

СООБЩЕНИЯ Объединенного института ядерных исследований

дубна

6440/9

28/411-81 P1-81-679

А.И.Аношин, Б.З.Белашев, В.Б.Любимов, Л.М.Сороко, М.К.Сулейманов, А.П.Чеплаков

АНАЛИЗ СПЕКТРОВ, СОДЕРЖАЩИХ РЕЗОНАНСЫ, ПРИ ПОМОЩИ ФУРЬЕ-АЛГОРИТМА

введение

Применение фурье-алгоритма для обработки экспериментальных спектров не ново/1-5/.В указанных работах информация о структуре спектра получалась путем анализа его фурье-образа с привлечением данных о функции приборного уширения, измеренной в независимом эксперименте. Преимущество фурье-алгоритма над традиционными способами обработки спектров заключается в возможности обработки без привлечения априорной информации о спектре, в исключении эффекта приборного уширения, в устранении неизвестного плавного фона.

Однако в реальных условиях надежная информация о функции приборного уширения, как правило, отсутствует, и это затрудняет применение классического фурье-алгоритма для анализа структуры неразделенных резонансов. Кроме того, в классическом фурье-алгоритме сложно определять близкие ширины резонансов /8/.

С целью устранения указанных недостатков был разработан новый вариант фурье-алгоритма, излагаемый в статье.

ОПИСАНИЕ АЛГОРИТМА

Сущность алгоритма продемонстрируем на модели неразделенного дублета некогерентных резонансов с энергиями E_1, E_2 ширинами Γ_1, Γ_2 и относительными вкладами a_1, a_2 . Плотность распределения f(E) описывается формулой

$$f(\mathbf{E}) = a_{1} \frac{\frac{\Gamma_{1}/2}{(\mathbf{E}-\mathbf{E}_{1})^{2} + \Gamma_{1}^{2}/4} + a_{2} \frac{\Gamma_{2}/2}{(\mathbf{E}-\mathbf{E}_{2})^{2} + \Gamma_{2}^{2}/4}$$
 /1/

$$\mathcal{F}(\omega) = \frac{\mathbf{a}_1}{2} e^{-\frac{\Gamma_1}{2} |\omega| - i\omega \mathbf{E}_1} + \frac{\mathbf{a}_2}{2} e^{-\frac{\Gamma_2}{2} |\omega| - i\omega \mathbf{E}_2}, \qquad /2/$$

где ω - энергетическая частота, имеющая размерность времени. Если $\mathcal{F}(\omega)$ умножить на функцию в с параметром Г, удовлетво-

Если $\mathcal{F}(\omega)$ умножить на функцию е с параметром 1,удовлетво ряющим условию $0 < \Gamma < \Gamma_{1,2}$, то структура фурье-образа не изменится, а будет соответствовать ширинам $\Gamma_1 - \Gamma, \Gamma_2 - \Gamma$ при тех же энергиях и вкладах резонансов. Оценка спектра $\mathbf{f}(\mathbf{E})$, полученная обратным фурье-преобразованием функции $\frac{\Gamma}{2}|\omega|$, выражается формулой $\mathcal{F}(\omega)$ е

$$\hat{f}(E) = a_1 \frac{(\Gamma_1 - \Gamma)/2}{(E - E_2)^2 + (\Gamma_1 - \Gamma)^2/4} + a_2 \frac{(\Gamma_2 - \Gamma)/2}{(E - E_2)^2 + (\Gamma_2 - \Gamma)^2/4} \cdot /3/$$

На <u>рис. 1</u> показан исходный спектр f(E) при $E_1=1,225$ ГэВ, $E_2 = 1,650$ ГэВ, $\Gamma_1 = \Gamma_2 = 0,6$ ГэВ, $a_1=0,3, a_2=0,15$ и дана его оценка $\hat{f}(E)$, полученная при $\Gamma=0,375$ ГэВ и интерполированная на четыре точки в отсчетном интервале. На <u>рис. 2</u> приведены действительные части $\Im(\omega)$ и $\Im(\omega)e^{-\frac{\Gamma}{2}[\omega]}$, модулирующие высокую частоту $L_E = 13,5$ ГэВ. На <u>рис. 26</u> более четко, чем на <u>рис. 2a</u>, видны низкочастотные осцилляции, соответствующие дублетной структуре. Наиболее наглядно особенности спектра проявляются в оценке $\hat{f}(E)$, где компоненты дублета оказались разделенными благодаря уменьшению их ширин. Из оценки спектра на <u>рис. 1</u> непосредственно находим ширины спектральных линий: $\Gamma_1 - \Gamma = 0,225$ ГэВ, $\Gamma_2 - \Gamma = 0,225$ ГэВ, а по ним и параметру Γ – ширины компонент неразделенного дублета $\Gamma_{1,2} = 0,600$ ГэВ, а также энергии E_1, E_2 и вклады a_1, a_2 . Найденные параметры совпадают с модельными.

