

сообщения обретиненного института ядерных исследований дубна

10/8-82

P1-82-333

М.Х.Аникина, Б.П.Банник, Г.Л.Варденга, В.Д.Володин, А.И.Голохвастов, Л.А.Гончарова, Т.Д.Джобава, К.И.Йовчев, Н.Н.Каминский, Е.С.Кузнецова, Ю.Лукстиньш, А.Т.Матюшин, В.Т.Матюшин, Н.Н.Нургожин, Э.О.Оконов, Т.Г.Останевич, Е.Скжипчак, И.И.Тулиани, С.А.Хорозов, Л.В.Чхаидзе

ОБРАЗОВАНИЕ Л°-И К°-ЧАСТИЦ ПРИ ВЗАИМОДЕЙСТВИИ ЯДЕР ⁴ Не С ЯДРАМИ ⁶ Li ПРИ ИМПУЛЬСЕ 4,5 ГэВ/с НА НУКЛОН

1982

В ряде теоретических работ^{/1-3/} подчеркивается, что изучение рождения странных частиц в ядро-ядерных взаимодействиях может дать сведения о свойствах ядерного вещества в экстремальных условиях больших плотностей и температур.

Недавно были получены экспериментальные данные $^{/4/}$ о рождении Λ° -гиперонов /на статистике 62 события/ во взаимодействии 40 Ar + KCl при энергии 1,8 Гэв на нуклон. Представляет значительный интерес исследование подобных процессов при больших энергиях, при которых можно ожидать более плотных адронных образований.

В настоящей работе приводятся результаты анализа экспериментальных данных о рождении Λ° -гиперонов и К $^{\circ}$ -мезонов, полученных в пучках ядер ⁴He /с импульсом р = 4,5 ГэВ/с на нуклон/ на синхрофазотроне ОИЯИ с помощью 2-метрового стримерного спектрометра СКМ-200^{/5/}. Запуск спектрометра осуществляется триггерной системой ^{/6/}, которая отбирала практически все неупругие взаимодействия ядер ⁴He в мишени ⁶Li /1,59 г/см²/, помещенной внутрь рабочего объема стримерной камеры.

При просмотре 27,2 тыс. неупругих 4 Не 6 Li-взаимодействий обнаружено 247 V°-событий, из которых 233 было измерено на полуавтоматических устройствах ПУОС; 14 событий измерить и геометрически реконструировать полностью не удалось в основном из-за коротких треков /возможный вклад большинства подобных событий в число $\Lambda^{\circ}(K^{\circ})$ -частиц был учтен при внесении поправки по азимутальному углу/.

После кинематического анализа измеренных V°-событий было отобрано 148 событий с $r/r_0 \leq 5,5$, где т - время жизни предполагаемой $\Lambda^{\circ}(K^{\circ})$ -частицы, а r_{0} - его среднее значение в лабораторной системе. Среди отобранных "кандидатов" было идентифицировано 88 распадов $\Lambda \rightarrow p + \pi^-$ и 32 распада $K_S^{\circ} \rightarrow \pi^+ + \pi^-$, а 12 случаев достаточно хорошо фитировались в предположении обоих распадов. Из оставшихся "фоновых" 16 V° -событий 13 удовлетворяют кинематическим критериям процесса конверсии у-квантов в рабочем объеме камеры, а 3 события являются, по-видимому, 3-частичными распадами К^о-мезонов или результатом взаимодействия нейтронов. Измеренные по идентифицированным событиям массы и средние времена жизни оказались соответственно равными: /1116,9<u>+</u>0,7/ МэВ и /2,5<u>+</u>0,3/·10⁻¹⁰ с для Л^о-гиперонов; /502,1+ +1,4/ МэВ и /0,99+0,23/-10-10 с для К°-мезонов, что находится в хорошем согласии с табличными данными.

Hittin to generate

11 22

SUBANCTERA

1

Из полученных распределений поперечных импульсов (p_{\perp}), импульсов (p) и быстрот (y) были найдены средние значения этих величин для Λ^{o}_{-} : и К°-частиц:

$$\langle p_{\perp} \rangle_{\Lambda^{\circ}} = /475 \pm 25/$$
 M $_{3}B/c \ u \ \langle p_{\perp} \rangle_{K^{\circ}} = /386 \pm 30/$ M $_{3}B/c;$
 $\langle p \rangle_{\Lambda^{\circ}} = /2190 \pm 80/$ M $_{3}B/c \ u \ \langle p \rangle_{K^{\circ}} = /1870 \pm 150/$ M $_{3}B/c$
 $\langle y \rangle_{\Lambda^{\circ}} = 1,24 \pm 0,05 \ u \ \langle y \rangle_{U^{\circ}} = 1,47 \pm 0,10.$

Значения двух последних параметров завышены примерно в 1,2÷1,6 раза из-за недостаточной эффективности регистрации распадов частиц с малыми импульсами.

