

СООБЩЕНИЯ Объединенного института ядерных исследований дубна

35

1111-82 P1-82-252

В.Г.Гришин, Л.А.Диденко, Т.И.Канарек, 3.В.Метревели

АНАЛИЗ **П⁻р-ВЗАИМОДЕЙСТВИЙ** ПРИ ИМПУЛЬСЕ 40 ГэВ/С С ПОМОЩЬЮ КОЛЛЕКТИВНЫХ ПЕРЕМЕННЫХ И МЕТОДИЧЕСКИЕ ВОПРОСЫ ВЫДЕЛЕНИЯ АДРОННЫХ СТРУЙ

§1. BBEDEHNE

При исследовании процессов множественного рождения частиц все чаще стали обращаться к более удобным "коллективным" переменным /1-6/, послольку они выявляют такие динамические особенности адрон-адронных взаимодействий, которые не удается обнаружить изучением одночастичных распределений и двухчастичных корреляционных функций. В последнее время интерес к этим переменным воврос еще больше в связи с исследованиями струйной структуры конечных адронных состояний в e⁺e⁻- и адрон-адронных столкновениях.

В предыдущей работе⁷⁶⁷ мы опубликовали результаты измерений струйных характеристик заряженных частиц в *т* р-взаимодействиях при импульсе 40 ГэВ/с, которые указывают на струйный характер рождения адронов в этих соударениях. Однако при анализе пространственной конфигурации событий методом коллективных переменных /и, в частности, струйных/ возникают следующие вопросы:

а/ о влиянии флуктуаций в конфигурации вторичных частиц в фазовом пространстве на величину коллективных переменных, обусловленном определенным выбором "главных осей";

б/ о влиянии нейтральных частиц, которые не участвуют в определении коллективных переменных, на их величину.

В данной работе мы провели исследование этих вопросов путем сравнения "- р-взаимодействия при импульсе 40 ГэВ/с с событиями. смоделированными в соответствии со сферическим фазовым объемом /7/ и мультипериферической моделью, разработанн й сотрудниками ФИАНа 18,97. Анализ выполнен на статистике 1400 полностых измеренных " Р -взаимодействий с множественностью заряженных частиц 1+24, полученных с помощью методики про новой пузырьковой камеры. Особенности эксперимента, а таки методические вопросы обработки снимков с пропановой пузырьковой камеры рассмотрены в статьях/10/. В модели сферического фазового объема события генерировались в соответствии с законами сохранения энергии и импульса, а также с учетом распределений по множественности и корреляций в рождении заряженных и нейтральных частиц, наблюдающихся на опыте. В мультипериферической модели матричный элемент 📅 Р-взаимодействий составлялся из следующих компонент:

Observation of the therman

....

A = A dit + A pes. + A don ;

А диф. учитывает дифракционное рождение адронов, А рез.- образование барионных и мезонных резонансов в узлах мультипериферической цепочки, А фон.- описывает статистические кластеры. Между блоками мультипериферической цепочки предполагается обмен пионом. Как показано в работах ^{/9/}, модель хорошо описывает одночастичные и двухчастичные распределения вторичных заряженных частиц в π р-взаимодействиях при импульсе 40 ГэВ/с и, следовательно, может служить мерой критичности коллективных переменных к динамическим особенностям, не проявляющимся в инклюзивных спектрах.

§2. ВЫБОР ПЕРЕМЕННЫХ

Изучение конфигурации $\pi^{-}p$ -взаимодействий в трехмерном пространстве проводилось в системе координат "главных осей" события, которые являются осями симметрии для данной конфигурации векторов импульсов вторичных частиц. Переход в эту систему координат производился путем диагонализации матрицы, составленной из компонентов импульсов вторичных заряженных частиц в с.ц.и. $\pi^{-}p$ -столкновений;

$$\mathbf{M}_{\alpha\beta} = \sum_{i=1}^{-\infty} \mathbf{P}_{i\alpha} \mathbf{P}_{i\beta} ; \ \alpha, \beta = \mathbf{x}, \mathbf{y}, \mathbf{z}.$$
 (1/

