

объединенный институт ядерных исследований дубна

5498/2-81

P1-81-599

А.Банцерек,* Ю.Вавжинский,* Л.С.Охрименко, Б.Словинский,* В.Чай *

РАСПРЕДЕЛЕНИЕ ИОНИЗАЦИОННЫХ ПОТЕРЬ В ЭЛЕКТРОННО-ФОТОННЫХ ЛИВНЯХ, ВЫЗВАННЫХ ГАММА-КВАНТАМИ С ЭНЕРГИЕЙ Е $p = (600 \div 2700)$ МэВ В ЖИДКОМ КСЕНОНЕ

Направлено в ЯФ

^{*} Варшавский технический университет

1. ВВЕДЕНИЕ

Изучение пространственного распределения ионизационных потерь в электронно-фотонных ливнях /ЭФЛ/, вызванных гамма-квантами высоких энергий, является предметом все возрастающего интереса, в основном, с методической точки зрения. Результаты этих исследований нашли наиболее важное практическое применение в экспериментах по изучению ядерных взаимодействий адронядро и ядро-ядро, равным образом в интервале энергий, достигаемых как на ускорителях, так и в космических лучах.

Настоящая работа является продолжением более ранних работ, в которых нами получено компактное аналитическое описание средних ионизационных потерь ливневых электронов и позитронов /далее: электронов/ в 3ФЛ, образованных гамма-квантами с энергией $E_{\gamma}=/60 \div 2000/$ МэВ $^{/3/}$. Цель данной работы состоит в уточнении значений параметров α^* , β , γ и δ феноменологической формулы $^{/1}/$:

$$\frac{\Delta E(E_{\gamma}, E_0, t, \rho)}{2\pi\rho\Delta\rho\Delta t} = \frac{\alpha^*}{2\pi\sigma^2} \cdot t^{\gamma} \cdot \exp[-(\beta t^2 + \frac{\rho^2}{2\sigma^2})], \qquad /1/$$

которая определяет зависимость от энергии ${\bf E}_{\gamma}$ гамма-кванта средних дифференциальных ионизационных потерь $\Delta {\bf E}({\bf E}_{\gamma}, {\bf E}_0, t, \rho)/2\pi\rho\Delta\rho\Delta t$ электронов с энергией выше некоторого порогового значения ${\bf E}_0$ на глубине t^* в элементе объема $2\pi\rho\Delta\rho\Delta t$ /этот элемент представляет собой кольцо радиусом ρ и толщиной $\Delta \rho$ в плоскости, перпендикулярной к $0{\bf P}$, а также толщиной Δt вдоль $0{\bf P}/$. Кроме этого, полученный нами экспериментальный материал позволил расширить область применения формулы /1/, по крайней мере качественно, до значения ${\bf E}_{\gamma}$ =2700 МэВ, что особенно важно для экспериментов, проводимых с использованием космических лучей.

Работа выполнена на снимках со 180-литровой ксеноновой пузырьковой камеры /КПК/ ИТЭФ /Москва/, облученной в пучке π^- -мезонов с импульсом 3,5 ГэВ/с, и 26-литровой КПК ЛВЭ ОИЯИ, экспонированной в пучке π^+ -мезонов с импульсом 2,34 ГэВ/с.

^{*}Глубина t развития ЭФЛ отсчитывается от точки конверсии первичного гамма-кванта, вдоль оси развития /ОР/ лавины.

