

Объединенный институт ядерных исследований дубна

4404

31/8-81

P1-81-231

С.П.Авдеев, В.А.Карнаухов, Г.Ю.Коровин, В.Д.Кузнецов, Т.Надь, Л.А.Петров

ИЗОТОПИЧЕСКОЕ РАСПРЕДЕЛЕНИЕ **Rb, In и Cs**, ОБРАЗУЮЩИХСЯ ПРИ ВЗАИМОДЕЙСТВИИ ПРОТОНОВ, ДЕЙТРОНОВ И *а* -ЧАСТИЦ ВЫСОКОЙ ЭНЕРГИИ С ТАНТАЛОМ

Направлено в ЯФ

1. ВВЕДЕНИЕ

В течение последних двух десятилетий выполнено большое число экспериментальных и теоретических исследований реакций, вызываемых частицами высокой энергии. Одним из экспериментальных подходов в этих исследованиях является измерение выхода конечных продуктов реакций. Ядра-продукты, далеко отстоящие по А и Z от мишени, появляются в результате сложной, многоступенчатой ядерной реакции. Тем не менее их изотопические или зарядовые распределения отражают основные особенности механизма реакции, проходящей в два этапа - внутриядерный каскад и процесс испарения /1/. В последние годы такие измерения проводились при использовании различных бомбардирующих частиц в широком диапазоне энергий: от протонов с энергией 1-300 ГэВ до ионов аргона с энергией до 80 ГэВ /см., например, работы/2-11//. Обычно данные о выходах представляются в виде зарядовых и массовых распределений. Для получения зарядового распределения используется предположение о его гауссовой форме. Поскольку число реалькно наблюдаемых изобар с данным массовым числом A мало, для нахождения параметров гауссиана используют данные в некотором диапазоне А. Это требует некоторых дополнительных предположений о зависимости от A для полного изобарического сечения $\sigma\left(\mathrm{A}
ight)$ и наиболее вероятного заряда ${
m Z}_{
m p}({
m A})$ /см., например, $^{/10,11/}$ /.

В работе^{/11/} сравниваются полученные таким образом зарядовые распределения для продуктов расщепления меди протонами /28 ГэВ/ и ионами аргона /80 ГэВ/. Авторы приходят к выводу, что форма кривых неразличима, а изобарические сечения $\sigma(A)$ пропорциональны полному сечению реакции, то есть происходит только масштабное изменение в зарядовых и массовых распределениях /скейлинг/.

В настоящей работе описываются эксперименты по измерению изотопических распределений для Rb , In , Cs, возникающих в реакциях глубокого расщепления тантала протонами, дейтронами и a-частицами. Изотопические распределения получаются из экспериментально измеренных выходов прямо, без сложной процедуры обработки, необходимой для перехода к зарядовому распределению. В качестве примера упомянем работы /16,17/, где измерялись изотопические распределения Те, I, Xe^{/16}/, Sb и Se^{/17/} при облучении различных мишеней протонами с энергией до 18 Гэв.

Целью настоящей работы было выяснить, как зависит форма изотопического распределения продуктов глубокого расщепления от типа бомбардирующей частицы.

2. ЭКСПЕРИМЕНТАЛЬНАЯ МЕТОДИКА

На внутреннем пучке синхрофазотрона Лаборатории высоких энергий ОИЯИ облучалась танталовая мишень протонами, дейтронами /8 ГэВ/ или альфа-частицами /15,2 ГэВ/. В качестве мишени использовался пучок танталовых проволочек /диаметром 50 мкм/ либо скрутка из танталовой фольги /толщиной 4 мкм/. Вес мишени - 1-2 г. Мишень крепилась на специальный держатель пневматического пробника и периодически доставлялась в зону пучка после конца периода ускорения. Для получения информации о зависимости формы изотопического распределения от энергии бомбардирующих частиц было проведено также облучение Та протонами с энергией 0,66 ГэВ на синхроциклотроне Лаборатории ядерных проблем ОИЯИ. После облучения, длившегося /5-10/ ч на синхрофазотроне и 15-20 мин на синхроциклотроне, мишень извлекалась из камеры ускорителя и помещалась в ионный источник масс-сепаратора ЯСНАПП /через 40-60 мин/.