Диагональным элементам этой матрицы Q_1 , Q_2 и Q_3 соответствуют единичные векторы \vec{n}_1 , \vec{n}_2 и \vec{n}_3 , задающие направление "главных осей" в событии. Если диагональные элементы расположить в порядке возрастания их величин, $Q_1 > Q_2 > Q_3$, то вектор \vec{n}_1 будет определять направление наибольшей пространственной вытянутости события, \vec{n}_2 - направление наибольшей вытянутости в плоскости, перпендикулярной \vec{n}_1 , а \vec{n}_3 - направление наибольшей сжатости в этой плоскости /<u>рис.1</u>/. Ось, совпадающая с направлением вектора \vec{n}_1 , является осью струй в предположении о том, что π рвзаимодействия имеют двухструйную структуру. Диагональные элементы матрицы /1/ представляют собой сумму квадратов компонент импульсов вторичных частиц (P_i) в системе координат главных осей:

$$Q_1 = \sum_{i=1}^{n_{\pm}} P_1 \hat{i}^2$$
, $Q_2 = \sum_{i=1}^{n_{\pm}} P_2 \hat{i}^2$, $Q_3 = \sum_{i=1}^{n_{\pm}} P_3 \hat{i}^2$, /2/

и определяют пространственную форму взаимодействия. Если $Q_1 \sim Q_2 \sim Q_3$, то событие сферически-симметрично; если $Q_1 >> Q_2$, $Q_1 >> Q_3$ и $Q_2 \sim Q_3$, событие обладает цилиндрической симметрией; если $Q_1 \sim Q_2$ и $Q_1, Q_2 >> Q_3$, то событие плоское, напоминающее по форме диск.

Рис.1. Схематическое изображение "главных осей".

В работе будут рассмотрены также отношения переменных Q_{g}/Q_{1} и Q_{3}/Q_{2} , определяющие соответственно выстроенность вторичных частиц относительно направления \vec{n}_{1} и планарность события. Чем меньше величина отношения Q_{g}/Q_{1} , тем большей выстроенностью характеризуется событие. Для планарных

событий отношение $Q_g/Q_2 << 1$. Особое внимание в работе уделяется анализу струйных характеристик взаимодействия "сферисити" и "траст". Сферисити определяется в системе координат главных осей согласно формуле

$$S = \frac{3}{2} \frac{Q_2 + Q_3}{Q_1 + Q_2 + Q_3}$$
 /3/

и принимает значения от 0 для коллинеарных событий до 1 для взаимодействий сферически-симметричной конфигурации. Переменная траст определялась традиционным образом:

$$T = \max \sum_{i=1}^{n_{\pm}} |P_{i_{i}}| / \sum_{i=1}^{n_{\pm}} |\vec{P}_{i}|, \qquad (4/4)$$

где P_{B_i} - продольный импульс вторичных частиц относительно оси, для которой сумма $\sum_{i=1}^{D_{+}} |P_{n_i}|$ имеет максимальное значение^{/11/}. Величина T меняется от 0,5 для сферических событий до 1 - для коллинеарных. В работе будут также коротко рассмотрены переменные $<P_{out}^2 > u < P_{in}^2 >$, определяемые в системе координат главных осей и характеризующие поперечные размеры пространственной конфигурации события:

$$\langle P_{out}^2 \rangle = \frac{1}{n_{\pm}} Q_3 , \quad \langle P_{in}^2 \rangle = \frac{1}{n_{\pm}} Q_2 .$$
 (5)

\$3. СРАВНЕНИЕ ЭКСПЕРИМЕНТАЛЬНЫХ ДАННЫХ С МОДЕЛЬНЫМИ РАСЧЕТАМИ

, h

В таблице представлены средние значения коллективных переменных для π^-p -взаимодействий при импульсе 40 ГэВ/с, а также результаты расчета этих переменных для событий, смоделированных по сферическому фазовому объему и по мультиперифериче-