Реальные спектры f(E) можно рассматривать как свертку истинного спектра f₀(E), содержащего резонансы, и функции приборного уширения g(E)

$$f(E) = f(E) \otimes g(E)$$
.

/4/

В частотном представлении этой модели отвечает соотношение факторизации

$$\mathcal{F}(\omega) = \mathcal{F}_0(\omega) \cdot \mathbf{G}(\omega),$$
 /5/
где $\mathcal{F}(\omega), \mathcal{F}_0(\omega), \quad \mathbf{G}(\omega) = фурье-образы функций f(E), f_0(E), g(E). Из$

соотношения /5/ видно, что умножение $\mathfrak{F}(\omega)$ на е $\mathfrak{F}(\omega)$ эквивалентно умножению $\mathfrak{F}_0(\omega)$ на ту же функцию. Тогда в оценке $\mathfrak{f}(E)$ каждая спектральная линия, соответствующая резонансу с уменьшенной шириной, размывается функцией g(E). Таким образом, если произвести подгонку отдельных спектральных линий $\mathfrak{f}(E)$, то можно получить сведения как о резонансе, так и о неизвестной функции g(E).

<u>Рис.1</u>. Результаты моделирующих расчетов: E₁=1,225 ГэВ; E₂ = =1,650 ГэВ; $\Gamma_1 = \Gamma_2 = 0,6$ ГэВ; a₁ =0,3; a₂ =0,15, полученные при $\Gamma = 0,375$ ГэВ,

Считая, что функция приборного уширения формируется многими независимыми факторами, естественно предположить, что g(E) можно описать гауссианом g(E) = $e^{-E^{2}/a^{2}}$ с полушириной a. Гауссианом будет также фурье-образ $G(\omega) = a\sqrt{2\pi} \cdot e^{-a^{2}\omega^{2}/4}$ /6/. Из /5/ следует, что уменьшить ширину функции размытия можно, умножая $\mathcal{F}(\omega)$ на $e^{\beta^{2}\omega^{2}/4}$ ($|\beta| < |a|$). Новая функция размытия $g_{1}(E)$ в оценке $\hat{f}(E)$ получается обратным преобразованием фурье функции $G(\omega)e^{\beta^{2}\omega^{2}/4}$ и является гауссианом $g_{1}(E) = \frac{a}{\sqrt{a^{2}-\beta^{2}}}e^{-\frac{a^{2}}{2}(a^{2}-\beta^{2})}$

с полушириной
$$\sqrt{\alpha^2 - \beta^2}$$
.

Теперь рассмотрим более общий случай, когда $\mathfrak{F}(\omega)$ умножается на

$$= \frac{\Gamma}{2} |\omega| \pm \frac{\beta^2 \omega^2}{4} .$$

Параметры Γ и β^2 выбираем так, чтобы функция

$$\mathcal{F}(\omega) e^{\frac{\Gamma}{2}|\omega|} \pm \frac{\beta^2 \omega^2}{4}$$

затухала в области высоких частот. При этом Г может превосходить хотя бы одну из ширин резонансов спектра. Пусть, напри-

нанс с энергией Е 1 будет входить в $\mathcal{F}(\omega)e^{\frac{\Gamma}{2}|\omega|} - \frac{\beta^2\omega^2}{4}$ в виде

$$a\sqrt{2\pi} \frac{a_1}{2} e^{\frac{(\Gamma - \Gamma_1)^2}{4(a^2 + \beta^2)}} \cdot e^{-\frac{a^2 + \beta^2}{4} [|\omega| - \frac{(\Gamma - \Gamma_1)}{a^2 + \beta^2}]^2 - i\omega E_1}$$