Использовались два варианта ионного источника с поверхностной ионизацией. Для выделения изотопов индия применялся вольфрамовый ионизатор, разогреваемый электронной бомбардировкой с двух кольцевых катодов до t ≃ 2500°C ^{/12/}.В этом режиме со значительной вероятностью ионизуются все элементы с потенциалом ионизации до ≈6,5 эВ.

Для получения данных о выходе изотопов щелочных элементов Rb и Cs нами применялся другой вариант ионного источника, который позволил выделять эти элементы из мишени с высокой степенью селективности по отношению к соседним. Это достигалось применением удлиненного танталового ионизатора, который разогревался электронной бомбардировкой с одного катода, расположенного на расстоянии /1,5-2,0/ см от выходного отверстия ионизатора. В такой геометрии достигался градиент температуры вдоль ионизатора: от 2000°С в районе мишени до ≈1500°С у выходного отверстия. Благодаря низкому потенциалу ионизации щелочных элементов эффективность сепарации для них оказывалась в десятки и сотни раз выше, чем для соседних элементов.

Сепарированные изотопы поладали на сборник, расположенный в фокальной плоскости масс-сепаратора. Сборником служила магнитофонная лента, намотанная на стержень /длиной 90 см и диаметром 1,2 см/ с шагом 3 мм. После сбора изотопов стержень извлекался из камеры сепаратора, лента разматывалась, таким образом, непрерывное распределение активности оказывалось разбитым на участки по 3 мм, разнесенные на 38 мм друг от друга. Это позволяет вести одновременное и практически независимое измерение β -активности соседних участков фокальной плоскости. Распределение β -активности вдоль сборника измерялось с помощью 120-канального устройства, в котором использовались стандартные гейгеровские счетчики СБТ-11^{/13/}. Чтобы откалибровать шкалу масс и идентифицировать все пики в массовом спектре, измерялся временной ход β -активности и находились периоды полураспада для каждого пика.При расчете выхода соответствующего изотопа на основе интенсивности счета в каждом пике использовались расчетные значения относительных эффективностей регистрации распада изотопов и вводились поправки, учитывающие условия накопления активности в процессе облучения и ее распад до начала счета. Эффективность регистрации распада изотопа в нашем случае определяется вероятностью eta^{\pm} распада, вероятностью детектирования Х-лучей от К-захвата, наличием конверсионных электронов. В расчетах использовались данные из таблиц/14/ Отметим, что ошибка в величине выхода определяется, в основном, не статистикой счета, а погрешностями в оценке эффективности и поправки на распад для относительно короткоживущих изотопов.

3. РЕЗУЛЬТАТЫ ЭКСПЕРИМЕНТОВ

Рубидий. Изотопное распределение для рубидия, образующегося при взаимодействии протонов /8 ГэВ/ и α -частиц /15,2 ГэВ/, показано на <u>рис.1</u>.Уже предварительное сравнение результатов с расчетами по формуле Рудстама^{/15/}показало удовлетворительное согласие. Это дало нам основание использовать расчеты по этой формуле для введения поправок на "кумулятивность" выхода каждого изотопа для того, чтобы перейти к независимым выходам, показанным на <u>рис.1</u>. Эти поправки невелики. Максимальная из них - около 25% для ⁸³ Rb.

у 81 Rb имеются два изомера (9/2⁺ с $T_{1/2}$ =32 мин и 3/2⁻ с $T_{1/2}$ =4,6 ч). Нами регистрировался только долгоживущий изомер /основное состояние/. Но поскольку возбужденное состояние распадается путем изомерного перехода с вероятностью 97,8% /16/, выход основного состояния является суммой практически целиком выходов обоих изомеров.

у ⁸² Rb также два изомера (5⁻ с $T_{1/2} = 6,2$ ч и 1⁺ с $T_{1/2} = 1,3$ мин). В этом случае также регистрировался только долгоживущий изомер /возбужденное состояние/. Выпадение точки для ⁸² Rb из плавной зависимости на <u>рис.1</u>, по-видимому, связано с тем, что изомерное отношение равно $\sigma_m / \sigma_y \simeq 0.6$.

Индий. На <u>рис.2</u> приведено распределение независимых выходов изотопов индия, образующихся при облучении Та протонами, дейтронами и а-частицами. Для перехода от экспериментально наблюдаемых выходов к независимым введены поправки, максимальная из которых составляет 32% для ¹¹¹In.

