

3355/82

P1-82-343

ИССЛЕДОВАНИЕ ОЧАРОВАННЫХ БАРИОНОВ Λ_{+}^{+} , РОЖДЕННЫХ В НЕЙТРОН-УГЛЕРОДНЫХ ВЗАИМОДЕЙСТВИЯХ ПРИ ~ 58 ГэВ

Сотрудничество: Берлин-Будапешт-Дубна-

Москва-Прага-София-Тбилиси

Направлено в журнал "Ядерная физика" и на XXI Международную конференцию по физике высоких энергий /Париж, июль 1982 г./

А.Н.Алеев, В.А.Арефьев, В.П.Баландин, В.К.Бирулев, Т.С.Григалашвили, Б.Н.Гуськов, И.М.Иванченко, И.Н.Какурин, Н.Н.Карпенко, Д.А.Кириллов, И.Г.Косарев, В.Р.Крастев, Н.А.Кузьмин, Б.А.Кулаков, М.Ф.Лихачев, А.Л.Любимов, А.Н.Максимов, А.Н.Морозов, Нгуен Монг Зао, А.Е.Сеннер, Л.В.Сильвестров, В.Е.Симонов, Л.А.Слепец, М.Смижанска, Г.Г.Султанов, Г.Г.Тахтамышев, П.Т.Тодоров, Р.К.Траянов, В.Д.Чолаков, А.С.Чвыров Объединенный институт ядерных исследований, Дубна

Х.Новак, А.В.Позе, Х.-Э.Рызек, К.Хиллер Институт физики высоких энергий АН-ГДР, Берлин-Цойтен

М.В.Тошева

Высший машинно-электротехнический институт, Варна

А.С.Белоусов, Я.А.Ваздик, Е.И.Малиновский, С.В.Русаков, Ю.В.Соловьев, А.М.Фоменко, П.Н.Шарейко, Л.Н.Штарков Физический институт им. П.Н.Лебедева АН СССР, Москва

Э.Д.Молодцов

Институт ядерных исследований АН СССР, Москва

Е.А.Чудаков

Научно-исследовательский институт ядерной физики МГУ, Москва

Я.Гладки, С.Немечек, М.Новак, А.Прокеш Физический институт ЧСАН, Прага

В.Й.Заячки Высший химико-технологический институт, София

Д.Т.Бурилков, В.И.Генчев, И.М.Гешков, П.К.Марков Институт ядерных исследований и ядерной энергетики БАН, София

В.П.Джорджадзе, В.Д.Кекелидзе, Н.Л.Ломидзе, Г.И.Никобадзе, Р.Г.Шанидзе

Научно-исследовательский институт физики высоких энергий ТГУ, Тбилиси

Т.В.Гвахария

Специальное конструкторское бюро научного приборостроения АН ГССР, Тбилиси

Поиск и исследование очарованных барионов Λ_c^+ в нейтронуглеродных взаимодействиях при энергиях ~58 ГэВ^{/1,2/} продолжен с помощью спектрометра БИС-2 ^{/2,3/}, который регистрирует вторичные заряженные частицы преимущественно из фрагментационной области пучка.

В спектре инвариантных масс $K_S^{\circ} P \pi^+ \pi^-$, $K_S^{\circ} \to \pi^+ \pi^-$ и $\Lambda^{\circ} \pi^+ \pi^+ \pi^-$, $\Lambda^{\circ} \to P \pi^-$ наблюдаются узкие пики в районе массы очарованного бариона $\Lambda_c^+(2275)$ с превышением над фоном около 10 и 4 стандартных отклонений соответственно.

С использованием дифракционной модели рождения очарованных барионов найдено, что произведения сечений рождения на вероятности распадов равны: $\sigma \cdot Br(\Lambda_c^+ \to \overline{K} \circ P \pi^+ \pi^-) = /33,5+5,2/$ мкб на ядро углерода и $\sigma \cdot Br(\Lambda_c^+ \to \Lambda^\circ \pi^+ \pi^+ \pi^-) = /4,5+1,1/$ мкб на ядро углерода. Отношение вероятностей этих распадов равно 7,4+2,2. Инвариантные импульсные распределения Λ_c^+ аппроксимированы функциями $exp[-(2,7\pm0,7)\cdot P_{\perp}] \approx (1-X)^{1.5\pm0.4}$, где $P_{\perp} = -$ перпендикулярный импульс Λ_c^+ в ГэВ/с; $X = P_{\parallel}^* / P_{max}^*$; P_{\parallel}^* и P_{max}^* продольный и максимально возможный импульсы Λ_c^+ в системе центра масс падающего нейтрона и квазисвободного нуклона ядра углерода.

