

Объединенный институт ядерных исследований дубна

69 2-82

4/1-82

P1-81-617

Б.Словинский, Э.Мулас*, Л.С.Охрименко

ЭКСПЕРИМЕНТАЛЬНАЯ ОЦЕНКА РАСПРЕДЕЛЕНИЯ ПО ИМПУЛЬСАМ НУКЛОНОВ В ЯДРЕ КСЕНОНА

Направлено в ЯФ

Варшавский технический университет, ПНР.

1. ВВЕДЕНИЕ

В столкновениях с частицами высоких энергий атомное ядро представляет собой уникальный объект для исследования ряда важных и интересных явлений, которые в средах меньшей плотности либо выступают исключительно редко, либо вовсе себя не проявляют /см., например,/1,2/ /. Но при изучении такого рода эффектов с помощью ядерных мишеней, как правило, появляется большой фон, обусловленный как вторичными взаимодействиями, так и движением нуклонов ядра. Поэтому исследование механизма взаимодействия релятивистских частиц и ядер с атомными ядрами тесно связано с изучением ядерных структур, в особенности внутриядерного движения нуклонов. Кроме того, экспериментальное определение импульсного распределения ядерных нуклонов представляет большой самостоятельный интерес с точки зрения исследования структуры ядра, в частности, как источник ценной информации об одночастичных ядерных функциях нуклонов и корреляциях между нуклонами /3/.

Существующая в настоящее время экспериментальная информация о движении внутриядерных нуклонов, полученная путем зондирования ядер частицами высоких энергий, относится почти исключительно к легким ядрам/1.4-7/. При этом определялись, в основном, средние значения импульсов. В сущности, со времен пионерских работ М.Г.Мещерякова/1/ данная проблематика до настоящего времени не получила заметного развития, хотя сильно возрасла потребность в соответствующих данных.

В настоящей работе проведено исследование реакции

$$\pi^-$$
 + Xe $\rightarrow \pi^-$ + p + A \sim

при 3,5 ГэВ/с, А^{*} означает остаточное ядро. Использован также экспериментальный материал, полученный нами ранее^{/8/} и относящийся к реакциям

$$\pi^{+} + Xe \rightarrow \pi^{+} + p + A'$$
 /2'/

и

$$\pi^+$$
 + Xe $\rightarrow \pi^\circ$ + p + A'

при 2,34 ГэВ/с. Как было показано одним из авторов^{/9/} реакции /1/ и /2/ в области энергий ≳1 ГэВ можно с большой вероятностью интерпретировать как прямое выбивание из ядра-мишени квазисвободных протонов, то есть как реакции типа

1

/1/

12''

$$\pi^{\pm} + p(Xe) \rightarrow \pi^{\pm} + p$$

13'1

13''1

$$\pi^+ + n(Xe) \rightarrow \pi^0 + p_*$$

При этом искажение угловых и импульсных распределений выбитых протонов, обусловленное вторичными взаимодействиями, несущественно. По параметру соударения г вероятность этих так называемых квазисвободных взаимодействий распределена таким образом, что половина их приходится на периферическую область ядра-мишени, то есть при $r \gtrsim 0,8~R_{Xe}$,где R_{Xe} - радиус ядраксенона, определенный на уровне 0,1 максимальной плотности ядра. Вид этой функции, по крайней мере качественно, согласуется с зависимостью от г квадрата модуля радиальной волновой функции ядра $R_{nfi}(r)$ при n=1/10/ Целью данной работы является извлечение при помощи статистического метода, основы которого разработаны нами ранее /8,11/, информации об импульсном распределении внутриядерной нуклонной мишени в реакции /3/. Исходными данными при этом являются, как и ранее/8/, двумерные распределения вторичных протонов по импульсам и углам их эмиссии. В работе использованы снимки со 180-литровой ксеноновой пузырьковой камеры /КПК/ ИТЭФ /Москва//16/ и 24литровой КПК ОИЯИ.

