

Объединенный. Институт ядерных Исследований дубна

4676/2-81

14/9-81

P1-81-429

Л.Беккер, В.Г.Гришин, Р.А.Кватадзе

источники лидирующих пионов в $\pi^+ p$ - и $\pi^- p$ -взаимодействиях при 16 и 40 гэв/с

Направлено в ЯФ

§1. ВВЕДЕНИЕ

В последние годы было обнаружено, что при взаимодействии адронов высоких энергий происходит обильное образование резонансов, продукты распада которых составляют /50-80/% от наблюдаемых в конечном состоянии частиц^{/1,2/}. Поэтому для изучения динамики сильных взаимодействий необходимо получить экспериментальную информацию о рождении резонансов в адронных соударениях. Резонансы, образованные во фрагментационной области налетающей частицы, могут быть источниками пионов с

наибольшим значением X в событии / $X \approx \frac{2 P_1^*}{\sqrt{S}}$, где \mathbb{R}^* - продольный импульс в системе центра инерции, $\sqrt{S} \sqrt{S}$ - полная энергия взаимодействия/. Такие пионы мы будем называть лидирующими. В данной работе изучаются источники лидирующих пионов в π^+ p – и π^- p -взаимодействиях при 16 и 40 ГэВ/с.

Для анализа использовались данные двух экспериментов: примерно 500000 π^+ p -взаимодействий с числом вторичных заряженных частиц $n_{ch} \ge 4$ при P = 16 ГэВ/с, полученных на двухметровой водородной пузырьковой камере ЦЕРНа, и = 15000 π^- p-взаимодействий с $n_{ch} \le 4$ при P = 40 ГэВ/с, зарегистрированных с помощью двухметровой пропановой пузырьковой камеры ОИЯИ. Для сравнения использовались также = 7000 π^- C -соударений при P=40 ГэВ/с. Основные методические вопросы, относящиеся к этим экспериментам, изложены в работах $\frac{1}{3}$,4.

§2. СРЕДНИЕ МНОЖЕСТВЕННОСТИ РЕЗОНАНСОВ

Для выяснения вопроса о том, являются ли мезонные резонансы (ρ°, f, g) источниками лидирующих пионов, были изучены спектры эффективных масс M (π_{1}^{+}, π^{-}) в реакциях:

 $\pi^+ p \to \pi^+_1 + \pi^+ + x$ /16 ГэB/c/, /1/

$$\pi^- p \to \pi^+ + \pi^+ + x$$
 /40 FaB/c/, /2/

где π^{\pm}_{L} - Самая энергичная в событии частица с X > 0,4. Доля таких событий по отношению ко всем пион-нуклонным взаимодействиям составляет $\approx 20\%$.

> О БЕДИНЕННЫЙ ИНСТИТУ Одерных иссла дований БИБЛИОТЕКА

Экспериментальные распределения по эффективной массе анализировались с помощью функции

$$\frac{dN}{dM} = \Phi(M) \left[1 + a_1 B W_{\rho^{\circ}}(M) + a_2 B W_{f}(M) + a_3 B W_{g}(M) \right], \quad /3/$$

в которой a_i - вклады резонансов ρ° , f и g соответственно, BW(M) - релятивистские функции Брейта-Вигнера $^{/5,6/}$. Массы резонансов были фиксированы в соответствии с их табличными значениями $^{/7/}$, а ширины считались свободными параметрами. Также учитывалось искажение формы BW(M) из-за выбора лидирующих пионов в событиях. При такой процедуре малые массы в распределении BW(M) должны быть подавлены. Оказалось, что учет этих искажений в пределах ошибок не меняет результатов.