Первые результаты этого эксперимента опубликованы в /2/.

1. УСТАНОВКА БИС-2 И УСЛОВИЯ ЭКСПЕРИМЕНТА

Спектрометр БИС-2 расположен на канале нейтральных частиц 4H $^{/4/}$ серпуховского ускорителя. В этот канал частицы выводятся под углом 11,3 мрад относительно протонного пучка ускорителя. Пучок проходит через свинцовый гамма-фильтр толщиной 10 см, очищающий магнит и систему коллиматоров, и состоит в основном из нейтронов с малой примесью K_L^{\bullet} -мезонов /~1,5%/ и заряженных частиц /~2,5%/. Импульсный спектр нейтронов имеет максимум около 40 ГэВ/с и простирается от ~10 ГэВ/с до 70 ГэВ/с. Однако полезными в данном эксперименте были нейтроны, энергия которых выше ~40 ГэВ.

Схема расположения спектрометра показана на рис.1.

Поле спектрометрического магнита изменяло поперечную составляющую импульса заряженных частиц на 0,64 ГэВ/с. Спектрометр БИС-2 работает на линии с ЭВМ ЕС-1040. Для запуска установки требовалось, чтобы через спектрометр прошло не менее

An an an an ann an an an an an an an an a	بيستري والمستري	_ _ ·
March Harris	14 <u>5</u> 1	
$\sim 10^{-1}$		
5K5 MOTE	ξK A	

ł

Рис.1. Схема расположения аппаратуры БИС-2 на пучке нейтронов серпуховского ускорителя: А – сцинтилляционный счетчик; Т – мишень из графита Ø 5 см и толщиной 6,24 г/см² или два сцинтилляционных счетчика 4х6 см², толщиной 3 см каждый; СОМ – сцинтилляционные счетчики, окружающие мишень; РС – проволочные двухкоординатные пропорциональные камеры; МС – спектрометрический магнит; Н – сцинтилляционные годоскопы; НСС – черенковские годоскопы полного поглощения /детектор гаммаквантов и электронов/; М – монитор потока нейтронов.

4-х заряженных частиц. Условия запуска спектрометра:

- а/ (РС1 или T)_{$n \ge 1$} · (РС2)_{$n \ge 2$} · (РС6)_{$n \ge 3$} · (РС8)_{$n \ge 4$} · · (РС10 + РС11)_{$n \ge 4$} · (Н1)_{$n \ge 3$} /А, где n - число сработавших сцинтилляционных счетчиков или "полосок" в РС;
- б/ заряженные частицы должны быть как слева, так и справа от оси пучка в плоскостях PC10 + PC11 и H1.

Кинематическая область регистрации очарованных барионов ограничена величинами $P_{\perp} \lesssim 1$ ГэВ/с и $P_{\parallel} \gtrsim 25$ ГэВ/с. Второе условие приводит к тому, что Λ_{\pm}^{+} , рожденные нейтронами с энергией меньше ~40 ГэВ на квазисвободном нуклоне ядра или с X ≤ 0.4 ,

не регистрируются в данном эксперименте. В процессе набора статистики зафиксировано около 25·10⁶ взаимодействий нейтронов с ядрами углерода.

Приводимые в работе результаты относятся к анализу около 40% событий, зарегистрированных в двух сеансах, отличающихся друг от друга направлением магнитного поля в спектрометрическом магните, мишенями и некоторыми геометрическими характеристиками расположения аппаратуры БИС-2 на пучке. Это было сделано для того, чтобы оценить возможные систематические ошибки в определении массы Λ_c^+ .

2. ОБРАБОТКА ЭКСПЕРИМЕНТАЛЬНЫХ ДАННЫХ

Программами геометрической реконструкции "Вью" и "Перун" ^{/5/} были найдены траектории зарегистрированных БИС-2 заряженных частиц, определены их геометрические и кинематические характеристики, найдены кандидаты в K_8° и Λ° с вершинами в распадном объеме между мишенью и РС4. С помощью программ статистической обработки данных были найдены геометрические критерии для восстановления более сложных /многочастичных/ событий.

При анализе данных заряженным частицам приписывались табличные массы.

