

4844

Объединенный институт ядерных исследований дубна

P1-81-556

ОБНАРУЖЕНИЕ ВОЗБУЖДЕННОГО СОСТОЯНИЯ ПИОНА -НОВОГО ПСЕВДОСКАЛЯРНОГО МЕЗОНА

Направлено в "Письма в ЖЭТФ" и на VI Международный семинар по проблемам физики высоких энергий /Дубна, 1981/

- ¹ Институт физики, Милан.
- ² Департамент физики высоких энергий
- Хельсинкского университета.
- ³ Институт физики, Болонья, Италия.

На основании парциально-волнового анализа $\pi^+\pi^-\pi^-$ -системы, рожденной в процессе дифракционной диссоциации π -мезона с импульсом 40 ГэВ/с на ядрах, обнаружен новый псевдоскалярный мезон с массой 1,205±0,007 ГэВ/с² и шириной 0,320±0,035 ГэВ/с² с квантовыми числами I ^GJ^P = 1⁻0⁻, являющийся радиальным возбуждением кварковой структуры пиона.

В данном сообщении приводятся результаты парциально-волнового анализа 3π -системы, рожденной в процессе дифракционной диссоциации пи-мезона с импульсом 40 ГэВ/с на ядрах

 $\pi^- + \mathbf{Z} \rightarrow \pi^+ + \pi^- + \pi^- + \mathbf{Z}$

в области А1-резонанса при малых переданных 4-импульсах.

Для анализа использовались данные совместного эксперимента на спектрометре МИС ОИЯИ ^{1/}, полученные в пучке отрицательных пи-мезонов с импульсом 40 ГэВ/с на ускорителе ИФВЭ в Серпухове. Полная статистика 3π -событий на девяти ядрах Ве, С, AI, Si, Ti, Cu, Ag, Ta, Ръсоставила 110000 событий. 75% этих событий удовлетворяют критерию когерентного образования 3π -систем с t'· t'*, где t'* соответствует первому минимуму в дифференциальном сечении /для ядра свинца t'* равно 0,008 /ГэВ/с/² из-за большого наклона дифракционного конуса /-360 /ГэВ/с/ ²/.

В процессах дифракционной генерации частиц ядро остается в основном состоянии, и рожденная система частиц для малых передач сохраняет все квантовые числа налетающей частицы, а изменение спина и четности соответствует "натуральному" обмену. Поэтому важной особенностью этих процессов является возможность однозначного анализа образуемых систем По спину и четности и изучения резонансного рождения в области A1-резонанса. Из-за большой передачи энергии рожденной системе /~1 ГэВ/ при малых передаваемых 4-импульсах /~0,01/ГэВ/с/²/ исследование этих процессов представляет возможность изучения возбужденных состояний динамических структур дифракционно образуемых систем.

Использование ядерных мишеней в исследовании дифракции имеет ряд преимуществ по сравнению с протонными мишенями:

а/ из-за малости переданного 4-импульса вклад амплитуд с и переворотом спина пренебрежимо мал;

б/ малый вклад некогерентных процессов и высокая степень когерентности волн дают надежное измерение относительных фаз;

в/ отсутствуют неоднозна<u>чности анализа, обусловле</u>нные образованием резонанса N*. (<u>Оранизание ститу</u>)

> рысных органия (» БИБ/ЛИОТЕКА

1

Парциально-волновой анализ трех пи-мезонных событий осуществлялся по программе Иллинойского университета ^{/2/}, которая была адаптирована с целью учета геометрического аксептанса триггерной системы магнитного спектрометра. Для определения вклада отдельных волн по угловым распределениям мезонов необходимо было обеспечить высокую точность измерения углов вылета мезонов из мишени, передаваемого импульса и инвариантных масс трехпионной системы. В спектрометре МИС достигнутые точности характеризуются следующими величинами: пространственная угловая точность составляет 0,45 мрад, а по передаваемому импульсу - 17 МэВ/с, что позволяет измерять передаваемый импульс до $3 \cdot 10^{-4}$ /ГэВ/с/²; разрешение по массе трехмезонной системы $m_{3\pi} = 1,1$ ГэВ/с².

