

СООБЩЕНИЯ Объединенного института ядерных исследований дубна

P1-81-779

29/11-82

Зыонг Ван Фи, Нгуен Монг Зао

ИЗОТОПИЧЕСКИЕ ПРАВИЛА ОТБОРА ДЛЯ РАСПАДОВ ЭЛЕМЕНТАРНЫХ ЧАСТИЦ С УЧЕТОМ ВНУТРЕННИХ ХАРАКТЕРИСТИК ЛЕПТОНОВ И ШПУРИОНОВ

1. ВВЕДЕНИЕ

В настоящей работе используются некоторые результаты исследования симметрии и формулировки полевой теории в объединенном восьмимерном пространстве / 1/ для получения изотопических правил отбора распадов элементарных частиц. Указанный подход полевой теории показывает различие между полевыми уравнениями первого рода /нестранные частицы/ и частиц вточастиц рого рода /в него включаются странные частицы/.Другой вывод этого подхода,который будем использовать,заключается в том, что лептоны и фотоны,как адроны,обладают изоспинами и гиперзарядами. Будем оперировать со шпурионным полем, которое впервые было введено в единую полевую теорию Гейзенберга 24. Это поле можно получить в рамках указанного подхода. Кванты шпурионного поля - шпурионы нашего подхода, описывающиеся полевыми уравнениями частиц второго рода в объединенном пространстве. Они кроме изоспина I=1/2, странности S=-1 имеют внутренние квантовые числа R, аналогичные странности S и образующие полные странные числа: $S_{\pi} = S + R$.

Формализм унитарной S⁻матрицы^{/1/} в объединенном пространстве со спектральным представлением требует лоренц-инвариантности и инвариантности относительно преобразований во внутреннем пространстве. Пространство Минковского и внутреннее пространство являются подпространствами объединенного пространства. Для применения такой S-матрицы при исследовании распадов элементарных частиц следует рассматривать лагранжианы, удовлетворяющие некоторым определенным требованиям инвариантностей, в частности двум приведенным выше. В связи с инвариантностью относительно преобразований во внутреннем пространстве предположим, что в лагранжианы распадов с участием странных частиц вводится шпурионное поле.

Считая, что барионное, лептонное и полное странное числа являются сохраняющимися, с лагранжианами, которые описаны в работе^{/11}/и с помощью разложений внутренних полей по сферическим функциям мы можем получить закон сохранения для третьей компоненты изоспина /с учетом изоспинов лептонов, фотонов и шпурионов/. Далее используем этот результат /правила отбора/ для сравнения с экспериментальными данными по распадам частиц. Теоретический результат указывает весьма простую закономерность для всех распадов. Мы рассмотрели распады μ -, t-, 1-,

 π^- , η^- , K-, Λ^- , Σ^- , Ξ^- и Ω -частиц. Получается, что все известные данные $^{/8/}$ хорошо согласуются с полученной закономерностью.

Мы также рассмотрим связи между правилами отбора данного подхода с используемыми в теории элементарных частиц правилами отбора $\Delta Q^2 = \Delta S^2$, $|\Delta S^2| = 1$, $\Delta I^2 = 1/2$ /индекс 2-для адронов/. Обсудим случаи, когда наши правила отбора совпадают с не совпадают с приведенными правилами.

В данной статье изложены теоретические основы этого подхода и рассмотрены некоторые примеры. В следующих статьях представим последовательное сравнение наших результатов с экспериментальными данными.