В спектре эффективных масс $\pi^+\pi^-$ и $P\pi^-$ отчетливо наблюдаются узкие пики около масс К° и Λ° соответственно. Поэтому за К° принимались события с инвариантными массами в районе (488:508) МэВ/с² и за Λ^- в районе (1108:1123) МэВ/с², что соответствовало примерно трем полным ширинам наблюдаемых пиков в спектрах инвариантных масс.

3. ОБНАРУЖЕНИЕ УЗКИХ ПИКОВ В СПЕКТРАХ ИНВАРИАНТНЫХ МАСС К ${}^{\circ}_{\circ}$ Р π^{+} π^{-} и Λ°_{\circ} $\pi^{+}_{\circ}\pi^{+}_{\circ}\pi^{-}_{\circ}$

В первом сеансе было зарегистрировано 5,3 миллиона взаимодействий нейтронов с ядрами углерода. Соответствующий интегральный поток нейтронов, измеренный нейтронным монитором, составил 1,85·10¹¹ нейтронов, а оцененный методом моделирования с нормировкой на полное сечение взаимодействий нейтронов с ядрами углерода - 2,52·10¹¹ нейтронов. В дальнейшем мы использовали для потока нейтронов величину 2,2·10¹¹ с систематической ошибкой 20%.

Было найдено 2379 событий, содержащих, по крайней мере, комбинацию $K_g^{\circ}h^+h^-$, и 1814 событий, содержащих комбинацию $K_g^{\circ}h^+h^-h^-$. Здесь h^{\pm} означают заряженные частицы с указанными вверху знаками зарядов. Спектры инвариантных масс этих комбинаций строились в предположении, что одна из h^+ -протон, а другие h^{\pm} – пионы.

Рис.2. Спектр инвариантных масс $K_{B}^{\circ}P \pi^{+}\pi^{-:}, K^{\circ} \rightarrow \pi^{+}\pi^{-:}$ /первый сеанс/; а/ за протон принята частица, импульс которой больше импульса второй положительно заряженной частицы, принятой за пион; б/ за протон принята частица, импульс которой меньше импульса второй положительно заряженной частицы, принятой за пион; с/ то же, что и а/, но шаг равен 15 МэВ/с².

111

1

масс КоР π+т /первый сеанс/ с кинематическими критериями отбора событий.

В работе $^{/2/}$ было показано, что в спектре инвариантных масс с положительным суммарным зарядом наблюдается (~6 стандартных отклонений от фона) узкий пик в районе массы 2260 МэB/с², а в комбинациях с отрицательным зарядом статистически обеспеченных выбросов нет.

На <u>рис.2</u> показан^{2/2} спектр инвариантных масс комбинаций с положительным суммарным знаком заряда: а/ за протон принята положительно заряженная частица с большим импульсом; б/ за протон принята частица с меньшим импульсом. В интервале масс /2240-2270/ МэВ/с² /рис.2а/ находится 244 комбинации из 224 событий. В пике находится 83 события над фоном, составляющим 161 комбинацию. Средневзвешенное значение массы в пике равно /2259+15/ МэВ/с².

На основе последующего анализа экспериментальных и моделированных событий были найдены дополнительные кинематические критерии, позволившие понизить уровень фона.

1 Проекции импульсов протона в системе покоя ($\vec{K}^{\circ}P_{\pi}^{+}\pi^{-}$) на направление полета нейтронов пучка должны быть меньше нуля, а положительно заряженного пиона – больше нуля. Этот критерий в основном отражает условия данного эксперимента и практически эквивалентен критерию 1 < P_{p} / $P_{\pi^+} \leq 2.3$ в л.с.к.

2. Телесный угол, вырезаемый импульсами протона и обоих пионов, должен быть, по крайней мере, больше 3,14 ср. Этот критерий не является отражением условий данного эксперимента. Вероятно, что он связан с характеристиками рождения и распада Λ_{a}^{+} .

На рис.3 показан спектр $K_s^{\circ}P \pi^+\pi^-$ с учетом этих критериев. Здесь в пике 68 событий над фоном, составляющим 68 комбинаций. При сравнении рис.3 и рис.2а видна существенная роль вышеприведенных кинематических критериев для подавления фона. Среднее значение массы $M(\Lambda_c^+) = /2258 + 15/$ MэB/c².