Для фонового распределения Ф (М) использовалась аналитическая зависимость

$$\Phi(M) = A_1 (M_1 / M_2)^{A_2} EXP[-A_3 M + A_4 M^2], \qquad (4/$$

где $M_1 = M - 2M_{\pi}$, $M_2 = 1$ ГэВ и A_1 - подбираемые параметры. На <u>рис.1,2</u> приведены распределения по эффективной массе $M(\pi^{\pm},\pi^{\pm},\pi^{\pm})$ для π^{+} р -взаимодействий с $n_{ch} \ge 6$ при P = 16 ГэВ/с. Эти спектры аппроксимировались функцией /3/ в интервале масс 0,28-2,28 ГэВ с помощью метода наименьших квадратов*. Получен-

* Следует отметить, что учет в функции /3/ отражения распадов $\omega \to \pi^+ \pi^- \pi^\circ$ не влияет на полученные результаты /1/.

3

Таблица l

Тип резонанса	𝑥⁺ţ┛𝔄𝔄	$\mathfrak{T}^+p \rightarrow \mathfrak{T}_L^+ x$
ρ°	0,19 <u>+</u> 0,02	0,51 <u>+</u> 0,05
£	0,05 <u>+</u> 0,02	0,13 <u>+</u> 0,05
8	0,01 <u>+</u> 0,01	0,04 <u>+</u> 0,03
$\frac{N_{\tau}(JL_{L})}{N(JL_{L})}$	0,22 <u>+</u> 0,02	0,59 <u>+</u> 0,06
	<u>Таблица 2</u>	
Средние множест з <i>п</i> ⁻ р -взаимод	чвенности резонансов, с цействиях с n _{cb} ≥4 при 4	образованных 40 ГэВ/с (Х _{л >0,4})
the second s		
Тип резонанса	$\mathfrak{M}^+ \mathfrak{p} \rightarrow \mathfrak{M}_{\mathfrak{b}}^+ \mathfrak{x}$	JL p → JL + x
Тип резонанса Р ⁰	3 ^{C[±]} P→ 3 ^C L + x 0,13 <u>+</u> 0,03	JTp→JTt+x 0,44 <u>+</u> 0,11
Тип резонанса	3 ^{1,1} P→ 3 ^{1,1} + x 0,13 <u>+</u> 0,03 0,04 <u>+</u> 0,02	$\frac{\Im (p \rightarrow \Im (t + \infty))}{0,44\pm 0,11}$
The pesohahca $\int \rho^{\circ}$ $\frac{1}{S}$ $\frac{N_{\tau}(J\tau_{v})}{N(J\tau_{v})}$	$3U^{\pm}P \rightarrow 3U_{L}^{\pm} + \infty$ 0,13±0,03 0,04±0,02 0,15±0,03	$3l^{p} \rightarrow 3l^{+}_{L} + \infty$ $0,44\pm0,11$ $0,12\pm0,06$ $0,50\pm0,11$

ные при этом средние множественности резонансов представлены в табл.1. Данные для f- и g -мезонов поправлены с учетом ненаблюдаемых мод распада. Там же приведены величины отношений числа $\pi_{\rm L}$ -мезонов, образованных при распадах $\rho^{\rm o}$ - f- и g-peзонансов, к их полному числу. Видно, что /59+6/% лидирующих $\pi_{\rm L}^-$ -мезонов и /22+2/% $\pi_{\rm L}^+$ -мезонов образуются при распаде этих резонансов. Такие же результаты получены и для четырехлучевых событий, где при этой энергии существенными являются квазидвухчастичные процессы, когда рождаются два резонанса с последующим распадом на четыре заряженные частицы /например, π^+ p $\rightarrow \rho^{\rm o} \Delta^{++}/$.

Для *т*р -взаимодействий при Р=40 ГэВ/с из-за ограниченной статистики брались все события с n_{ch} ≥4. Полученные при этом результаты представлены в <u>табл.2</u>.

Таким образом, примерно /50-60/% лидирующих частиц ($X_{\pi L}$ >0,4) с зарядом, противоположным заряду налетающего пиона, образуется при распаде резонансов / ρ° , f и g /. Лидирующие части-

цы того же заряда в /15-20/% случаев рождаются при распаде этих резонансов. Аналогичный результат был получен для $\pi^- N$ и $\pi^{-12}C$ -взаимодействий при P = 40 ГэВ/с/8/.