Это означает, что в $\widehat{\mathbf{f}}(\mathbf{E})$ этот резонанс имеет уже не брейтвигнеровскую, а δ -образную форму с вкладом

$$a'_{1} = a_{1} \cdot \frac{a}{2\sqrt{a^{2}+\beta^{2}}} \cdot e^{\frac{(1-\Gamma_{1})^{2}}{4(a^{2}+\beta^{2})}}$$

Функция размытия в оценке $\widehat{f}(E)$ получается обратным преобразованием Фурье функции

$$\frac{1}{\sqrt{a^2+\beta^2}\sqrt{2\pi}e} = \frac{-\frac{a^2+\beta^2}{4}}{4} \left[|\omega| - \frac{(\Gamma-\Gamma_1)}{a^2+\beta^2}\right]^2$$

и выражается формулой

$$g_{1}(E-E_{1}) = \frac{\pi - 1}{\pi} e^{-\frac{(E-E_{1})^{2}}{\alpha^{2} + \beta^{2}}} \cos\left[\frac{(\Gamma - \Gamma_{1})(E-E_{1})}{\alpha^{2} + \beta^{2}}\right].$$
 /6/

Произведя подгонку спектра $\widehat{f}(E)$ с использованием приведенных формул по известным параметрам Γ и β^2 , определяем E_1, Γ_1, a_1 и a.

Еще одна характерная особенность рассматриваемого случая это отбор резонансов в $\hat{f}(E)$ по ширине. Если в исходном спектре присутствуют резонансы со значительно отличающимися ширинами, но примерно одинаковыми вкладами, то в $\hat{f}(E)$ наиболее сильно проявляются резонансы с меньшими ширинами. Узкие резонансы, размываемые функцией /б/, подавляют остальные компоненты структуры спектра. Эти нежелательные искажения устраняются путем режекции соответствующих узким резонансам частот в

 $\frac{\Gamma}{2}|\omega| = \frac{\beta^2 \omega^2}{4}$ с использованием режекторных фильтров в частотном пространстве /?/.

В большинстве случаев спектры, содержащие резонансы, наблюдаются на плавном фоне. В частотном представлении резонансы имеют широкий диапазон частот. Если же частоты фона сосредоточены вблизи нулевой частоты и отсутствуют в области высоких

частот, то умножение $f(\omega)$ на е $\frac{\Gamma}{2}|\omega| \pm \frac{\beta^2 \omega^2}{4}$ мало меняет вклад фона в оценку $\hat{f}(E)$. Это позволяет отсчитывать интенсивность выделенных спектральных линий в оценке $\hat{f}(E)$ от уровня фона. Фон уменьшают путем фильтрации высоких частот спектра.

РАЗРЕШАЮЩАЯ СПОСОБНОСТЬ

Так же, как и в других фурье-алгоритмах, предельное разрешение по Е ограничивается шумом. Предельное разрешение Δ связано с шириной информационной области $\mathcal{F}(\omega) \, \omega_{\Gamma P}$ соотношением

$$\Delta = 2\pi/\omega_{\rm PD}$$

здесь $\omega_{\Gamma P}$ - частота, отделяющая информационную область частот, где фурье-образ сигнала превышает фурье-образ шума, от неинформационной, где это соотношение обратное. В случае аддитивного шума частотные компоненты сигнала и шума независимы и ум-

ножение $\mathcal{F}(\omega)$ на е $\frac{\Gamma}{2}|\omega| \pm \frac{\beta^2 \omega^2}{4}$ не меняет отношения сигналшум в каждом частотном канале, а следовательно, и $\omega_{\rm rp}$. В случае шума, обусловленного статистическим разбросом числа событий, частотные компоненты сигнала и шума связаны между собой сложным образом. В этой работе $\omega_{\rm rp}$ определяется как частота, $\Gamma_{\rm resc} = \frac{\beta^2 \omega^2}{2}$

начиная с которой,
$$|\mathcal{F}(\omega)| \in \frac{1}{2} |\omega| = \frac{1}{4}$$
 монотонно возраста-
ет с увеличением ω . Поэтому заданные параметры Γ и β^2 , а также
шум определяют $\omega_{\Gamma p}$. Наоборот, задавая $\omega_{\Gamma p}$, мы определяем верхнюю
границу параметров Γ и β^2 .