Чтобы наблюдать $\Lambda_c^+ \to \Lambda^\circ \pi^+ \pi^- \pi^-$, кроме обычных геометрических критериев использовался критерий типа 2, а именно: были отобраны только такие события, в которых в системе покоя $\Lambda^\circ \pi^+ \pi^+ \pi^-$ телесный угол, вырезаемый импульсами Λ° и обоими положительно заряженными пионами, был больше 3,5 ср. На <u>рис.4</u> показан спектр инвариантных масс $\Lambda^\circ \pi^+ \pi^+ \pi^-$, удовлетво-

4

ряющих этому условию. При массе /2277,5+7,5/ МэВ/с² виден выброс. В пике над фоном находится /21+5/ событий. Аналогичные критерии, примененные к событиям $\Lambda^{\circ}\pi^{+}\pi^{-}\pi^{-}$, не приводят к "видимым" выбросам в районе массы Λ^{+}_{a} .

Во втором сеансе проанализировано около четырех миллионов взаимодействий нейтронов с ядрами углерода.

При отборе событий использовались те же кинематические критерии, что и в первом сеансе, а геометрические соответствовали условиям второго. На <u>рис.5</u> показан спектр инвариантных масс системы $K_s^\circ P \pi^+ \pi^-$, из которого следует, что и во втором сеансе отчетливо наблюдается узкий пик /51<u>+</u>9/ событий в районе массы $M(\Lambda_r^+) = /2288+17/$ MэB/ c^2 .

Таким образом, среднее значение массы $M(\Lambda_c^+) = /2275 + 6/$ M3B/ c_s^2 что находится в хорошем согласии со средней величиной массы Λ_c^+ приведенной в обзоре свойств частиц⁷⁶⁷.

4. ОЦЕНКИ ВЕЛИЧИН СЕЧЕНИЙ РОЖДЕНИЯ, ОТНОСИТЕЛЬНЫХ ВЕРОЯТНОСТЕЙ РАСПАДА И АППРОКСИМАЦИЯ ИМПУЛЬСНЫХ РАСПРЕДЕЛЕНИЙ

Оценки величин $\sigma(nC \rightarrow \Lambda_c^+ + X) \cdot Br(\Lambda_c^+ \rightarrow \overline{K} \circ P \pi^+ \pi^-)$ и $\sigma(nC \rightarrow \Lambda_c^+ + X) \cdot Br(\Lambda_c^+ \rightarrow \Lambda^\circ \pi^+ \pi^-)$ сделаны по результатам первого сеанса. Были проведены моделирования процессов рождения Λ_c^+ , в которых ожидается рождение Λ_c^+ с большими относительными продольными импульсами:

а/ дифракционное рождение системы $R \rightarrow \Lambda_c^+ + D^-$ нейтронами на квазисвободном нуклоне ядра углерода:

 $d^2\sigma/(dt \cdot dM^2) \sim (1/M^2) \exp(\beta t),$

где М – масса системы R; t – квадрат переданного импульса от нейтрона системе R; $\beta = 6$ /ГэВ/с/ $^{-2}$. Распады R , Λ_c^+ , D⁻ разыгрывались по фазовому объему;

б/ распределение рожденных Λ_c^+ по переменной X такое же, как для $\Lambda^{\circ \ /7/}$, а по перпендикулярному импульсу $d_\sigma/d\,P_{\perp}^2$ ~ ~ $\sim exp/-3,1\cdot P_{\perp}^2$ /. При этом учитывались законы сохранения энергии и импульсов. Распад Λ_c^+ разыгрывался аналогично распаду в модели "a".

При оценке эффективности регистрации и наблюдения Λ_c^+ учитывались: импульсный спектр нейтронов пучка, геометрия спектрометра, кулоновское рассеяние частиц в веществе спектрометра, эффективность регистрации частиц РС, распад частиц в пределах спектрометра, условия триггера, эффективность программ геометрической реконструкции событий и статистического анализа данных. Величины эффективностей регистрации и наблюдения Λ_c^+ в моделях "а" и "б" получились близкими, и при оценке $\sigma \cdot Br$ использовалась средняя величина ~1·10⁻⁴ с систематической ошибкой около 30%.