Для теоретических моделей представляют интерес отношения средних множественностей резонансов $\frac{<f>}{<\rho^{\circ}>}$ и $\frac{<g>}{<\rho^{\circ}>}$ в области фрагментации налетающей частицы. В связи с этим мы определяли количество этих резонансов при $X_{\pi_L} > 0.4$, не обращая внимания на заряд лидирующего пиона. При этом для π^+ р -взаимодействий при 16 ГэВ/с получились следующие результаты:

$$\frac{\langle f \rangle}{\langle o^{\circ} \rangle} = 0,24\pm0,06$$
 и $\frac{\langle g \rangle}{\langle o^{\circ} \rangle} = 0,07\pm0,04$,

а для #-р -соударений при 40 ГэВ/с -

$$\frac{\langle f \rangle}{\langle \rho^{\circ} \rangle} = 0,27\pm0,11.$$

Из приведенных данных видно, что рождение P-и D-волновых резонансов подавлено по сравнению с S-волновыми резонансами. Отношение $\frac{\langle 1 \rangle}{\langle \rho^{\circ} \rangle}$ слабо зависит от энергии и заряда налетающего пиона. Величины отношений $\frac{\langle 1 \rangle}{\langle \rho^{\circ} \rangle}$ и $\frac{\langle g \rangle}{\langle \rho^{\circ} \rangle}$, полученные при X_{π_L} >0,4, в пределах ошибок совпадают с отношениями для инклюзивного рождения резонансов $\frac{\langle 1 \rangle}{\langle \rho^{\circ} \rangle}$ Однако с увеличением X_{π_L} отношение $\frac{\langle 1 \rangle}{\langle \rho^{\circ} \rangle}$ растет и при $X_{\pi_L} > 0.6$ составляет 0,51±0,16 для π^+ p - соударений при 16 ГэВ/с.

В заключение этого параграфа отметим, что при увеличении X_{π_L} доля лидирующих пионов, образованных при распадах резонансов, растет. В π^+ р -соударениях при $X_{\pi_L} > 0,6$ примерно 80% π_L^- -мезонов рождается при распаде ρ_{-}° , f-и g -резонансов. Поэтому при определении структурных функций кварков в адронах из распределений пионов по X (X $\geq 0,5$) следует учитывать, что существенная часть этих пионов образуется в результате распада резонансов.

§2. ВЕРОЯТНОСТЬ ДВОЙНОЙ НЕУПРУГОЙ ПЕРЕЗАРЯДКИ

Вероятность двойной неупругой перезарядки определялась как доля событий, в которых электрический заряд самой энергичной вторичной частицы отличался от заряда первичного адрона на две единицы. Значения этих вероятностей $R(\pi) = \frac{N_{\pi} \rightarrow \pi_{\pm}^{+}}{N_{\pi} \rightarrow \pi_{\pm}^{-}}$ при разных границах $X_{\pi_{L}}$ для π р и, π С -взаимодействий с $n_{\pm} \geq 4$ при P=40 ГэВ/с приведены в табл.3. В случае π С -соударений

Jīι≥X。	πp	J-IL
0,1	0,48±0,0I	0,48 <u>+</u> 0,01
0,2	0,44 <u>+</u> 0,0I	0,43 <u>+</u> 0,02
0,3	0,37±0,0I	0,34±0,02
0,4	0,29 <u>+</u> 0,0I	0,30 <u>+</u> 0,02
0,5	0,24 <u>+</u> 0,0I	0,22 <u>+</u> 0,02
0,6	0,19 <u>+</u> 0,01	0,17 <u>+</u> 0,02
0,7	0,15 <u>+</u> 0,01	0,13 <u>+</u> 0,02
0,8	0,13±0,01	0,12 <u>+</u> 0,02