2. ТЕОРЕТИЧЕСКИЕ ОСНОВЫ

Исследование структуры представления группы преобразований в объединенном пространстве указывает на фундаментальное различие между двумя родами частиц /4/. Частицы первого рода описываются уравнениями, получаемыми на основе требований инвариантности относительно всех преобразований в объединенном . 8-пространстве(U).Такие частицы должны иметь спины и изоспины одновременно или целые, или полуцелые. Так, например, η-мезон может быть описан скалярным уравнением, группы фермионов / $u_{\,{f e}}$, р, ц/, / u_{μ} , μ , N $_{1}^{+}$, N $_{1}^{\circ}$ / и т.д. могут быть описаны e, спинорным уравнением в пространстве V и т.д. Далее показывается, что для частиц первого рода имеются две сохраняющиеся внутренние характеристики: третья компонента изоспина (${f I}_{3}$) и третья компонента так называемого D-спина (D₃), причем они входят в соотношения Гелл-Манна-Нишиджимы в форме $Q = I_{:3} + D_{:3}$. Тогда для адронов сохраняющуюся величину ${
m D}_3$ можно отождествить с $\frac{Y}{2}$ / Y - гиперзаряд/, а для лептонов D $_8$ играет роль лептонного числа. Конкретно, η -мезон имеет I $_3=0$, D $_3=0;$ ν_e имеет $I_3 = 1/2$, $D_3 = -1/2$; $e^- - I_3 = -1/2$, $D_3 = -1/2$; $p - I_3 = +1/2$, $D_3 = 1/2;$ n - $I_3 = -1/2$, $D_3 = 1/2$ /подобные характеристики имеют частицы ν_{μ} , μ , N_1^+ , N_1° / ^{/5/}; γ имеет $I_3=0$, $D_3=0$; $\pi^+ - I_3=1$, $D_3 = 0$; $\pi^- - I_3 = -1$, $D_3 = 0$; $\pi^\circ - I_3 = 0$, $D_3 = 0$. Уравнения частиц первого рода могут быть преобразованы в соответствующие уравнения в пространстве Минковского. Так, например, скалярное уравнение для η преобразуется в уравнение Клейна-Гордона, спинорное уравнение для u_{e} , е, р, в- в уравнение Дирака / 5/, векторное уравнение для фотонов /с полевыми компонентами A_j, j = 1,2,3,4/- в уравнение Максвелла, векторное уравнение для пионов /с А_К, К = 5,6,7,8/ - в обычное псевдоскалярное уравнение /8/ и т.д.

Частицы второго рода описываются парами полевых уравнений. В каждой такой паре имеется одно уравнение в пространстве Минковского /М/ и другое - во внутреннем пространстве (I). Все странные частицы входят в класс частиц второго рода //4/. Например, для каонов имеем обычное псевдоскалярное и внутреннее спинорное уравнения, для Λ -гиперона - обычное спинорное и внутреннее скалярное уравнения, для Σ - частицы - обычное спинорное и внутреннее векторное уравнения, для 🗄 -частиц обычное спинорное и внутреннее спинорное уравнения. В отличие от обычных полей все внутренние поля квантуются по статистике Бозе /7/Для частиц второго рода, как показано, в связи с преобразованиями во внутреннем пространстве имеется единственная сохраняющаяся величина 13. С другой стороны, при наличии отдельных внутренних полей допускается рассмотрение внутренних калибровочных преобразований, дающих сохраняющиеся странные квантовые числа S, которые входят в соотношения Гелл-Манна-Нишиджимы в обычной форме: $Q = I_3 + \frac{Y}{2}$, где Y = B + S, Bбарионное число. Конкретно, K⁺ имеет $I_{3}=1/2$, S = +1; K° - $I_{3} = -1/2$, S = 1; $\Lambda - I_{3} = 0$, S = -1; $\Sigma^{+} - I_{3} = 1$, S = -1; $\Sigma^{\circ} - 1$ $I_3 = 0, S = -1; \Sigma^- - I_3 = -1, S = -1; \Xi^\circ - I_3 = 1/2, S = -2; \Xi^- -$ 1 2 = −1/2, S = −2 и т.д.

Известно, что в единой полевой теории Гейзенберга $^{\prime 2\prime}$ и в ряде работ по теории элементарных частиц $^{\prime 8\prime}$ используется понятие шпурионного поля. Согласно представлению единой полевой теории кванты шпурионного поля - шпурионы обладают массой m=0, энергией E=0, зарядом Q=0, изоспином $I=1/2(I_3=\pm1/2)$. Далее предполагается в этой теории, что число шпурионов бесконечно и пары шпурионов и антишпурионов образуют "шпурионное море", которое действует на странные частицы.