Оценки произведений сечений рождения Λ_c^+ на вероятности распада по изучаемому каналу найдены из соотношения

 $\sigma \cdot Br = A \cdot N / (T \cdot N_A \cdot \Pi_H \cdot \epsilon \cdot B_1), \qquad /1/$

где А - атомный номер углерода; N - число наблюдаемых Λ_c^+ ; T - толщина мишени в г/см²; N_A - число Авогадро; ϵ - эффективность регистрации и наблюдения Λ_c^+ ; П_H - поток нейтронов пучка; В₁ - парциальные ширины распадов К° - $\pi^+\pi^-$ или $\Lambda^\circ - P\pi^-$. Подстановка соответствующих величин в соотношение /1/ приводит к $\sigma \cdot Br(\Lambda_c^+ \to \overline{K}^\circ P\pi^+\pi^-) = /33,5\pm5,2/$ мкб и $\sigma \cdot Br(\Lambda_c^+ \to \Lambda^\circ\pi^+\pi^+\pi^-) = -/4,5\pm1,1/$ мкб на ядро углерода с систематическими погрешностями ~ 50%. Найдено, что отношение вероятностей распадов

 $(\Lambda_{\rm c}^+ \rightarrow \widetilde{\rm K}^{\rm o}{\rm P}\,\pi^+\pi^-)/(\Lambda_{\rm c}^+ \rightarrow \Lambda^\circ\pi^+\pi^+\pi^-)=7,4\pm2,2\,.$

Если предположить, что $Br(\Lambda_c^+ \to \Lambda^\circ \pi^+ \pi^+ \pi^-) = /1 \div 2/\%$, как это следует из^{/6,8/}, то инклюзивное сечение рождения Λ_c^+ в нейтронуглеродных взаимодействиях при средней эффективной энергии нейтронов /58+2/ ГэВ равно /100÷36/ мкб на нуклон /для $A^{2/3}$ зависимости/ или /44÷16/ мкб на нуклон /для A-зависимости/ с систематической погрешностью ~50%.

 $F(P_{\mu}) \sim \int (1-X)^k W(S) dS$,

где W(S) - спектр нейтронов в зависимости от квадрата энергии в системе центра масс (nN). Найдено, что b = 2,7+0,7 и k = = 1,5+0,4, при этом P_1 - в ГэВ/с.

5. ОСНОВНЫЕ РЕЗУЛЬТАТЫ

1. В пС-взаимодействиях при эффективной средней энергии нейтронов 58 ГэВ наблюдено рождение очарованных барионов Λ_c^+ , распадающихся по каналам $\Lambda_c^+ \to \Lambda^\circ \pi^+ \pi^- \pi^-$ /21 событие/ и $\Lambda_c^+ \to \mathbf{K}^\circ \mathbf{P} \pi^+ \pi^-$ /134 события/.

2. Средняя масса Λ_{e}^{+} равна /2275+6/ МэВ/с².

3. Отношение вероятностей распадов

 $\Lambda_{c}^{+} \rightarrow \widetilde{K}^{\circ} P \pi^{+} \pi^{-} / \Lambda_{c}^{+} \rightarrow \Lambda^{\circ} \pi^{+} \pi^{+} \pi^{-} = 7.4 \pm 2.2.$

Наблюдаемые в эксперименте распады $\Lambda_c^+ \to \overline{K}^\circ P \pi^+ \pi^-$ содержат вклады от возможных резонансных состояний: $\overline{K}^\circ \Delta^\circ \pi^+ \to \overline{K}^\circ P \pi^+ \pi^-$ и др.

6

4. $\sigma \cdot Br(\vec{K}^{\circ}P\pi^{+}\pi^{-}) = /33,5+5,2/$ мкб на ядро углерода, $\sigma \cdot Br(\Lambda^{\circ}\pi^{+}\pi^{+}\pi^{-}) = /4,5+1,1/$ мкб на ядро углерода.

Последнее значение величины $\sigma \cdot Br$ в пересчете на нуклон показывает, что она остается на уровне величины, полученной в эксперименте $^{/8/}$ по изучению рождения Λ_c^+ в дифракционных процессах на ISR.

5. Инвариантные распределения Λ_c^+ по перпендикулярному импульсу описываются $\exp[(-2.7 \pm 0.7)P_1]$, а по продольному – $(1-X)^{1.5\pm0.4}$. Параметры этих распределений близки к полученным в /9/ на ISR.

Авторы признательны А.М.Балдину, Н.С.Амаглобели, Н.Н.Говоруну, И.С.Златеву, Б.Квасилу, К.Ланиусу, А.А.Логунову, М.Г.Мещерякову, И.А.Савину, Л.Д.Соловьеву, Х.Я.Христову, П.А.Черенкову, И.Ф.Колпакову, Э.И.Мальцеву за поддержку этих исследований; благодарят В.Баргера, С.С.Герштейна, А.Б.Кайдалова, А.К.Лиходеда и З.Новака за полезные дискуссии и замечания, коллектив серпуховского ускорителя за обеспечение эксперимента во время сеансов БИС-2; коллектив СНЭО ОИЯИ за обеспечение эксперимента во время подготовки БИС-2 и проведения сеансов на ускорителе; сотрудников ОИЯИ, способствовавших эксперименту на разных этапах его подготовки и проведения, а также Е.М.Лихачеву за постоянное участие в эксперименте в качестве оператора ЗВМ ЕС-1040.

