университета /Прага/и Самаркандского государствен-HULU VHNBEDCHTETA SA просмотр и измерение снимков событий.

<u>Рис.3.</u> Гаспределение нейтронов по им пульсам в π^{-12} С -взаимодействиях при р =40 ГэВ/с.

ЛИТЕРАТУРА

Гришин В.Г. и др. ЯФ, 1979, 30, с. 1548.
 Абдурахимов А.У. и др. ЯФ, 1978, 18, с. 548.
 Бацкович С. и др. ЯФ, 1977, 25, с. 591; 1977, 26, с. 1034.
 Abdiovaliev A. et al.Nucl.Phys., 1975, B99, р. 445.
 Ангелов Н. и др. ЯФ, 1976, 24, с. 732.
 Flaminio V. et al. CERN-HERA, 79-02, Geneva, 1979.
 Benary O. et al. UCRL-20000 YN, Berkeley, 1970.
 Abdrahmanov E.O. et al. Z.Physik, 1980, C5, p.1.
 Flaminio V. et al. CERN-HERA 79-03, Geneva, 1979.
 Ангелов Н. и др. ЯФ, 1975, 21, с. 328; 1978, 28, с. 688.
 Гришин В.Г. и др. ЯФ, 1982, 36, с. 426.

Рукопись поступила в издательский отдел 8 июля 1982 года. Гришин В.Г. и др. P1-82-534 Характеристики вторичных нейтронов в $\pi^{-}p_{-}$, $\pi^{-}n_{-}$, π^{-} ¹² C взаимодействиях при p=40 ГзВ/с

Получены импульсные спектры вторичных нейтронов $/p_n \ge 1 \ \Gamma \ni B/c/$ в $\pi^- p - , \pi^- n - , \pi^{-12}C$ -взаимодействиях при $p = 40 \ \Gamma \ni B/c$ по характеристикам вторичных нейтральных звезд, вызванных нейтронами и зарегистрированных в 2-метровой пропановой пузырьковой камере. Средние значения импульсов нейтронов $< p_n > co$ ставляют: 2,2+0,1; 1,7+0,2; 1,7+0,1 $\Gamma \ni B/c$ соответственно для $\pi^- p - , \pi^- n - , \pi^{-12}C$ -соударений. Средние числа нейтронов $< N_n >$ на одно взаимодействие оказались равными: $< N_n (\pi^- p) > =$ $=0,37+0,04, < N_n (\pi^- n) > =0,63+0,07$ и $< N_n (\pi^{--12}C) > =$ =1,32+0,06.

Работа выполнена в Лаборатории высоких энергий ОИЯИ.

Препринт Объединенного института ядерных исследований. Дубна 1982

Grishin V.G. et al. Characteristics of the Secondary Neutrons in π^-p_- , π^-n_- and $\pi^{-12}C$ Interactions at p=40 GeV/c

Distributions of neutron momenta (p $_{\rm n}$ >1 GeV/c) have been obtained in $\pi^-{\rm p-}$, $\pi^-{\rm n-}$ and $\pi^{-12}\,{\rm C-interactions}$ at 40 GeV/c by means of studying secondary neutral stars induced by neutrons in 2m propane bubble chamber. The following values of the mean neutron momenta have been obtained: secondary.2,2+0,1;
1,7+0,2; 1,7+0,1 GeV/c in above mentioned reactions. The average numbers of neutrons have also been estimated: <Nn</pre> ($\pi^-{\rm p}$) > =0,37+0,04; Nn ($\pi^-{\rm 12C}$) =1,32+0,06.

The investigation has been performed at the Laboratory of High Energies, JINR.

Preprint of the Joint Institute for Nuclear Research. Dubna 1982

Перевод О.С.Виноградовой.

.