2. ЭКСПЕРИМЕНТАЛЬНЫЙ МАТЕРИАЛ

Было просмотрено 200 тысяч снимков со 180-литровой КПК, облученной в пучке π^- -мезонов с импульсом 3,5 ГэВ/с, и отобрано 193 так называемых двухлучевых случая π^- -Хе взаимодействий. В каждом из этих случаев был зарегистрирован в конечном состоянии один след быстрого π^- -мезона, уходящего из камеры, и один след протона, останавливающегося в камере. Среди частиц, принятых за протонные, может содержаться примесь медленных π^- -мезонов, поглощаемых ядрами без испускания протонов, оставляющих видимые в камере следы, а также примесь дейтронов и более тяжелых фрагментов. По имеющимся оценкам, эта примесь не превышает 10% для всех π^- -Хе взаимодействий при 3,5 ГэВ/с $\frac{12}{12}$, и следует ожидать, что она существенно меньше в случае обсуждаемых реакций /1/ и /2/ /см., например, $\frac{1}{1}$

Аналогичным образом можно оценить долю следов, приписываемых быстрым π^- -мезонам, а принадлежащим в действительности, главным образом, протонам. Она составляет не более 3%. В дальнейшем отобранные нами двухлучевые случаи π^- -Хе взаимодействий отождествляются с реакцией /1/ и, следовательно, согласно приведенным во введении соображениям - с реакцией /3/.Во всех случаях измерялись импульсы и углы эмиссии протонов. Вследствие методических соображений импульсы протонов заключены в

и

2

Таблица 1

Распределение случаев взаимодействия $\pi^{-}+Xe \rightarrow \pi^{-}+p+A'$ при 3,5 ГэВ/с по импульсу p_p и углу θ_p эмиссии протонов в л.с.

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$,			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	P. /Mab/c/	200- 300	300- 400	4 00- 500	500- 600	600– 700	700– 800
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0-20	0	3	3	• 0	 0	I
40-600II2II06 $60-80$ 0I2I7I59 $80-100$ 27I9I02 $100-120$ I340I $120-140$ 03I00 $140-160$ 00000	20-40	4	6	6	6	4	2
60-80 0 12 17 15 9 80-100 2 7 19 10 2 100-120 1 3 4 0 1 120-140 0 3 1 0 0 140 160 0 0 0 0 0	40-60	0	II	21	IO	6	I
80-100 2 7 I9 I0 2 I00-I20 I 3 4 0 I I20-I40 0 3 I 0 0 I40 I60 0 0 0 0 0	6080	0	12	17	15	9	I
IOO-I2O I 3 4 0 I I2O-I4O 0 3 I 0 0 I4O IGO 0 0 0 0	8 01 00	2	7	19	IO	2	I
120-14 0 0 3 1 0 0	100-120	I	З	4	• 0	I	I
	120-14 0	0	3	I	0	0	0
	I40-I6 0	0	0	0	0	0	0
I60-I80 0 0 0 0 0	160-180	0	0	0	0	O	0

интервале значений /200 \div 800/ МэВ/с. Распределение отобранных событий по импульсу р_р и углу $_{\alpha}\theta_{p}$ эмиссии протонов в лабораторной системе отсчета /л.с./ приведено в <u>табл.1</u>.

3. ФУНКЦИЯ РАСПРЕДЕЛЕНИЯ ВНУТРИЯДЕРНЫХ НУКЛОНОВ

ПО ИМПУЛЬСАМ

Чтобы найти функцию $f(p_{\rm F})$ распределения нуклонов ядрамишени по импульсам $p_{\rm F}$, определим, как ранее /11/функцию h плотности вероятности четырех кинематических переменных, которые в дальнейшем будут считаться случайными переменными:

$$h = h(p_{\pi}, \cos\theta_{\pi}, \theta_{\pi}, \phi)$$
, ϕ is a second second second second second (4/a).

Здесь $\mathbf{p}_{\mathbf{F}}$, $\theta_{\mathbf{F}}$, ϕ - сферические координаты вектора $\vec{\mathbf{p}}_{\mathbf{F}}$ В л.с. или, что то же самое, в системе покоя ядра-мишени, $\cos \theta_{\mathbf{F}} = \frac{1}{2}$ = $\vec{\mathbf{p}}_{\pi} - \vec{\mathbf{p}}_{\mathbf{F}} / |\vec{\mathbf{p}}_{\pi} - ||\vec{\mathbf{p}}_{\mathbf{F}}|$, где $\vec{\mathbf{p}}_{\pi} -$ вектор импульса первичного π^- -мезона в л.с.; θ_p - угол эмиссии нуклона отдачи в л.с. После преобразования этой функции к другим переменным:

$$\begin{array}{c} \mathbf{p}_{\mathbf{p}} \approx \mathbf{p}_{\mathbf{p}} (\mathbf{p}_{\mathbf{F}}, \cos \theta_{\mathbf{F}}, \theta_{\mathbf{p}}, \phi), \\ \cos \theta_{\mathbf{p}} = \cos \theta_{\mathbf{F}}, \\ \theta_{\mathbf{p}} = \theta_{\mathbf{p}}, \\ \phi = \phi , \end{array} \right\}$$
(5/