В рамках нашего формализма полевой теории в объединенном пространстве показывается, что такое шпурионное поле существует. Оно представляет собой специфическое поле частиц второго рода. Их кванты имеют все характеристики шпурионов единой полевой теории. Далее, они имеют полную странность $S_{\Pi} = S + R$. Кроме того, в свободном состоянии они оказываются ненаблюдаемыми. Это связано с тем, что поле свободного шпуриона равняется нулю. Шпурионы могут входить во взаимодействие только находясь в состоянии прачастиц, которые возникают при контактных столкновениях с другими частицами. Прашпурионы обладают массами и ведут себя, как странные частицы, и затем в свободном состоянии спонтанно превращаются в шпурионы $^{9/}$. Наконец, как сказано, в связи с нейтральным характером и m = 0 шпурионы имеют кроме странности S = -1 и другое внутреннее квантовое число – R. Имеем. шпурионное поле $\Phi_{B} = (\Phi_{B1}, \Phi_{B2})$, при этом Φ_{B1}

поле шпуриона s_1 с $I_3{=}{-}1/2,\,s{=}{-}1$ и $R{=}0,$ а Φ_{s_2} - поле s_2 с $I_3{=}{-}1/2$, $s{=}{-}1$ и $R{=}2$.

В табл.1 представлены внутренние характеристики частиц первого рода, а в табл.2 - частиц второго рода.

:							<u>T</u>	аблица I
		·	• • • • • • • • • • •			4 ^{- 1}		
	'n	· y	π [±] ,0	$\nu_{\rm e}(\nu_{\mu})$	e ⁻ (µ ⁻)	$P(N_1^+)$) n(N [°] ₁) 7
1.3	0	0	±1,0	1/2	-1/2	1/2	-1/2	-1/2
D ₃	0	0	0	-1/2	-1/2	1/2	1/2	-1/2
· .	- -		· · · · · · · · · · · · · · · · · · ·				<u>T</u> ;	аблица 2
	к ^{+,0}	Α	Σ ^{±, 0}	≡ 0,-	2	2 -	s 1	⁸ 2
I 3	1/2, -1/2	0	±1,0	1/2, -1/	2 0)	1/2	-1/2
S	1	-1	-1	-2	-:	3	_1	-1
R	0	0	0	0	() .	0	2
			·					

Изложим теперь основы подхода полевой теории взаимодействия в пространстве U с целью получения правил отбора. В работе ^{/ 1/} была сформулирована S -матрица, в которую входят лагранжианы взаимодействия, представляющие собой комбинации полевых операторов в объединенном пространстве. В спектральном представлении эти операторы являются произведениями обычных и внутренних полевых операторов. Лагранжианы взаимодействия, таким образом, будут лоренц-инвариантны и инвариантны относительно преобразований во внутреннем пространстве.

Для получения правил отбора исходим из предположения о том, что если учесть внутренние характеристики не только адронов, но и лептонов, фотонов и шпурионов /при участии странных частиц/, то процессы распадов будут происходить с сохранением внутренних характеристик частиц. В связи с этим кроме лоренцинвариантности нам требуется внутренняя инвариантность. Конк-

ретно предположим, что теория инвариантна относительно преобразований в пространстве I. Тогда лагранжианы распадов подчиняются всем требованиям для лагранжианов,входящих в приведенную S -матрицу в пространстве U,и для распадов мы можем последовательно производить расчеты по теории возмущений.Нужно подчеркнуть, что здесь такой метод последовательных приближений оказывается вполне законным, так как матричные элементы не содержат расходящихся интегралов /10/.

Изложим теперь подход к получению правила отбора для 1₃. Пусть имеется лагранжиан распадов, в который могут входить адронные, лептонные, фотонные и шпурионные поля. В спектральном представлении можем разложить части внутренних полей по сферическим функциям /в случае спинорного изополя - по шаровым спинорам/,и тогда в матричных элементах будет фигурировать множитель типа

 $\int_{0}^{2\pi} \exp \{M_{3}^{(i)} - M_{3}^{(f)} - I_{3}^{(i)} + I_{3}^{(f)}\} d\phi, \qquad /1/$