2. ЭКСПЕРИМЕНТАЛЬНЫЙ МАТЕРИАЛ

8 результате просмотра 15 тыс. стереофотографий 180-л. КПК было отобрано 229 случаев ЭФЛ, удовлетворяющих соответствующим критериям. При аналогичном просмотре 25 тыс. стереоснимков 26-л. КПК получено 50 случаев ЭФЛ. Для каждого отобранного события ЭФЛ определялась, по суммарному пробегу ливневых электронов/ 2 /, энергия первичного гамма-кванта, образовавшего ливень, а также, как и ранее 1 /, набор величин

$$\frac{\Delta \sum_{i} r_{i}}{\Delta p \Delta t} = \frac{\Delta \sum_{i} r_{i} (E_{\gamma}, E_{0}, t, p)}{\Delta p \Delta t} .$$
 /2/

Эти величины представляют собой так называемые частичные сум-марные длины пробегов электронов лавины /ЧСП/, наблюдаемые в плоскости проекции снимка внутри прямоугольника размером $\Delta t = 0,588$ радиационных единиц /рад.ед./* вдоль 0Р и Δp -0,294 рад.ед. в направлении, перпендикулярном к 0Р.

В качестве пороговой энергии E_0 были взяты два значения, представляющие наибольший практический интерес: E_0 = $(1.5^{+1.0}_{-1.5})$ МэВ и E_0 = (3 ± 1.2) МэВ. Ранее $^{-1}$ первое значение пороговой энергии, E_0 = $(1.5^{+1.0}_{-1.5})$ МэВ, принималось нами практически равным нулю, так как оно соответствует учету ливневых электронов с минимальной длиной пробега, наблюдаемой в плоскости снимка, равной нулю. Однако результаты моделирования на ЭВМ коротких следов электронов в данных экспериментальных условиях показывают, что среднее значение пороговой энергии при этом получается равным E_0 = $(1.5^{-1}_{-1.5})$ МэВ.

Экспериментальная процедура более подробно описана в $^{1/}$ Для дальнейшего анализа использованы ливни, отобранные равным образом для настоящей работы, как и часть случаев ЭФЛ, полученная ранее $^{1/}$ и попадающая в рассматриваемый энергетический интервал: $E_{\gamma} = /600 \div 2700/$ МэВ. Таким образом, получен 361 случай ЭФЛ. Распределение всех этих событий по энергии E_{γ} приведено в табл.1.

Таблица l

Распределение случаев электронно-фотонных ливней, изучаемых в данной работе, по энергии $\mathbf{E}_{\mathbf{y}}$ гамма-квантов, образовавших

	IID III								
						1875			
/MaB/	<u>+</u> 70	<u>+</u> 125	<u>+</u> 125	<u>+</u> 125	+125	<u>+125</u>	+125	<u>+</u> 125	<u>+</u> 125
	53	89	62	47	45	28	19	12	6

^{*}Принято,что 1 рад.ед. жидкого ксенона равна 40,5+1,7 мм $^{/8}/.$

3. СТАТИСТИЧЕСКОЕ ОПИСАНИЕ РЕЗУЛЬТАТОВ ИЗМЕРЕНИЙ

Выполненный в настоящей работе анализ полученных экспериментальных данных состоит, как и ранее $^{/1}/$, во-первых, в определении проекции на плоскость снимка дифференциальных ионизационных потерь ливневых электронов /ДИП/, $\Delta e(E_y, E_0, t, p)$ / $\Delta p \Delta t$, соответствующих элементу растра площадью $\Delta p \Delta t$, по экспериментально измеренным значениям ЧСП, т.е. в преобразовании:

$$\frac{\Delta e(E_{y}, E_{0}, t, p)}{\Delta p \Delta t} = \eta \frac{\Delta \sum_{i} r_{i}(E_{y}, E_{0}, t, p)}{\Delta p \Delta t}.$$
/3/

Во-вторых, целью этого анализа является статистическое описание зависимости $\Lambda e(E_{\gamma},E_{0},t,p)/\Delta p\,\Delta t$ от E_{γ} , t и p для двух различных значений E_{0} : 1,5 МэВ и 3 МэВ, согласно эмпирическим функциям регрессии, введенным нами ранее $^{/1}/$.

3.1. Зависимость между ЧСП и ДИП

В работе $^{/2}$ / было получено линейное соотношение между суммарным пробегом ливневых электронов в пространстве, $\sum_i E_i$, и энергией E_V гамма-кванта, вызывающего ливень:

$$\mathbf{E}_{y} = a \cdot \sum_{i} \mathbf{R}_{i} , \qquad /4/$$

где a = /0,59+0,02/ МэВ/мм.