при 16 ГэВ/с					
X _{JTL} ≥X₀	na=4	n _{cl} ≥6	h or≥4		
0	0,329 <u>+</u> 0,002	0,558±0,003	0,426 <u>+</u> 0,002		
0,2	0,3I3 <u>+</u> 0,002	0,517 <u>+</u> 0,003	0,393 <u>+</u> 0,002		
0,4	0,275 <u>+</u> 0,002	0,363 <u>+</u> 0,004	0,297 <u>+</u> 0,002		
0,6	0,214±0,002	0,232 <u>+</u> 0,004	0,217 <u>+</u> 0,002		
0,8	0,I64 <u>+</u> 0,003	0,17 <u>+</u> 0,02	0,164 <u>+</u> 0,003		

не учитывались взаимодействия пионов с квазисвободными нуклонами ядра углерода. Из таблицы видно, что в пределах ошибок значения $R(\pi^-)$ не зависят от типа мишени. Уменьшение $R(\pi^-)$ при больших X_{π_1} ($X_{\pi_1} \ge 0.5$) можно объяснить тем фактом, что лидирующие частицы того же заряда, что и у налетающего адрона, могут образоваться как непосредственно во взаимодействии, так и в результате распада резонансов. Пионы, образованные "прямым" образом, более энергичны, чем пионы, которые являются продуктами распада резонансов. Лидирующие частицы противоположного знака в основном рождаются при распаде резонансов, что должно приводить к уменьшению значения $R(\pi^{-})$ с ростом X_{π_L} . Кроме того, при $X_{\pi_L} \ge 0.8$ для малых множественностей существенны дифракционные процессы, что также приводит к уменьшению значений $R(\pi^{-})$. Следует отметить, что в случае $X_{\pi_L} \le 0.4$ в части событий самыми энергичными являются нейтральные адроны, в основном π° -мезоны, которые не наблюдаются на эксперименте.

Величины значений $R(\pi^+) = \frac{N_{\pi^+} \rightarrow \pi L}{N_{\pi^+} \rightarrow \pi L}$ в $\pi^+ p$ -взаимодействиях при P = 16 ГэВ/с для разных множественностей заряженных частиц n_{ch} представлены в <u>табл.4</u>. Видно, что с увеличением n_{ch} значения $R(\pi^+)$ растут. Величины R слабо зависят от заряда налетающего пиона и энергии взаимодействия /см. табл. 3 и́ 4/.

Полученные результаты можно сравнить с предсказанией аддитивной кварковой модели /10/. В работе /11/ в рамках этой модели были получены значения $R(\pi)$ для недифракционных процессов:

$$R(\pi^{-}) = \frac{0.17 V_1^{\pi} + 0.30 V_2^{\pi}}{-0.43 V_1^{\pi} + 0.30 V_2^{\pi}}, \qquad /5/$$

где V_1^{π} и V_2^{π} - вероятности взаимодействия одного и двух кварков налетающего пиона. Если $V_1^{\pi} = 1$ и $V_2^{\pi} = 0$ для $\pi^- p$ -взаимодействий, как предполагается в модели, то $R(\pi) \approx 0.4$. Считая, что импульс фрагментационных частиц ($X \ge 0.5$) всегда больше, чем импульс частиц, образованных в центральной области, получим, что значения $R(\pi^-)$ для $\pi^- p$ и $\pi^- C$ -взаимодействий при $X \ge 0.5$ должны совпадать, что и наблюдается на эксперименте. Тот факт, что ожидаемая величина $R(\pi^-) \approx 0.4$ не согласуется с экспериментальными результатами, по-видимому, связан с различием импульсных спектров π_L -мезонов, образованных прямым образом и являющихся продуктами распада резонансов, а также

§4. ЗАКЛЮЧЕНИЕ

вкладом дифракционных процессов.

При исследовании свойств лидирующих пионов в $\pi^+ p - u \pi^- p - coydapeниях при 16 и 40 ГэВ/с соответственно, получены следую$ щие результаты:

1. Примерно /50-60/% лидирующих частиц ($X_{\pi_L} > 0,4$) с зарядом, противоположным заряду налетающего пиона, образуется путем распада резонансов (ρ°, f, g). Лидирующие частицы того же

7

заряда в /15-20/% случаев рождаются при распаде этих же резонансов. С увеличением X_{π_L} доля лидирующих пионов, образованных в результате распада резонансов, растет.