Для оценки выхода $\Lambda^\circ-гиперонов$ были внесены следующие поправки:

1/ на распады внутри /вблизи/ окружающего мишень лавсанового контейнера - экстраполяцией распадной кривой /для $r/r_0 \ge 21,5/$ к точке взаимодействия /фактор $w_1 = 2,7+0,3/;$

2/ на распады за пределами рабочего объема спектрометра с учетом потенциальных пробегов каждого из зарегистрированных гиперонов с последующим усреднением / $w_p = 1,03+0,01/$;

3/ на потери Λ° -частиц с большими глубинными углами – с использованием распределения по азимутальному углу / $w_3 = 1,25+0,05/;$

4/ на нейтральную моду распада $\Lambda^{\circ} + n + \pi^{\circ} / w_{4} = 1,56/.$

Упомянутые выше 12 событий с неоднозначным "фитом" / Л° мли К° / были разделены пропорционально числу однозначно идентифицированных распадов, что дает в результате N_{Л°} \simeq 97 и N_K \simeq 35. С учетом перечисленных поправок, используя полученные на установке СКМ-200 при тех же энергиях данные о сечении неупругого ⁴He⁶Li -взаимодействия / $\sigma_{in} = 320+15$ мб/^{5,7/} и средней множественности для сечения рожденных П⁻мезонов <n_>=0,78+0,03 ^{/5,8/}, получаем для выхода Л°-гиперонов

 $\sigma_{\Lambda \circ}({}^{4}\text{He}{}^{6}\text{Li}) = \langle n_{\Lambda} \rangle \cdot \sigma_{in} = \frac{N_{\Lambda}}{N} \prod_{i} w_{i} \cdot \sigma_{in} = /5, 9 + 1, 5/$ мб /где N - число

взаимодействий/ и для отношения $R_{\Lambda}^{(4+6)}$ Li) = $\frac{\langle n_{\Lambda} \rangle}{\langle n_{\Lambda} \rangle} = /2, 4+0, 6/\cdot 10^{-2}$

Величины σ_{Λ° и R_{Λ° включают вклад Λ° от распада $\Sigma^{\circ} \rightarrow \Lambda^{\circ} + \gamma$,

который составляет для **рр**-взаимодействий /4,95 ГэВ/с/ ~ $20\%^{/9/}$. Приведенные ошибки определяются статистикой и неточностью вводимых поправок. Вводя такие же поправки /с учетом дополнительной поправки на практически нерегистрируемые K_{L}° -мезоны/, получаем для K° -мезонов: $\sigma_{K} \circ ({}^{4}\text{He}{}^{6}\text{Li}) = /4,3\pm1,2/$ мб и $R_{K} \circ ({}^{4}\text{He}{}^{6}\text{Li}) = /1,6\pm0,5/\cdot10^{-2}$. По сравнению с соответствующими величинами для **рр**-взаимодействия при импульсе 4,95 ГэВ/с^{/9/} $/R_{\Lambda^{\circ}}(pp) = /2,3+0,4/\cdot 10^{-2}$ и $R_{K^{\circ}}(pp) = /1,2+0,3/\cdot 10^{-2}$ / не обна-

руживается существенное превышение над ними полученных значений $R_{\Lambda^0}({}^4He^{\theta}Li)$ и $R_{K^0}({}^4He^{\theta}Li)$, в противоположность тому, что можно было бы ожидать при значительном вкладе коллективных эффектов^{/2,3/}. Для столкновений таких легких ядер, как ⁴He и ⁶Li, полученный результат представляется довольно естественным. Следует, однако, иметь в виду, что строгое сравнение величин R для AA- и pp -взаимодействий требует учета трудно оцениваемых факторов, по-разному влияющих на выход $\Lambda^{\circ}(K^{\circ})$ и π^{-} /разница в энергии сталкивающихся нуклонов, "выделенность" по заряду pp-системы/.

В заключение авторы выражают благодарность Т.Понта за помощь в отладке программ анализа и фитирования.

ЛИТЕРАТУРА

- Stocker H. et al. Progr.in Part. and Nucl.Phys., 1980, vol.4, p.133-195.
- 2. Chapline G. et al. Phys.Rev., 1973, B8, p.4302.
- Randrup J. et al. Nucl.Phys., 1980, A343, p.519; Rafelsky J. GSI-Scient.Rep., 1980, vol.81-2, p.117.
- 4. Harris J. et al. Phys.Rev.Lett., 1980, 47, p.229.
- 5. Аникина М.Х. и др. ОЙЯЙ, 1-9280, Дубна, 1975.
- 6. Аникина М.Х. и др. ОИЯИ, 13-9030, Дубна, 1975.
- 7. Aksinenko V. et al. Nucl.Phys., 1980, A348, p.518.
- 8. Aksinenko V. et al. Nucl.Phys., 1979, A324, p.266.
- 9. Bierman E. et al. Phys.Rev., 1966, 147, p.922.