Зависимость между соответствующими дифференциальными величинами, а точнее, между $\Delta \Sigma_i r_i(E_{\gamma}, E_0, t, p)/\Lambda_i p \Delta t$ и $\Lambda_i e(E_{\gamma}, E_0, t, p)/\Delta p \Delta t$,

можно также формально представить в виде линейного соотношения /3/, однако при этом коэффициент η уже не обязательно должен быть постоянной величиной. В общем случае он является функцией \mathbf{E}_{γ} , \mathbf{E}_{0} , \mathbf{t} и \mathbf{p} :

$$\eta = \eta (\mathbf{E}_{\mathbf{v}}, \mathbf{E}_{\mathbf{0}}, \mathbf{t}, \mathbf{p}). \tag{5}$$

Из общефизических соображений модельного характера относительно пространственного развития ЭФЛ следует, что зависимость /5/можно свести, по крайней мере с точки зрения поставленной здесь методической задачи, к следующему виду:

$$\eta = \eta'(E_0) \eta''(E), \tag{6}$$

где величина $\eta'(E_0)$ является нормировочной константой, соответствующей данному конкретному значению энергии обрезания E_0 . В частности, η'/E_0 =1,5 MэB/ = 1,46. Зависимость же η от E_γ , t и p можно заменить функцией $\eta''(E)$ энергии E ливневых электронов.

С целью изучения зависимости η (E) было выполнено на ЗВМ ODRA~1305 моделирование 400 следов электронов с энергией $E=/1,5\div1000/$ МэВ в жидком ксеноне. Учтено при этом многократное кулоновское рассеяние, тормозное излучение и ионизационные потери, а также равновесный спектр ливневых электронов /напр. $^{/4}/$. В результате проведенного анализа получено, что коэффициент η является, с точностью $\pm 3\%$, постоянной величиной, равной при $E_0=1,5$ МэВ константе α в соотношении $^{/4}/$. Так как эта точность заметно превышает точность определения ЧСП /относительная дисперсия $\alpha_{\Lambda\Sigma_{\Gamma}}/\Lambda\Sigma_{\Gamma} = 0.20$, то в дальнейшем принято, что $\eta=\alpha$ для всего исследуемого интервала значений энергии гамма-квантов, образующих ливни.

3.2. Общий вид функции распределения ионизационных потерь в ЭФЛ

Одним из авторов /Б.С./ был предложен следующий общий вид функции, описывающей распределение ионизационных потерь ливневых электронов в плоскости снимка:

$$f(E_y, E_0, t, p) = \frac{\Delta e(E_y, E_0, t, p)}{\Delta p \Delta t} = f_1(E_y, E_0, t) f_2(E_y, E_0, p, t).$$
 /7/

Здесь: $f_1(E_y,E_0,t)$ - так называемая функция продольного развития ливня, описывающая развитие $3\Phi\Pi$ вдоль 0P, $f_2(E_y,E_0,p,t)$ - так называемая функция поперечного развития лавины, эквивалентная функции условной вероятности распределения ионизационных потерь в плоском слое вещества, перпендикулярном к 0P и находящемся на расстоянии t от точки конверсии первичного гамма-кванта. Выражение /7/ удобно тем, что в нем в явном виде фигурирует функция продольного развития $3\Phi\Pi$, которую можно получить, в частности, из одномерной каскадной теории 4.5, а также функция поперечного развития, ограничивающего угловую разрешающую способность детекторов гамма-квантов высоких энергий.