2. Рождение Р-и D-волновых резонансов подавлено по сравнению с S-волновыми резонансами. При $X_{\pi_L} > 0.4 \rho^{\circ}$ -мезонов рождается примерно в 5 и 15 раз больше, чем f-и g-мезонов со-ответственно.

3. Вероятности двойной неупругой перезарядки R уменьшаются с ростом X_{π_L} и слабо зависят от энергии и заряда налетающего пиона.

Авторы благодарны Ю.М.Шабельскому за многочисленные полезные обсуждения и участникам сотрудничества по исследованиям множественных процессов при P = 40 ГзВ/с за помощь в обработке экспериментального материала. Мы признательны участникам ABBCCHW сотрудничества /руков. Д.Р.О.Моррисон/ за предоставление экспериментальных данных по π^+ р -взаимодействиям при P=16 ГзВ/с. Один из нас /Г.В.Г./ признателен профессорам К.Ланиусу и З.Новаку за обеспечение хороших условий работы в ИФВЭ /Цойтен/ во время его визита в ГДР.

ЛИТЕРАТУРА

- 1. Ангелов Н. и др. ЯФ, 1977, т.25, с.117.
- 2. Grassler H. et al. Nucl. Phys., 1978, B132, p.1.
- 3. Абдурахимов А.У. и др. ЯФ, 1973, т.18, с.545.
- 4. Абдурахимов А.У. и др. ЯФ, 1973, т.18, с.1251.
- 5. Jackson J.D. Nuovo Cim., 1964, 34, p.1644.
- 6. Pisut J., Roos M. Nucl. Phys., 1968, B6, p.325.
- 7. Particle Data Group. Rev.Mod.Phys., 1980, 52, p.1.
- 8. Олимов К.И. и др. Письма в ЖЭТФ, 1980, т.32, с.619.
- 9. Zieminski A. Proc. of the 1977 Europ.Conf. on Part.Phys. Budapest, 1977, p.163.
- 10. Anisovich V.V., Shechter V.M. Nucl. Phys., 1973, B55, p.455.
- 11. Шабельский Ю.М. ЯФ, 1981, т.33, с.1379.

Рукопись поступила в издательский отдел 24 июня 1981 года.

Беккер Л., Гришин В.Г., Кватадзе Р.А. Р1-81-429 Источники лидирующих пионов в $\pi^+ p$ -и $\pi^- p$ -взаимодействиях при 16 и 40 ГэВ/с

В работе изучаются источники лидирующих заряженных пионов в $\pi^+ p - \mu$ $\pi^- p$ -взаимодействиях при 16 и 40 ГэВ/с соответственно. Получено, что примерно /50-60/% лидирующих частиц $(X_{\pi_L} > 0.4)$ с зарядом, противоположным заряду налетающего пиона, образуется при распаде ρ° -, f- и g -резонансов. Вероятности двойной неупругой перезарядки уменьшаются с ростом X_{π_L}

и слабо зависят от знергии и заряда налетающего, п -мезона.

Работа выполнена в Лаборатории высоких энергий ОИЯИ.

Препринт Объединенного института ядерных исследования. Дубна 1981

Becker L., Grishin V.G., Kvatadze R.A. Sources of Leading Pions in π^+ p- and π^- p- Interactions at 16 and 40 GeV/c

The source of leading charged pions in π^+ p and π^- p interactions at 16 and 40 GeV/c, respectively, is studied. We obtain that approximately 50-60 percent of all leading particles ($X_{\pi_L} > 0.4$) with a charge opposite to that of incident pion come from the decay of ρ° , f and g resonances. The probability of double inelastic exchange decreases with increasing X_{π_L} and weakly depends on the energy and charge of incident π -meson.

The investigation has been performed at the Laboratory of High Energies, JINR.

Preprint of the Joint Institute for Nuclear Research. Dubna 1981

Перевод аннотации О.С.Виноградовой.