получаем функцию F, связанную с h следующим соотношением:

$$h(\mathbf{p}_{\mathbf{F}},\cos\theta_{\mathbf{F}},\theta_{\mathbf{p}},\phi) = F(\mathbf{p}_{\mathbf{p}}(\mathbf{p}_{\mathbf{F}},\cos\theta_{\mathbf{F}},\theta_{\mathbf{p}},\phi),\cos\theta_{\mathbf{F}},\theta_{\mathbf{p}},\phi)|\mathbf{J}|.$$
 /6/

Здесь функция $p_p = p_p(p_F, \cos\theta_F, \theta_p, \phi)$ определяется на основе закона сохранения энергии и импульса для квазидвухчастичной реакции /3//11/якобиан преобразования

$$\mathbf{J} = \frac{\partial \mathbf{p}_{p}}{\partial \mathbf{p}_{F}} = \frac{(\cos\theta_{F} \cdot \cos\theta_{p} + \sin\theta_{F} \cdot \sin\theta_{p} \cdot \cos\phi) \mathbf{p}_{p}}{(\mathbf{E}_{\pi} - \mathbf{E}_{F})(\mathbf{p}_{p}/\mathbf{E}_{p}) - (\mathbf{p}_{\pi} - \mathbf{p}_{F}\cos\theta_{F})\cos\theta_{r} + \mathbf{p}_{n}\sin\theta_{r}\cos\theta_{r} + \mathbf{p}_{n}\sin\theta_{r}\cos\theta_{r}} / 7 / \frac{1}{2}$$

где E_{π^-}, E_F, E_p – полная энергия первичного π^- -мезона, нуклона мишени и протона отдачи; m_{π^-} , m_F, m_p массы покоя соответствующих частиц*. При определении функции p_p для средних и тяжелых ядер, в том числе и ядра ксенона, можно пренебречь эффектом внемассовости, обусловленным наличием энергии связи у внутриядерной нуклонной мишени.

Ввиду независимости переменных $\theta_{\rm F}, \phi$ и двумерной переменной ($p_{\rm p}, \theta_{\rm p}$) функцию F можно представить следующим образом:

$$F(\mathbf{p}_{p},\cos\theta_{F},\theta_{p},\phi) = f_{1}(\phi)f_{2}(\cos\theta_{F})f_{3}(\mathbf{p}_{p},\theta_{p}), \qquad /8/$$

где функции f_1 и f_2 можно аппроксимировать равномерным распределением в соответствующих интервалах значений переменных: $0 \le \phi \le 2\pi$ и $|\cos\theta_{\rm F}| \le 1$, в то время как функция f_3 $({\rm p}_{\rm p},\theta_{\rm p})$ определяется из экспериментальных данных, приведенных в табл.1. Таким образом, правая сторона равенства /6/ полностью определена, и функцию $f({\rm p}_{\rm F})$ можно получить как маргинальное распределение величины h /6/ по оси ${\rm p}_{\rm F}$ или, что то же самое, как проекцию функции h на ось ${\rm p}_{\rm F}$. С учетом /8/ имеем окончательно

$$f(\mathbf{p}_{\mathbf{F}}) = c \int_{-1}^{+1} d\cos\theta_{\mathbf{F}} \cdot \int_{0}^{\pi} d\theta \cdot \int_{0}^{2\pi} f_{3}(\mathbf{p}_{\mathbf{p}}, \theta_{\mathbf{p}}) |\mathbf{J}| d\phi, \qquad /9/$$

где С – нормировочная константа. Так как для величины р существует конкретная область, в хоторой она определена/11/то при численных расчетах по формуле /9/ необходимо считать, что

^{*} В выражении для якобиана преобразования в $^{/8/}$ перед дробью $(E_{\pi^+} - E_p)/E_F$ в числителе должен стоять знак "+".

подынтегральная функция вне этой области обращается в нуль. Следует также подчеркнуть, что отождествление функции $I_3(p_p)$, θ_p / с экспериментально определяемой таблицей данных /<u>табл.1</u>/ соответствует импульсному приближению с плоскими волнами /см., например, /13/ /. Такое приближение удовлетворительно реализуется как в случае легких ядер/7/, так и для периферической области средних и тяжелых ядерных мишеней /9/. Метод учета эффекта искажения разработан в ряде работ/14/.