			Таолица		
Переменные	li-p,40 TaB/c	Модель фаз.об.	Кодель (223.06. с учётом нейт- ральных частиц	іцультиперимери- честая модель	Культиперий. модель с учётом нейтральных частиц
< 3>	0,239±0,002	0,454±0,002	0.494+0.002	0,220±0,002	0,175±0,001
* ~ ~ ~ ~ ~	0 ,2 76 <u>+</u> 0,002	۹. ۱۰۰۰ ۱۰۰۰		0,253±0,002	
< T >	0,841 <u>+</u> 0,001	0,756±0,001	а .	0,850 <u>+</u> 0,001	
×1×	$0,824\pm0,001$			0,835±0,00I	
o O	19,1 <u>+</u> 0,1	57,4±0,2	53,9 <u>4</u> 0,2	I5,0 <u>+</u> 0,I	8,8±0,I
< 8, 7 (IbB/c) ² 9,Ĩ±0,I	5,38±0,04	8,21 <u>+</u> 0,04	8,8±0,I	I3, 75±0,06
$< Q_2 >$ (IaB/c)) ² 0,711±0,007	I,62±0,0I	2,81±0,01	0,670±0,005	I,020 <u>+</u> 0,006
< Q3>(IbB/c)	² 0,177 <u>+</u> 0,002	0,404±0,004	0,842±0,006	0,163 <u>+</u> 0,001	0,308 <u>+</u> 0,002
< 02/0,>	0,175±0,002	0,37340,002	0,404+0,002	0, I58 <u>+</u> 0,002	0,111 <u>+</u> 0,001
< 93/02 >	0,283±0,002	0,296±0,002	0,345±0,002	0,275±0,002	0,528±0,002
< Pout > (TaB/c)	2 0,0261 <u>+</u> 0,000	2 0,0691±0,00	07 0.IO6±0.00I	0.0246±0.0002	$0,0321\pm0,0002$
< p ² _{in} 7 (TaB/c) ⁱ	0,116±0,001	0,306±0,003	0,388 <u>+</u> 0,003	0, II6±0,00I	0,123 <u>+</u> 0,001
P 	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2				
· · ·					

ской модели. Хотя события фазового объема в среднем сферически-симметричны и для них должно выполняться соотношение $Q_1 \sim Q_2 \sim Q_3$, а переменные S и T должны быть равны соответственно 1 и 0,5, в значениях переменных S, T, Q_1 , Q_2 и Q_3 наблюдаются значительные отклонения от ожидаемых величин. Такие различия вызваны влиянием флуктуаций в пространственной конфигурации вторичных частиц в событиях, особенно сильно проявляющихся при переходе в систему координат главных осей. Тем не менее наблюдающиеся в эксперименте значения струйности, выстроенности, а также средних поперечных импульсов $<P_{out}^2 >$ и $<P_{in}^2 >$ объяснить влиянием флуктуаций нельзя. Учет нейтральных частиц в модели сферического фазового объема приводит к некоторому уменьшению флуктуаций и увеличению величины сферисити до 0,49.

Расчеты коллективных переменных, проведенные для событий мультипериферической модели с учетом методических особенностей эксперимента, показывают в среднем неплохое согласие с экспериментальными данными.

Для более детального анализа на <u>рис.2</u> и <u>3</u> представлены распределения реальных и смоделированных *т*-р-взаимодействий при импульсе 40 ГэВ/с по переменным S и T.

Сравнение этих распределений показывает, что мультипериферическая модель качественно неплохо описывает экспериментальные данные, хотя смоделированные события отличаются большей "струйностью". Более заметные расхождения между моделью и

Рис.2. Распределение т р взаимодействий при импульсе 40 ГэВ/с по величине сферисити: а/ в эксперименте; б/ в мультипериферической модели; в/ в модели сферического фазового объема.

Рис.3. Распределение т Рвзаимодействий при импульсе 40 ГэВ/с по величине траст; а/ в эксперименте; б/ в мультипериферической модели; в/ в модели сферического фазового объема.

аимодействий

дифракционных

учета

6e3

*Данные приводятся

ь

Рис.4. Распределение пр-событий по величине сов, где θ - угол между осью струй и первичным направлением пучка: а/ в эксперименте; б/ в мультипериферической модели; прерывистой линией показано распределение в модели сферического фазового объема.

экспериментом проявляются в ориентации главных осей. На <u>рис.4</u> показано распределение $\pi^- p$ -взаимодействий по величине $\cos\theta$, где θ - угол, образованный осью с единичным вектором \vec{n}_1 /осью струй/ и направлением движения сталкивающихся частиц. Видно, что в смоделированных событиях ось \vec{n}_1 ориентирована в основном под меньшими углами к первичному направлению. Средние значения угла θ в модели и в эксперименте составили соответственно 15° и 19°.Распределение $dN/d[\cos\theta]$ в модели фазового объема изотропно.