Рукопись поступила в издательский отдел 6 мая 1982 года.

НЕТ ЛИ ПРОБЕЛОВ В ВАШЕЙ БИБЛИОТЕКЕ?

Вы можете получить по почте перечисленные ниже книги, если они не были заказаны ранее.

Д13-11182	Труды IX Международного симпозиума по ядерной элект- ронике. Варна, 1977.	5	p.	00	к.
A17-11490	Труды Международного симпозиума по избранным пробле- мам статистической механики. Дубна, 1977.	6	p.	00	к.
Д6-11574	Сборник аннотаций XV совещания по ядерной спектроско- пии и теории ядра. Дубна, 1978.	2	p.	50	к.
A3-11787	Труды III Международной школы по нейтронной физике. Алушта, 1978.	3	p.	00	к.
A13-11807	Труды III Международного совещания по пропорциональ- ным и дрейфовым камерам. Дубна, 1978.	6	p.	00	к.
	Труды VI Всесоюзного совещания по ускорителям заря- женных частиц. Дубна, 1978 /2 тома/	7	p.	40	к.
Д1,2-12036	Труды V Международного семинара по проблемам физики высоких энергий. Дубна, 1978	5	p.	00	к.
A1,2-12450	Труды XII Международной школы молодых ученых по физике высоких энергий. Приморско, НРБ, 1978.	3	p.	00	к.
	Труды VII Всесоюзного совещания по ускорителям заря- женных частиц, Дубна, 1980 /2 тома/	8	p.	00	к.
Д11-80-13	Труды рабочего совещания по системам и методам аналитических вычислений на ЗВМ и их примемению в теоретической физике, Дубма, 1979	3	p.	50	к.
д4-80-271	Труды Международной конференции по проблемам нескольких тел в ядерной физике. Дубна, 1979.	3	p.	00	к.
д4-80-385	Труды Международной школы по структуре ядра. Алушта, 1980.	5	р.	00	к.
Д2-81-543	Труды VI Международного совещания по пробленам кван- товой теории поля. Алушта, 1981	2	p.	50	ж.
A10,11-81-622	Труды Международного совещания по проблемам математи- ческого моделирования в ядерно-физических исследова- ниях. Дубна, 1980	2	p.	50	к.
A1,2-81-728	Труды VI Международного семинара по проблемам физики высоких энергий. Дубна, 1981.	3	p.	60	к.
Д17-81-758	Труды 11 Международного симпозиума по избранным проблемам статистической механики. Дубна, 1981.	5	p.	40	к.
A1,2-82-27	Труды Международного симпозиума по поляризационным явлениям в физике высоких энергий. Дубна, 1981.	3	p.	20	к.
P18-82-117	Труды IV совещания по использованию новых ядерно- физических методов для решения научно-технических и народнохозяйственных задач. Дубна, 1981.	3	p.	80	к.

Заказы на упомянутые книги могут быть направлены по адресу: 101000 Москва, Главпочтамт, п/я 79 Издательский отдел Объединенного института ядерных исследований

Аникина М.Х. и др. P1-82-333 Образование Ло- и Ко -частиц при взаимодействии ядер Не с ядрами ⁶Li при импульсе 4,5 ГзВ/с на нуклон Приводятся результаты анализа образования Ло- и Ко-частиц во взаимодействии ядер ⁴Не с ядрами ⁶Li при импульсе 4,5 ГэВ/с на муклон. Для сечения образования Л°-гиперонов и для отношения их выхода к выходу "мезонов были получены злачения /5,9+1,2/ мб и /2,4+0,5/·10-2, а соответствующие величины для К° - мезонов оказались равными: /4,3+0,9/ мб и /1,6+0,4/. 10-2. По характеристикам образовавшихся А°-и К° -частиц были определены также средние значения импульсов, поперечных импульсов и быстрот. Работа выполнена в Лаборатории высоких энергий ОИЯИ. Сообщение Объединенного института ядерных исследований. Дубна 1982 Anikina M.Kh. et al. P1-82-333 Production of A^o and K^o Particles in Interactions of [•]He and Li Nuclei at the Momentum of 4.5 GeV/c per Nucleon The results of analysis are presented for Λ° and K° production in the interaction of ⁴He and ⁶Li nuclei at 4.5 GeV/c per nucleon. The values (5.9 ± 0.5) mb and $(2.4\pm0.6)\cdot10^{-2}$ are obtained for Λ°_{-} production cross section and for the ratio of Λ° and π^{-i} multiplicities; corresponding values for K^o-production appeared to be: (4.3 ± 1.2) mb and $(1.6\pm0.5)\cdot10^{-2}$. The mean values of momenta, transverse momenta, and rapidities were also determined from the characteristics of Λ° and \mathbb{K}° -particles produced in this interaction The investigation has been performed at the Laboratory of High Energies. JINR. Communication of the Joint Institute for Nuclear Research. Dubna 1982

Перевод авторов.