4. АНАЛИЗ ЭКСПЕРИМЕНТАЛЬНЫХ ДАННЫХ

На основе полученных экспериментальных данных об импульсах и углах эмиссии протонов из реакции /1/ /табл. 1/ вычислены по методу Монте-Карло значения функции $f(p_F)$ для интервала значений $P_F = /0 \div 700$ / МэВ/с. Так как вид функции $f(p_F)$ не должен зависеть от энергии адрона, инициирующего взаимодействие данного типа /1/ и /2/ для одного и того же ядрамишени, то целесообразно определить экспериментальную оценку функции $f(p_F)$ как взвешенное среднее:

$$f(\mathbf{p}_{\mathbf{p}}) = \mathbf{W}_{\mathbf{r}} \cdot f_{\mathbf{r}}(\mathbf{p}_{\mathbf{p}}) + \mathbf{W}_{\mathbf{p}} \cdot f_{\mathbf{p}}(\mathbf{p}_{\mathbf{p}}), \qquad (10)$$

где f_1 и f_2 - оценки, полученные по экспериментальным данным из реакции /1/ и /2/ соответственно, причем экспериментальная оценка функции $f_3(p_p,\theta_p)$ для реакции /2/ была получена нами ранее $^{/8/}$; \mathbb{W}_1 и \mathbb{W}_2 - статистические веса, пропорциональные числу проанализированных случаев каждой реакции. Поскольку в общем случае рассеяния частиц на движущейся мишени кинематически допустимы два решения для p_p , симметричные относительно $p_f^{11/}$, то в силу закона сохранения энергии и импульса следует принять лишь одно, удовлетворяющее условию $p_p \ge p_F$. Численные значения функции $f(p_F)$ приведены в табл. 2.

Таблица 2

Значения функции, определенные по данным о реакциях /1/ и /2/, в зависимости от импульса р_F внутриядерных нуклонов ядра ксенона

р _. МэІ	<u></u>	50	100	150	200	300	400	500	600	700
f(p_)	0,446	0,440	0,355	0,300	0,242	0,128	0,055	0,017	0,005	0,001
δſ	0,027	0,028	0,021	0,028	0,014	0,016	0,016	0,007	0,003	0,001

В табл.2 даны также значения ошибок δ_{f} в определении функции $f(\mathbf{p}_{\mathbf{F}})$. Они вычислены по методу распространения ошибок на основании формулы /10/, причем ошибки δ_{i} в определении значений функций f_{i} / i =1,2/ получены из оценок дисперсии двух независимых источников ошибок:

$$\delta_{i}^{2} = (\delta_{s})_{i}^{2} + (\delta_{E})_{i}^{2}$$
.

Здесь $\delta_{\rm g}$ – ошибка, обусловленная методом численного интегрирования функции /9/; $\delta_{\rm E}$ – ошибка статистического характера, возникающая вследствие статистических флуктуаций результатов наблюдений, определяющих функцию $f_{\rm g}({\rm p}_{\rm p}, \theta_{\rm p})$ / <u>табл.1</u>/. Значения этой ошибки вычислялись по методу Монте-Карло в предположении, что оценка величины $f_{\rm g}({\rm p}_{\rm p}, \theta_{\rm p})$ в виде значений <u>табл.1</u> имеет пуассоновское распределение.

Определенные нами по экспериментальным данным значения функции $f(\boldsymbol{p}_{\rm F})$ можно описать нормальным распределением

$$f_N(p_F) = a_N exp(-p_F^2/2p_N^2),$$
 /12/

где a_N и p_N^- параметры, которые следует определить при статистической подгонке. Сравнение $f(p_F)$ с $f_N(p_F)$ графически изображено на рисунке. Имеются указания на то, что в интервале больших значений p_F импульсное распределение внутриядерных нуклонов описывается функцией /15/

$$f_{A}(p_{F}) = a_{A} \operatorname{ch}^{-2}(\frac{\pi p_{F}}{p_{A}})$$
 (13/

Численные значения параметров а и р функций $f_N(p_F)$ и $f_A(p_F)$ приведены в табл.3. Там же даны значения χ^2 использованной нами при фитировании тестовой статистики.

Можно сделать вывод, что экспериментальные значения f(p _F) удовлетворительно описываются обеими рассмотренными гипотезами, причем нормальное распределение более предпочтительно.