где индексы і и ї обозначают начальное и конечное состояния распада, М - полный изомомент /изомомент количества движения + изоспин/. Так как имеем дело с инвариантностью относительно преобразований во внутреннем пространстве, следовательно, $M_3^{(1)} = M_3^{(1)}$. И тогда /1/ дает следующие правила отбора: матричные элементы могут отличаться от нуля /разрешенные распады / только в случае, когда $I_3^{(1)} = I_3^{(1)}$. Другими словами, при учете изоспинов лептонов, фотонов и шпурионов разрешенные распады происходят с сохранением третьей компоненты изоспина: $\Delta I_3 = 0$; если учитывать только изоспины адронов, то можно получить обычные правила: $\Delta I_3^* = 0$, $\Delta I_3^* \neq 0$. Далее, в связи с малостью константы взаимодействия и конечностью матричных элементов целесообразно рассматривать как главный вклад в процесс распада матричные элементы в первом приближении теории возмущения. Тогда структура лагранжианов совпадает со структурой соответствующих матричных элементов.

Теперь можем сделать следующий вывод. Для выполнения инвариантности лагранжианов распадов относительно преобразований в пространстве I необходимо, чтобы:

1/ в лагранжиан не входили шпурионные поля или входило четное число шпурионных полей $\Phi_{s}(x, x) = S(x) \amalg (x)$, где S(x) скалярное обычное поле, $\amalg (x)$ - спинорное изополе, если число спинорных изополей, соответствующих частицам в процессе распада /наблюдаемые частицы, имеющие I=1/2 в начальном и конечном состояниях/, четно;

2/ в лагранжиан было введено нечетное число шпурионных полей, если число спинорных изополей, соответствующих наблюдаемым частицам в процессе распада, нечетно.

3. НЕКОТОРЫЕ ПРИМЕРЫ

Для иллюстрации приведенных выводов рассмотрим следующие распады:

 $1/\mu \rightarrow e_{\nu\nu}$

Здесь имеем четыре спинорных изополя. Согласно 1/ в лагранжиан не входят шпурионные поля. С другой стороны, известно, что такой распад описывается лагранжианом вида $\mathbf{J}^{\ell} \times \mathbf{J}^{\ell}$, где \mathbf{J}^{ℓ} - лептонный ток. В нашем подходе, как показано в'12, существует такой же ток. Используя лептонный ток в объединенном пространстве, имеем в лагранжиане приведенного типа комбинации обычных /спинорных/ полей, которые инвариантны относительно лоренц-преобразований, и комбинации внутренних /спинорных/ изополей, которые инвариантны относительно в внутреннем пространстве / 1 - инвариантны/.

В таком лагранжиане для распадов $\mu^- \rightarrow e^- \bar{\nu}_e \nu_\mu$, $\mu^+ \rightarrow e^+ \nu_e \bar{\nu}_\mu$ имеем множитель

121

$$\chi^{*(\mu,\nu_{\mu})}_{\chi}(x)\chi^{(\mu,\nu_{\mu})}_{\chi}(x)\chi^{*(e,\nu_{e})}_{\chi}(x)\chi^{(e,\nu_{e})}_{\chi}(x)$$

(μ,ν_{μ}) (e,ν_{e}). где χ (x) и χ (x) являются спинорными изополями групп лептонов (μ,ν_{μ}) и (e,ν_{e}) соответственно. Выражение /2/ I – инвариантно. Оно дает правила отбора. Действительно, если разложим χ по шаровым спинорам, то получим для матричных элементов распада μ мезонов множитель типа /1/ или разрешенные правила: $I_{3}^{(\mu)} = I_{3}^{(e)} + I_{3}^{(\mu)} + I_{3}^{(\mu)}$, $I_{4}^{(\mu)} = I_{3}^{(e)} + I_{3}^{(\nu)} + I_{3}^{(\nu)}$, т.е. правило $\Delta I_{3} = 0$. Имеем схемы /см. табл. 1/

$$\mu^{-} \rightarrow e^{-} \bar{\nu}_{e} \nu_{\mu}$$

$$I_{3}: -1/2 -1/2 -1/2 1/2$$

$$D_{3}: -1/2 -1/2 1/2 -1/2$$

$$\mu^{+} \rightarrow e^{+} \nu_{e} \bar{\nu}_{\mu}$$

$$I_{3}: 1/2 1/2 -1/2$$

$$D_{3}: 1/2 -1/2 -1/2 1/2$$

Здесь видим, что D_3 , который играет роль лептонного числа, также сохраняется. Это легко вывести, если учесть закон сохранения заряда и соотношение $Q = I_3 + D_3 \cdot B$ дальнейшем будем предполагать, что во всех лептонных распадах D_3 - "хорошее" квантовое число, т.е. для всех лептонных распадов справедлив закон сохранения D_3 .