Воспользовавшись свойством осевой симметрии $3\Phi \Pi$ /в статистическом смысле/ легко преобразовать функцию /7/ в функцию $F(E_{\gamma},E_0,t,\rho)$ /1/ пространственного распределения ионизационных потерь ливневых электронов

$$F(E_{y}, E_{0}, t, \rho) = \frac{\Delta E(E_{y}, E_{0}, t, \rho)}{2\pi\rho\Delta\rho\Delta t} = F_{1}(E_{y}, E_{0}, t) F_{2}(E_{y}, E_{0}, \rho/t).$$
 /8/

Здесь

$$F_1(E_v E_0, t) = f_1(E_v, E_0, t)$$
 /9/

есть та же самая функция продольного развития ливня, в то время как функции \mathbf{F}_2 и \mathbf{f}_2 связаны простым интегральным уравнением

$$f_2(E_1, E_0, p, t) = 2 \int_0^\infty F_2(E_1, E_0, \rho, t) \frac{d\rho}{\sqrt{1 - p^2/\rho^2}}$$
. /10/

На основании общефизических соображений модельного характера относительно процесса развития $3\Phi\Pi$ в нашей ранее опубликованной работе 1 был установлен конкретный вид функций f_{1} и f_{2} :

$$f_1(E_y, E_0, t) = \alpha * t^y \exp(-\beta t^2),$$
 /11/

$$f_2(E_y, E_0, p \cdot t) = \frac{1}{\sqrt{2\pi} \sigma} \exp(-p^2/2\sigma^2),$$
 /12/

где параметры a^* , β , γ и σ являются, в свою очередь, функциями \mathbf{E}_{γ} и \mathbf{E}_{0} . а σ - также и переменной \mathbf{t} , Эти параметры надо определить по экспериментальным данным о ЧСП /2/. В настоящей работе значения таких параметров существенно уточнены на основании значительно большего числа изученных событий ЭФЛ в данном интервале значений энергии \mathbf{E}_{γ} . Функция /8/ с учетом формул /9/, /10/, /11/, /12/, а также полученных здесь численных значений параметров составляет полное описание пространственного распределения средних ионизационных потерь ливневых электронов в виде, данном соотношением /1/.

3.3. Продольное развитие ЭФЛ

В результате выполненного по тесту χ^2 статистического анализа гипотезы /11/ получен набор значений параметров α^* , β и у соответствующих различным значениям \mathbf{E}_y и \mathbf{E}_0 .Данные помещены в табл.2 и 3. При этом параметр α^* определен таким образом, чтобы выполнялось условие нормировки:

$$\int_{0}^{\infty} f_{1}(E_{y}, E_{0}, t) dt = E_{y}, \qquad (13)$$

где энергия \mathbf{E}_{y} выражена в МэВ.

Как и ранее $^{\prime 1/}$, зависимость величин α^* , β и γ от \mathbf{E}_{γ} аппроксимировалась следующими простыми функциями:

$$a^* = a_1 E_y^{b_1}$$
, /14/

$$\beta = \mathbf{a}_2 \mathbf{E}_V^{-\mathbf{b}_2} + c \,, \tag{15}$$

$$y = \mathbf{a}_3 \mathbf{E}_y^{\mathbf{b}_3} \quad . \tag{16}$$

Полученные численные значения параметров a_i , b_i (i=1 ,2.3) даны в табл.4. Там же приведены значения тестовой статистики χ^2 , которые, совместно с аналогичными данными относительно вида

/11/ функции $f_1(\mathbf{E}_y,\mathbf{E}_0,t)$ /табл.2 и 3/, говорят о том, что принятые нами гипотезы относительно продольного развития $3\Phi\Pi$ не пртиворечат экспериментальным данным с удовлетворительной вероятностью.