ЛИТЕРАТУРА

- 1. Айхнер Г. и др. ЯФ, 1978, 28, с.663; ЯФ, 1979, 29, с.94.
- Aleev A.N. et al. High Energy Physics-1980 (XX Int.Conf., Madison, Wisconsin). New York, 1981, Pape No.374; ОИЯИ, P1-81-693, Дубна, 1981.
- Айхнер Г. и др. ОИЯИ, 1-80-644, Дубна, 1980; Максимов А.Н. ОИЯИ, 1-81-574, Дубна, 1981.
- 4. Айхнер Г. и др. ОИЯИ, 13-81-67, Дубна, 1981.
- 5. Бурилков Д.Т. и др. ОИЯИ, 10-80-656, Дубна, 1980; ОИЯИ, 10-81-772, Дубна, 1981.
- 6. Review of Particle Properties. Rev. Mod. Phys., 1980, 52, No. 2.
- 7. Charlton G. et al. Phys.Rev.Lett., 1973, 30, p.574.
- Giboni K.L. et al. Phys.Lett., 1979, 858, p.437; Lockmann W. et al. Phys.Lett., 1979, 858, p.443.
- 9. Basile M. et al. Lett.Nuovo Cim., 1981, 30, p.481; Lett. Nuovo Cim., 1981, 30, p.487.

Рукопись поступила в издательский отдел 12 мая 1982 года. Алеев А.Н. и др. P1-82-343 Исследование очарованных барионов Λ_c^+ , рожденных в нейтрон-углеродных взаимодействиях при ~58 ГэВ

Приводятся новые результаты исследования очарованных барионов Λ_c^+ , рожденных нейтронами на ядрах углерода.Эксперимент выполнен с помощью спектрометра БИС-2, действующего на серпуховском ускорителе.Обнаружено рождение Λ_c^+ , распадающихся по каналам $\bar{K}^{o}P_{\pi^+\pi^-}$ и $\Lambda^o\pi^+\pi^+\pi^-$. Найдено, что масса $M(\Lambda_c^+) =$ = /2275+6/ M9B/c². Модельно зависимые произведения сечений взаимодействия на вероятность распада по изучаемым каналам равны /33,5+5,2/ мкб и /4,5+1,1/ мкб на ядро углерода соответственно, а их отношение равно 7,4+2,2. Инвариантные импульсные распределения аппроксимируются функциями exp [- (2,7±0,7).P₁] и (1-X)^{1,5±0,4}.

Работа выполнена в Лаборатории высоких энергий ОИЯИ.

Препринт Объединенного института ядерных исследований. Дубна 1982

Aleev A.N. et	al.	P1-82-343	
Investigation	of the Charmed Baryons	A Produced in Neut	tron-
Carbon Interac	ctions at the Energies	of ~ 58 GeV	

The production of the charm baryon Λ_c^+ has been observed using the spectrometer BIS-2 in the neutron beam of the Serpukhov accelerator. In the decay channels $K^{\circ}P_{\pi}^{+}\pi^{-}$ resp. $\Lambda^{\circ}\pi^{+}\pi^{+}\pi^{-}$ there has been found the Λ_c^+ signal of ten resp. four standard deviations relative to the background level. The average mass $M(\Lambda_c^+) = (2275\pm 6) \text{ MeV/c}^2$. The estimation of the partial cross section is (33.5 ± 5.2) resp. $(4.5\pm 1.1) \mu b$ per carbon nucleus for the former resp. latter decay mode, and its ratio is of (7.4 ± 2.2) . Studying the invariant momentum distributions, the approximations of the type of $\exp(-bP_{\perp})$ resp. $(1-X)^k$ have been used, where $b=2.7\pm 0.7$ and $k=1.5\pm 0.4$ have been found (P_{\perp} is in GeV/c).

The investigation has been performed at the Laboratory of High Energies, JINR, Preprint of the Joint Institute for Nuclear Research. Dubna 1982

Перевод авторов.

Ē