Следовательно, с учетом изоспинов и D-спинов лептонов попучаем простые правила отбора $\Delta L_3 = 0$, $\Delta D_3 = 0$.

Далее рассмотрим

 $2/\pi \rightarrow \mu \dot{\nu}$

Согласно 1/ лагранжиан, описывающий такие распады, должен содержать I- инвариантный множитель типа $\partial_{\mu} \pi_{\mu} (x) \chi^{(\mu, \nu_{\mu})} (x) \chi^{(\mu, \nu_{\mu})} (x),$ $\pi_{\mu} (x) \chi^{(\mu, \nu_{\mu})} (x) \mathcal{J}_{\mu} \chi^{(\mu, \nu_{\mu})} (x)$ и т.д., где $\pi(x)$ - внутреннее векторное изополе пионов, \mathcal{F} - матрица уравнения спинорного изополя. Комбинации $\chi \chi$, $\chi \mathcal{J}_{\mu} \chi$ входят в лагранжианы с $\mathbf{J}^{(\mu, \nu_{\mu})}$.Так как приведенные комбинации I-инвариантные, получим согласно /1/ $\Delta \mathbf{I}_{3} = \mathbf{0}$. Конкретно по схеме

	π ⁺ →	$\mu^+ \nu_{\mu};$	π -	$\rightarrow \mu^{-} \overline{\nu_{\mu}}$
I.3:	1	1/2 1/2	-1	-1/2 -1/2
D 3:	0	1/2 -1/2	0	-1/2 1/2

Теперь рассмотрим распады

 $3/K \rightarrow \mu\nu$.

Здесь имеем три спинорных изополя. Согласно 2/ необходимо вводить в лагранжиан шпурионное поле. I - инвариантная часть лаг- (μ, ν_{μ}) (μ, ν_{μ}) ранжиана должна принимать вид Ш $(x) Q_K K(x) \chi$ $(x) Q_K \chi$ (x), где Ш (x) - внутреннее спинорное поле шпурионов, K(x) - внутреннее спинорное поле каонов. Имеем распады по схемам /см. табл.2/

 $K^{+} \rightarrow \mu^{+} \nu_{\mu} + s_{2} ; \qquad K^{-} \rightarrow \mu^{-} \bar{\nu_{\mu}} + s_{2}$ $I_{3} : 1/2 \quad 1/2 \quad 1/2 \quad -1/2 \qquad -1/2 \quad -1/2 \quad 1/2 \qquad 1/2 \qquad 0$ $D_{3} : 0 \quad 1/2 - 1/2 \quad 0 \qquad 0 \quad -1/2 \quad 1/2 \quad 0$ $S_{\pi} : 1 \quad 0 \quad 0 \quad 1 \qquad -1 \quad 0 \quad 0 \quad -1$

Эти распады происходят с $\Delta I_3 = 0$, $\Delta D_3 = 0$ и $\Delta S = 0$. Подчеркнем, что такая простая закономерность имеет место только при учете ненаблюдаемого шпуриона и изоспинов лептонов.

В дальнейшем для краткости допустим, что всегда можно подобрать подходящие лагранжианы распадов, которые лоренц- и I -инвариантны.

Рассмотрим распады, в которых нет лептонов и странных частиц, например $\eta \to 3\pi$. Согласно 1/ имеем схемы распадов:

	'η →	$3\pi^{\circ}$;	$\eta \rightarrow \pi^{+}$	π ⁻ π°
I 3 :	0	0	01-	10
s _n :	0	0	0 0	0 0

Здесь мы также получили правила $\Delta I_3 = 0$, $\Delta S = 0$ ($\Delta D_3 = 0$, $\Delta B = 0$). Рассмотрим распады с участием фотонов:

47		π^+	→ μ ⁺	ν_{μ}	y ;	`η →	$\pi^+\pi^-$	-v	
	1 ₃ :	1	1/2	1/2	0	0	1 -1	0	
	s _n :	0	0	0	0	0	0 0	0	
5/		K+	→ e ⁺	ν	$\gamma + s_2$;	K+ →	<i>π</i> + <i>π</i> ⁶	γ ₊	`\$ ₂
	1.:	1/2	1/2	1/2	0 _1/9	1 /9	1 0	•	1 /0

Распады π и η описываются лагранжианами, удовлетворяющими требованию 1/, распады К ~ требованию 2/. Рассматриваемые процессы происходят, как видно, по правилам $\Delta L_{3}\simeq$ 0, $\Delta S_{n}=0$, ΔD_{3} = 0.

1

1

0 0 0

1

Наконец, рассмотрим полулептонный распад 😤 -гиперона, в котором участвует шпурион

 $\Xi^{-} \rightarrow \Lambda \ e^{-} \ \overline{\nu_{e}} \ + \ s_{1}$ I₃: -1/2 0 -1/2 -1/2 1/2 S_H: -2 -1 0 0 -1

0

0 0

S_Π: 1

В данном случае лагранжиан строится по правилу 2/. Процесс происходит по закону $\Delta I_{,3} = 0$, $\Delta S = 0$, $\Delta Q = 0$, $\Delta D_{,3} = 0$, $\Delta B = 0$.

ЗАКЛЮЧЕНИЕ

Мы рассмотрели несколько распадов разных частиц по разным модам и показали, что эти распады происходят с простой закономерностью: $\Delta I_3 = 0$, $\Delta S = 0$, $\Delta D_3 = 0$, $\Delta B = 0$, $\Delta Q = 0$ - при учете значения внутренних характеристик всех частиц в начальных и конечных состояниях: Q, I_3 , D_3 , B, S -адронов, лептонов, фотона и шпуриона. Если теперь, как обычно, не учитывать внутренних характеристик лептонов и шпурионов; то будем иметь правила $\Delta Q^a = 0, \pm 1, ..., \Delta S^2 = 0, \pm 1, ..., \Delta I_3^2 = 0, \pm 1/2$ и т.д., где индекс 3 обозначает адроны.

Хотим сделать замечание, что исключительно важную роль в приведенной простой закономерности играют изоспины /и D спины/ лептонов, изоспины и странности ненаблюдаемых свободных шпурионов.

Все полученные результаты основываются на теоретическом исследовании симметрии и формулировке полевой теории в объединенном восьмимерном пространстве.

В следующих работах представим последовательный анализ экспериментальных данных по распадам и также обсудим связь между нашими правилами отбора и правилами $\Delta Q^a = \Delta S^a$, $|\Delta S^a| = 1$, $\Delta I^a = 1/2$.

В заключение авторы выражают глубокую благодарность профессору В.А.Мещерякову, профессору А.А.Кузнецову, М.Ф.Лихачеву за постоянное внимание к работе, профессору Б.С.Барбашову за ценные указания и обсуждения.

ЛИТЕРАТУРА

- 1. Duong van Phi. Cahiers de Phys., 1967, vol.27, p.101.
- 2. Гейзенберг В. Введение в единую полевую теорию элементарных частиц. "Мир", М., 1968.
- 3. Bricman C. et al. Review of Particle Properties, Particle Data Group. April 1980 Edition.
- 4. Duong van Phi. Bull. of HochiMinh Univ., 1977, 2, p.95.
- 5. Зыонг Ван Фи. Изв. вузов, физика, 1964, 6, с.71.
- 6. Duong van Phi. Bull. of HichiMinh Univ., 1979, 4, p.68.
- 7. Duong van Phi. Rep.Conf.of Phys., Hanoi, 1970, p.12.
- 8. Газиорович С. Физика элементарных частиц. "Наука", М., 1959.
- 9. Duong van Phi. Bull. of HochiMinh Univ., 1977, 2, p.87.
- 10. Duong van Phi. Math.Phys.Journ., Hanoi, 1968, 1-2, p.6.
- 11. Duong van Phi, Nguyen Mong Giao. Int.Conf. on High Energy Phys., Lisbon, 1981, vol.50, p.305.

Рукопись поступила в издательский отдел 30 декабря 1981 года.