Таблица 2

Численные значения параметров a^* , β и γ функции /11/ продольного развития ЭФЛ. E_{γ} — энергия гамма-квантов, инициирующих ливни. χ^2_n — значение тестовой статистики χ^2 при n степенях свободы. Длина t выражена в единицах $\Delta t = 0,588$ рад.ед. Данные соответствуют энергии обрезания ливневых электронов $E_{\alpha} = 1,5$ МэВ

Er (MaB)	« *	β.10 ³	r	\mathcal{L}_n^2/n
680	52,I <u>+</u> 4,3	22 <u>+</u> 2	0,64 <u>+</u> 0,05	13,0/16
875	56 ,9<u>+</u>3, 8	I9 <u>+</u> I	0,67±0,04	7,3/19
II 25	54,544,2	I 6 <u>+</u> I	0,76 <u>+</u> 0,04	II,6/I9
1375	58,2 <u>+</u> 4,6	16 <u>+</u> 1	0,84 <u>+</u> 0,05	13,5/21
I625	55,9 <u>+</u> 3,9	13 <u>+</u> 1	0,85 <u>+</u> 0,05	14,6/21
1875	56,3 <u>+</u> 4,4	II <u>+</u> I	0,83 <u>+</u> 0,05	9,9/21
2125	72,8 <u>+</u> 7,4	11±1	0,77 <u>+</u> 0,07	4,8/22
2375	67,4 <u>+</u> 5,2	II <u>+</u> I	0,87 <u>+</u> 0,09	8,5/22
2625	54,6 <u>+</u> 4,I	II <u>+</u> I	I,03 <u>+</u> 0,II	5,0/22

 $\frac{\text{Таблица 3}}{\text{То же самое, что и в таблице 2, но для энергии обрезания}}$ $\mathbf{E}_0 = \mathbf{3} \ \text{МэВ}$

Er (Mab)	d*	ß.10 ³	r	χ_n^2/n
680	56,4 <u>+</u> 4,4	23 <u>+</u> 2	0,61 <u>+</u> 0,05	11,8/16
875	57,6 <u>+</u> 4,0	18 <u>+</u> 1	0,63 <u>+</u> 0,04	7,6/19
1125	54,5 <u>+</u> 4,3	I6<u>+</u>I	0,73 <u>+</u> 0,04	10,2/19
1375	61,3 <u>+</u> 4,9	I 6 <u>+</u> I	0,81 <u>+</u> 0,05	14,7/21
1625 ·	54,7 <u>+</u> 4,I	12±1	0,82 <u>+</u> 0,05	13,8/21
I875	58,4<u>+</u>4, 5	II <u>+</u> I	0,82±0,05	9,8/21
2125	75,5 <u>+</u> 7,6	II±I	0,75 <u>+</u> 0,07	4,4/22
2375	71,2 <u>+</u> 5,2	$II_{\pm}I$	0,84±0,09	8,0/22
2625	57,7 <u>+</u> 4,3	II±I	I,00 <u>+</u> 0,10	4,5/22

Таблица 4

Численные эначения констант a_i , $b_i/i=1,2,3/$ и с функций /14/, /15/ и /16/, аппроксимирующих зависимость параметров функции /11/ продольного развития ЭФЛ от энергии E_y первичных гамма-квантов и энергии E_0 ливневых электронов. χ^2_n — эначения тестовой статистики χ^2 при п степенях свободы

i	Eo = I	.5 MaB			Eo = 3 MaB	
ι 	a _i	δ_i	#2/n	a _i	4.	pla fr
I	29,3 <u>+</u> 6,6	0,09 <u>+</u> 0,02	2,I/8	27,6 <u>+</u> 3,5	0,II±0,02	2,7/8
2	19,3±4,5	I,09±0,20	1,8/8	83,3 <u>+</u> 24,0	I,33±0,20	I,5/8
3	0, 09 <u>+</u> 0,02	0,30±0,04	1,8/8	0,07±0,02	0,32±0,04	I,6/8
		$C = 0,008\pm0$,002		$C = 0.008 \pm 0.0$	00\$

Таблица 5

Численные значения параметров m и b формулы /17/, описывающей зависимость дисперсии поперечного развития ЭФП от глубины t развития ливней. E_y — энергия гамма-квантов, создающих лавины; E_0 — энергия обрезания ливневых электронов. χ_n^2 — эначения тестовой статистики χ^2 при п степенях свободы. t выражено в единицах, равных 0,588 рад.ед.