Неплохое согласие расчетов коллективных переменных для событий мультипериферической модели с экспериментальными данными позволило оценить влияние нейтральных частиц на величину этих переменных и ориентацию главных осей. Значения коллективных переменных, вычисленные с учетом π° -мезонов и нейтронов в смоделированных событиях, также представлены в таблице. Видно, что нейтральные частицы увеличивают струйность взаимодей-ствий и приводят к уменьшению величины S от 0,22 до 0,175. Угол, образованный осью струй с первичным направлением движения адронов, уменьшается при этом до 9° . Учет нейтральных частиц в смоделированных событиях приводит к увеличению выстроенности вторичных частиц вдоль оси струй и к уменьшению планарности взаимодействий. Средние поперечные импульсы событий в мультипериферической модели $< P_{out}^2 > u < P_{in}^2 >$ после добавления нейтральных пионов и нейтронов возрастают.

§4. АНАЛИЗ ПРОСТРАНСТВЕННОЙ КОНФИГУРАЦИИ *π*[−] р - ВЗАИМОДЕЙСТВИЙ В ЗАВИСИМОСТИ ОТ МНОЖЕСТВЕННОСТИ ЗАРЯЖЕННЫХ ЧАСТИЦ

Поскольку в 🥡 Р-столкновениях при разной множественности заряженных частиц доминируют различные механизмы рождения /на-

Рис.6. Зависимость средней величины разности 1-<T> от множественности п_± в *п* р-столкновениях при импульсе 40 ГэВ/с: а/ в эксперименте; б/ в мультипериферической модели; в/ в модели сферического фазового объема.

Рис.5. Зависимость средних значений величины сферисити <S> от множественности заряженных частиц п± в π⁻р-столкновениях при P=40 ГэВ/с: а/ в эксперименте; б/ в мультипериферической модели; в/ в модели сферического фазового объема.

пример, при малой множественности n+ преобладают дифракционные процессы и образование пионов через резонансы/, естественно предположить, что конфигурация "тр -взаимодействий меняется с изменением множественности n₊. На рис.5 и 6 показаны средние значения струйных характеристик S и T для разной множественности заряженных частиц в реальных и смоделированных событиях. Как видно из рисунков, при сравнении с моделью сферического фазового объема при всех множественностях n₊ ≥ 4 наблюдаются значительные отклонения в конфигурации πтр -событий от сферически-симметричной картины, т.е. реальные взаимодействия при всех n₊ обладают в основном двухструйной структурой. Причем с увеличением множественности n₊ от 4 до 10 струйность событий существенно уменьшается, а для значений n₊>10 величины <8> и 1-<Т> практически не меняются. Мультипериферическая модель неплохо описывает зависимость средних величин <S> и 1-<T> от множественности заряженных частиц в событии для малых значений n₊, а для n₊>10 наблюдаются большие различия

<u>Рис.7</u>. Зависимость средних значений диагональных элементов матрицы $M_{\alpha\beta} < Q_1 >$, $<Q_2 >$ и $<Q_3 >$ от множественности заряженных частиц n_{\pm} в $\pi^- p$ -столкновениях при P = 40 ГэВ/с: а/ в эксперименте; б/ в мультипериферической модели; в/ в модели сферического фазового объема.

Рис.8. Зависимость средних значений выстроенности Q_2/Q_1 и планарности Q_3/Q_2 от множественности заряженных частиц n_{\pm} в πp взаимодействиях при импульсе 40 ГэВ/с: а/ в эксперименте; б/ в мультипериферической модели; в/ в модели сфернческого фазового

в модели и эксперименте. Такое поведение переменных <S> и<T> может быть вызвано следующими причинами: при малых множественностях заряженных частиц в модели в узлах мультипериферической цепочки преобладает резонансное рождение адронов, а при больших n_{\pm} большую роль играют статистические кластеры, которые отличаются симметричной конфигурацией в фазовом пространстве и дают большие значения переменных <S> и 1-<T>.

На <u>рис.7</u> показаны зависимости от множественности в_± диагональных элементов матрицы /1/ в реальных и смоделированных событиях. В этих переменных различия между мультипериферической моделью и экспериментом проявляются еще сильнее. При больших множественностях пространственная конфигурация смоделированных π -р-взаимодействий приближается к сферическисимметричной конфигурации событий в модели фазового объема, при малых множественностях заряженных частиц n_{\pm} =4,6,8 расхождения между моделью и экспериментом незначительные.