Следует подчеркнуть, что полученная в настоящей работе экспериментальная оценка функции распределения нуклонов ядра ксенона, усредненная по всем изотопам этого элемента, во-первых, относится, как отмечено во введении, к периферичес-ким нуклонам ядра и, во-вторых, справедлива в интервале больших значений $p_{\rm F}:p_{\rm F}\gtrsim 250$ МэВ/с. Дело в том, что таблица экспериментальных значений $f_3(p_{\rm p},\theta_{\rm p})$ / табл.1/ не интерполировалась в область значений $p_{\rm p}=/0\div 200/$ МэВ/с, для которой, следовательно, принято, что $f_3(p_{\rm p},\theta_{\rm p})=0.$ Как явствует из результатов проведенных расчетов/8/ интерполирование функции $f_3(p_{\rm p},\theta_{\rm p})$ в эту область может изменить значения функции $f(p_{\rm F})$ в интервале $p_{\rm F} \lesssim 200$ МэВ/с в пределах $\simeq 10\%$ и, таким образом, заметно повлиять на вид аппроксимирующей функции.

6: •

нуклонов ядра ксенона. Кружки соответствуют экспериментальным значениям, вычисленным по формуле /9/. Сплошной кривой изображена функция Гаусса, аппроксимирующая экспериментальные значения.

Таблица З

Значения параметров а и р функций $f_N(p_F) / 12 / и f_A(p_F) / 13 /,$ аппроксимирующих экспериментальные значения функции $f(p_F)$ импульсного распределения нуклонов ядра ксенона

			1	
	a	р/МэВ/с/	χ_n^2/n	P(%)
$a_N exp(\frac{p_F^2}{2p_N^2})$	0,425 <u>+</u> 0,002	194 <u>+</u> 7	3,4/7	84
$a_{A}ch^{-2}(\frac{\pi p_{F}}{p_{A}})$	0,461 <u>+</u> 0,016	687 <u>+</u> 21	7,1/7	42

 χ_n^2/n – значения тестовой статистики χ^2 при п степенях свободы, Р /%/ – вероятность, соответствующая этим значениям.

7

5. ВЫВОДЫ

Результаты выполненного в настоящей работе анализа экспериментальных данных, касающихся квазидвухчастичных взаимодействий *п*-мезонов с ядрами ксенона /реакции /1/ и /2//, можно суммировать следующим образом:

 Разработан статистический метод, позволяющий получить модельно независимым образом вид функции плотности вероятности распределения по импульсам нуклонов ядра-мишени.

2. Получена оценка импульсного распределения протонов ядра ксенона, соответствующая, по крайней мере качественно, радиальной волновой функции $R_n \rho_i(r)$ при n = 0.

ЛИТЕРАТУРА

- 1. Мещеряков М.Г. и др. ЖЭТФ, 1957, 33, с. 1185; 1958, 34, с. 1357; 1959, 36, с. 1631.
- 2. Балдин А.М. ЭЧАЯ, 1977, 8, с. 429; Лексин Г.А. В кн.: Элементарные частицы. Четвертая школа физики ИТЭФ, вып.2. Атомиздат, М., 1977, с. 5.
- 3. Zabolitzky J.G., Ey W. Phys.Lett., 1978, 76B, p. 527."
- 4. Kobberling M. et al. Nucl.Phys., 1974, A231, p. 504.
- 5. Антуфьев Я.П. и др. Письма в ЖЭТФ, 1974, 19, с. 657.
- 6. Meniz E.J. et al. Phys.Rev.Lett., 1971, 26, p. 445.
- 7. Вег Л. и др. ОИЯИ, Р1-80-863, Дубна, 1980.
- 8. Словинский Б., Томашевич А. ЯФ, 1978, 27, с. 1572.
- 9. Словинский Б. ЯФ, 1974, 19, с. 595.
- 10. Bohr A., Mottelson B.R. Nuclear Structure. New York, Amsterdam, 1969, vol.1.
- 11. Stowinski B. et al. JINR, E1-8694, Dubna, 1975.
- 12. Охрименко Л.С. и др. ОИЯИ, Р1-9692, Дубна, 1976.
- 13. Денисов Ф.П., Мехедов В.Н. Ядерные реакции при высоких энергиях. Атомиздат, М., 1972.
- Landaud G. et al. Nucl.Phys., 1971, A173, p. 337;
 Kullander S. et al. Nucl.Phys., 1971, A173, p. 357;
 Jakob G., Maris Th.A.J. Rev.Mod.Phys., 1966, 38, p. 121;
 1973, №1,p.6; Harrington D.R. Nucl.Phys., 1980, A343,
 p. 417.
- 15. Amado R.D. Phys.Rev., 1976, C14, p. 1264.
- 16. Кузнецов Е.В. и др. ПТЭ, 1970, №2, с. 56.

Рукопись поступила в издательский отдел 31 октября 1981 года.

8