Ey- (MaB)		Eo= 3 MaB				
	m·10 ²	6.102	t2/n	<i>m</i> 10 ²	8.10 ²	Ra/n
680	8 <u>+</u> 2	46 <u>+</u> 8	5,0/13	7 <u>+</u> 2	50 <u>+</u> 8	7,1/13
875	10 <u>+</u> I	42 <u>+</u> 6	1,9/17	IO±I	4I+6	I,4/I7
II2 5	10±1	37 <u>±</u> 7	5 ,8/I 8	10 <u>+</u> 1	35 <u>+</u> 7	8,8/18
I3 75	IO±I	42 <u>+</u> 7	5,5/19	IO±I	42 <u>+</u> 7	5,8/19
1625	8 <u>+</u> I	48±6	7,2/20	8 <u>+</u> I	48±7	6,9/20
I 875	$7\pm I$	5 <u>1+</u> 8	13,5/20	8 <u>+</u> I	50 <u>±</u> 8	11,9/20
2125	10 <u>+</u> 2	41 <u>+</u> 9	8,9/20	10 <u>+</u> 2	40±10	8,9/20
2375	II <u>+</u> 2	3I±II	8,3/19	11 <u>+</u> 2	32 <u>+</u> 11	8,4/19
2625	6 <u>+</u> 2	57 <u>+</u> 13	9,4/19	6 <u>+</u> 2	57 ±13	9,6/19

3.4. Поперечное развитие ЭФЛ

Измеренный экспериментально набор около 50 тыс. величин ЧСП /2/ был аппроксимирован функцией /12/, где, как и ранее $^{/1}$ /, принято, что:

$$\sigma = \mathbf{m} \cdot \mathbf{t} + \mathbf{b} . \tag{17}$$

Здесь параметры \mathbf{m} и \mathbf{b} суть функции энергии $\mathbf{E}_{\mathbf{y}}$ и энергии обрезания $\mathbf{E}_{\mathbf{0}}$.Полученные численные значения параметров представлены в табл.5.

На основании приведенных данных можно сделать вывод о том, что параметры m и b не зависят, при достигнутой точности эксперимента, ни от \mathbf{E}_{y} , ни от \mathbf{E}_{0} в рассматриваемом интервале значений \mathbf{E}_{y} . Следовательно, на практике можно воспользоваться их значениями, усредненными по всему интервалу \mathbf{E}_{y} и обоим значениям $\mathbf{E}_{0}: \mathbf{m=0},088+0,017, b=0,438+0,074$. Видно также, что проверяемая нами гипотеза /12/ относительно поперечного развития 30Π удовлетворительно согласуется с экспериментальными данными.

4. ВЫВОДЫ

На основании выполненных измерений длин пробегов электронов в электронно-фотонных ливнях, вызванных гамма-квантами с энергией $E_{\gamma} = /600 \div 2700/$ МэВ в жидком ксеноне, и последующего статистического анализа полученных результатов, можно сделать следующие выводы:

- 1. Пространственное распределение ионизационных потерь ливневых электронов удовлетворительно описывается ранее полученной нами формулой $/1/^{1/2}$.
- 2. Уточнены на большем объеме экспериментального материала в рассматриваемом интервале энергии E_y численные значения параметров, входящих в функции продольного /11/ и поперечного /12/ развития ЭФЛ, и, следовательно, в функцию /1/, описывающую пространственную структуру ионизационных потерь ливневых электронов.

ЛИТЕРАТУРА

- 1. Словинский Б., Чай В. ОИЯИ, Р1-80-610, Дубна, 1980.
- 2. Коновалова Л.П. и др. ПТЭ, 1961, 6, с.261.
- 3. Ничипорук Б. и др. ОИЯИ, Р-2808, Дубна, 1966.
- 4. Беленький С.З., Иваненко И.П. УФН, 1951, 69, с.591.
- Иваненко И.П. Электромагнитные каскадные процессы. Изд-во МГУ, М., 1972.

Рукопись поступила в издательский отдел 11 сентября 1981 года.