Большой интерес представляет также изучение выстроенности вторичных частиц Q_2/Q_1 относительно оси струй \vec{n}_1 и планарности событий Q_3/Q_2 . Распределения отношений Q_2/Q_1 и Q_3/Q_2 в зависимости от множественности n_\pm представлены на <u>рис.8</u>. Видно, что π^-p -взаимодействия при всех значениях n_\pm характеризуются выстроенностью заряженных частиц относительно главной оси \vec{n}_1 . С увеличением множественности n_\pm выстроенность уменьшается и для $n_\pm \ge 10$ имеет постоянное значение. Мультипериферическая модель неплохо описывает данные эксперимента в области малых множественностей.

Изучение планарности $\pi^{-}p$ -событий при импульсе 40 ГэВ/с показывает хорошее согласие эксперимента как с мультипериферической моделью, так и с моделью сферического фазового объема. Этот результат говорит о том, что $\pi^{-}p$ -столкновения при P = 40 ГэВ/с обладают цилиндрической симметрией.

Интересно отметить, что К р-взаимодействия при импульсе 8,25 ГэВ/с^{/1/} и π р-взаимодействия при 4 ГэВ/с и 25 ГэВ/с^{/2/} при малых множественностях вторичных частиц отличаются планарностью, которая не описывается цилиндрическим фазовым объемом. События рр-столкновений при импульсе 22,4 ГэВ/с являются планарными при всех множественностях $n_{\pm}^{/5/}$.

§5. ВЫВОДЫ

1. Конфигурация тр-взаимодействий при импульсе 40 ГэВ/с при всех множественностях заряженных частиц n_± имеет двухструйный характер и не может быть объяснена влиянием флуктуаций в распределениях вторичных частиц в фазовом пространстве, а также влиянием нейтральных частиц, которые не участвуют в определении струйных характеристик.

Струйность π^{-} Р-взаимодействий уменьшается с ростом множественности и для $n_+ > 10$ практически не меняется.

2. События $\pi^- p$ -столкновений при p = 40 ГэВ/с при всех множественностях n_{\pm} отличаются выстроенностью вторичных частиц относительно главной оси n_1 . С увеличением множественности заряженных частиц выстроенность уменьшается и для $n_{\pm} \ge 10$ имеет постоянное значение.

Конфигурация *п*р-взаимодействий при импульсе 40 ГэВ/с в фазовом пространстве обладает цилиндрической симметрией.

3

3. Мультипериферическая модель неплохо описывает средние величины рассматриваемых в работе коллективных переменных. Однако исследования зависимости средних значений этих переменных от множественности заряженных частиц в событиях показывают значительные расхождения между моделью и экспериментом в области больших значений п₊.

В области малых множественностей n_{\pm} наблюдается неплохое согласие экспериментальных данных с мультипериферической моделью.

Авторы выражают благодарность сотрудничеству по исследованию множественных процессов на 2-метровой пропановой пузырьковой камере за помощь в работе.

ЛИТЕРАТУРА

- 1. Kakoulidou M. et al. Nucl. Phys., 1977, B130, p.189.
- 2. Kostka P. et al. Nucl. Phys., 1975, B86, p.1.
- 3. Ajinenko I.V. et al. Nucl.Phys., 1978, B135, p.365.
- 4. Боголюбский М.Ю. и др. ЯФ, 1980, т.32, с.141.
- 5. Боос Э.Г. и др. ЯФ, 1980, т.31, с.375.
- 6. Гришин В.Г., Диденко Л.А., Канарек Т. ОИЯИ, Р1-81-542, Дубна, 1981.
- 7. Комарова С.Н. и др. ОИЯИ, 1-8501, Дубна, 1974.
- 8. Волков Е.И. и др. ЯФ, 1973, 17, с.407; 18, с.437.
- 9. Волков Е.И., Канарек Т.И. ОИЯИ, 1-8035, Дубна, 1974; Препринт ФИАН, М., 1975, 115.
- 10. Абдурахимов А.У. и др. ОИЯИ, Р1-6326, Дубна, 1972; ЯФ, 1973, т.18, с.545.
- 11. Brandt S., Dahmen H.D. Z.Phys., 1979, C1, p.61.