5

17/

МЕТОДИЧЕСКИЕ ВОПРОСЫ ПОДГОТОВКИ ДАННЫХ

Опишем две процедуры подготовки данных для разработанного варианта фурье-алгоритма. Процедура 1 заключается в том, что к спектру добавляется начальная точка, имеющая примерно такое же значение, что и последняя точка спектра, после этого спектр сдвигают по оси абсцисс на его длину и производят симметризацию сначала относительно добавленной точки, а затем относительно начала координат. Полученный спектр рассматривается на широком интервале энергий, центрированном относительно начала координат. Оставшимся точкам интервала приписывают значения последней точки исходного спектра, а из полученного спектра вычитают среднее, вычисленное на всем интервале. Начальную точку в процедуре 1 добавляют для того, чтобы уменьшить возможные искажения на границе спектра. Симметризация относительно этой точки обеспечивает плавное поведение фона на широком интервале. Симметризация относительно начала координат обеспечивает действительность фурье-образа. Сдвиг спектра по оси абсцисс проводят с целью сделать более наглядным поведение фурье-образа, модулирующего высокую частоту.

 $\frac{dN(M_{9dp})}{dM_{9dp}}$ (пр) пар в $\pi^{-12}C$ взаимодействии при P_{π} .=40 ГэВ/с и его оценка $\hat{f}(M_{9dp})$,полученная при помощи процедуры 1 /а/ и процедуры 2 /6/.

Процедура 2 состоит в том, что из исходного спектра вычитают линейно-меняющийся от первой до последней точки спектра фон и среднее значение полученного спектра, а затем сдвигают спектр по оси абсцисс и симметризуют относительно начала координат. Полученный спектр размещают, как и в процедуре 1, на широком интервале энергий. Процедуру 2 применяют в тех случаях, когда первая и последняя точки спектра имеют близкие значения.

ПРИМЕР

На <u>рис. 3</u> приведены экспериментальные спектры по эффективной массе $M_{900}(\pi p)$ пар в $\pi - 12$ С взаимодействиях и результаты их обработки фурье-алгоритмом с параметром $\Gamma = 0,80$ ГэВ/с² и $\beta^2 = 0,069$ /ГэВ/с²/² при помощи процедур 1 и 2. В оценке $f(M_{900})$ произведена интерполяция на восемь точек в отсчетном интервале. Оценка точности результатов получалась путем варырования в пределах статистической ошибки исходного спектра и фиксирования соответствующих изменений в $f(M_{900})$. Отрицательные значения $f(M_{900})$ возникают потому, что "нуль" в действительности соответствует среднему, вычисленному в процедурах 1 и 2. Из <u>рис. 3</u> видно, что применение процедур 1 и 2 дает лишь незначительно отличающиеся результаты. Статистика 10^3 частиц на канал в исходном спектре дает хорошие результаты.

ЗАКЛЮЧЕНИЕ

Разработан новый вариант фурье-алгоритма обработки спектров. Алгоритм позволяет выявлять брейт-вигнеровские резонансы в исходных экспериментальных данных без привлечения априорной информации о функции приборного уширения и форме фона. Численное моделирование и обработка экспериментальных данных подтверждают работоспособность нового фурье-алгоритма обработки. Необходимая для хорошей работы алгоритма статистика составляет примерно 10⁻³ частиц на канал.

Авторы благодарят М.И.Подгорецкого и Ф.С.Джепарова за полезное обсуждение.

ЛИТЕРАТУРА

- 1. Сороко Л.М. ОИЯИ, 1-5030, Дубна, 1970.
- 2. Дубовик В.М. и др. ОИЯИ, Р1-5340, Дубна, 1970.
- 3. Дубовик В.М. и др. СИЯИ, Р2-5659, Дубна, 1971.
- Inouye T., Harper T., Rasmussen. Nucl.Instr. and Meth., 1969, 67, p.125-132.

- 5. Аношин А.И. и др. ОИЯИ, Р1-80-574, Дубна, 1980.
- 6. Сороко Л.М.Основы голографии и когерентной оптики. "Наука", М., 1971.
- 7. Сб.ст. "Введение в цифровую фильтрацию" под ред. Р.Богнера и А.Константинидиса. "Мир", М., 1976.

Рукопись поступила в издательский отдел 30 октября 1981 года.