Неэффективность системы обработки данных составляет 8%, при этом 6% - за счет малых длин треков и 2% - за счет перекрытия треков. Анализ показал отсутствие влияния этих потерь на угловые характеристики мезонов. В программе парциально-волнового анализа производился также учет возможных потерь событий определенной пространственной топологии из-за ограниченного геометрического аксептанса спектрометра для реальных и мнимых частей амплитуды процесса. Эта поправка медленно менялась от бины к бине по массе 3π -мезонной системы от 100% до 96%. В анализе участвовали волны $0^{-}SO_{+}(\epsilon \pi)$, $0^{-}PO_{+}(\rho \pi)$, $1^{+}SO_{+}(\rho \pi)$, $1^{+}PO_{+}(\epsilon_{\pi})$, $2^{-}PO_{+}(\rho_{\pi})$, $2^{-}P1_{+}(\rho_{\pi})$, $2^{+}D1_{+}(\rho_{\pi})$, $2^{-}SO_{+}(f_{\pi})$, $2 \text{ DO}_{+(\epsilon \pi)}$, где принято следующее обозначение мезонной системы: JPLM₁, L - орбитальный момент мезона относительно дипиона, М - магнитное квантовое число, η - знак отражения в плоскости рождения. Вклад волн ненатуральной серии с переворотом спина найден пренебрежимо малым в когерентной области, за исключением волны 2 Р. где вклад составляет 30% от ее интенсивности. Вклад волн сn = -1 исключительно мал и составляет менее 0,1%. Вклад волн натуральной серии найден чрезвычайно малым. Параметризация S-состояния дипионной системы была сделана как с ϵ -резонансом, так и с фазой упругого $\pi\pi$ -рассеяния. Различная параметризация влияет на интенсивность интерференции между волнами 1^+S и 1^+P и не влияет на волны 0^-S , 0^-P . где интерференция очень слаба. В этой работе представлены результаты с с -параметризацией, которая систематически дает большую величину функции максимального правдоподобия. В качестве опорной волны нами выбрана волна 0 Р. так как она имеет медленно меняющийся сигнал во всем массовом спектре, а также потому, что основная волна 2⁺D1⁺ хорошо установленного A2-резонанса относительно $0^{-}P$, демонстрирует резонансное поведение, характерное для А2-резонанса.

Рис.1. а/ Интенсивность волны 1⁺S ; б/ интенсивность волны 0⁻S. Сплошной кривой показаны результаты фита по резонансной формуле Брейта-Вигнера, пунктирной – нерезонансный фон; в/ изменение фазы волны 1⁺S относительно 0⁻S.

На рис.1а,б представлена интенсивность волн 1⁺S и 0⁻S для всех мишеней, анализировавшихся вместе, а на рис.2 - относительное поведение фазы 1⁺S-0⁻P и 0⁻S-0⁻P. Изменение фазы 1⁺S волны составляет 110° а 0⁻S волны – 85° Поведение фазы волны 1^+S относительно 0^-S по области A1, приведенное на рис.1в, практически постоянно и свидетельствует о том, что обе волны имеют резонансный характер. Массовый спектр 0⁻S не зависит от параметризации дипионной фазы. Фит массового спектра 0 8 по релятивистской формуле Брейта-Вигнера с медленно меняющимся экспоненциальным фоном дает значение массы m = 1,205+ +0,07 ГэВ/с² и ширины $\Gamma = 0,320+0.035$ ГэВ/с². Таким образом. изменение относительной фазы $0^{-}S = 0^{-}P$ на 85° в A1-области, брейт-вигнеровская форма массового спектра, а также постоянство относительной фазы 1⁺S-0^{-S} непосредственно свидетельствуют о наблюдении резонанса в системе $\pi^+\pi^-\pi^-$ с квантовыми числами пиона, переходящего в основное состояние пиона с испусканием с-мезона.

Интерпретация обнаруженного резонанса в кварковой модели состоит в отождествлении его с возбужденным по радиальному числу состоянием $q \bar{q}$ системы (π).

В работах^{/3,4/} наблюдалось относительное постоянство фазы 1⁺S относительно волны 0⁻S в области А1-резонанса. Авторы сделали вывод только о возможности резонанса 0⁻ и не дали прямых доказательств резонансных свойств, а изменение фазы 0⁻S составляло лишь 40°.

ЛИТЕРАТУРА

- Bellini G. et al. CERN-EP/81-40, Geneva.
 Ascoli G. Phys.Rev.Lett., 1970, 25, p.962; Phys.Rev., 1973, D7, p.669; Phys.Rev., 1974, D9, p.1963.
 Pernegr J. et al. Nucl.Phys., 1978, B134, p.436.
- 4. Daum C. CERN-EP/80-219, Geneva.

Рукопись поступила в издательский отдел 14 августа 1981 года.