Рис.1. Распределение выходов /в произвольных единицах/ для изотопов Rb, образующихся при взаимодействии с танталом протонов с энергией 8 ГэВ (о) и а.-частиц с энергией 15,2 ГэВ (Δ). Кривая рассчитана по формуле Рудстама.

У многих изотопов индия имеются изомеры. При анализе экспериментальных данных надо учитывать, что не все изомеры регист~ рируются при нашем способе измерений. Так, в случае 113 In и ¹¹⁵In регистрируется только распад изомеров со спином 1/2⁻, поскольку основное состояние (9/2+)стабильно. Выпадение точек для этих значений массовых чисел из плавной зависимости связано, на наш взгляд, с тем, что изомерные отношения для этих изотопов равны 0,05÷0,1. Аналогичная пара изомеров есть у 107 In , 109 In и 111 In. Однако здесь детектируется распад основных состояний, и измеряемый выход является суммарным по обоим изомерам, так как возбужденное состояние испытывает изомерный переход со временем жизни в несколько минут. Точка при А=110 отвечает суммарному выходу изомеров (7⁺) и (2⁺),которые четко разделяются ($T_{1/2}(7^+)=4,9$ ч, $T_{1/2}(2^+)=69$ мин /. Отношение выходов изомеров $Y(7^+)/Y(2^+) = 3+1$. Эта величина является нижней границей для изомерного отношения $\sigma\left(7^{+}
ight)/\sigma\left(2^{+}
ight),$ так как в измеряемый выход 110 In(2 $^+$) дает вклад изотоп 110 Sn, кото-

Рис.3. Распределение выходов /в относительных единицах/ изотопов индия при облучении тантала протонами с энергией 0,66 ГэВ: о – для низкоспинового изомера; • – для высокоспинового изомера или полный выход. Верхняя кривая получена по формуле Рудстама, нижняя проведена по точкам.

Рис.4. Изотопическое распределение /в относительных единицах/ для Cs, образующегося при расщеплении тантала протонами (о), дейтронами (●) с энергией 8 ГэВ и α-частицами с энергией 15,2 ГэВ (Δ). Кривая рассчитана по формуле Рудстама.

рый распадается / $T_{1/2} = 4,1$ ч/ только в низкоспиновый изомер индия. По формуле Рудстама сечение образования ¹¹⁰ Sn относительно невелико, оно составляет 20% от сечения образования ¹¹⁰ In. Но этого достаточно, чтобы отношение выходов изомеров ¹¹⁰ In(7⁺) и ¹¹⁰ In(2⁺) в наших условиях измерения оказалось в несколько раз меньше, чем $\sigma(7^+)/\sigma(2^+)$. Основное состояние 114 $\ln(1^+)$ распадается с $T_{1/2}$ 72 с, поэтому его независимое образование не детектировалось. Регистрировалось долгоживущее изомерное состояние (5⁺). Его выход и показан на <u>рис.2</u> при A = 114. По нашей ошенке, выход $114 \ln(5^+)$ составляет не менее 80% от полного выхода индия при этом массовом числе. Для $108 \ln$ также известны два изомера с близкими периодами полураспада, они были неразличимы в наших экспериментах.

На <u>рис.3</u> представлены результаты измерения выходов изотопов In при облучении мишени из Ta протонами с энергией 0,66 ГэВ. Выходы изомеров даны отдельно там, где это возможно. Отметим, что в выходе изомера 110 In(2⁺) может быть существенный вклад от распада 110 Sn.

Цезий. Изотопическое распределение цезия показано на <u>рис.4</u>. К сожалению, левое крыло распределения приходится на короткоживущие изотопы, поэтому оно не захватывалось данными измерениями. В отличие от рубидия и индия при переходе от экспериментальных выходов к независимым делались значительные поправки на кумулятивность для изотопов ¹²⁷Cs и ¹²⁹Cs. Для ¹²⁵Cs поправка не превышает 20%, а ^{130,132,134}Cs являются экранированными, для них поправка точно равна нулю.

4. ОБСУЖДЕНИЕ

1. Наиболее важный вывод, который следует из приведенных здесь экспериментальных данных,- отсутствие значительной зависимости вида изотопического распределения от типа бомбарди~ рующей частицы. Такой вывод можно сделать, сравнивая непосредственно измеренные выходы, не делая перехода к независимым выходам, то есть его надежность не зависит от деталей процедуры введения поправок на кумулятивность. Мы не видим смещения положения максимума изотопического распределения для ${
m Rb}$ и ${
m In}$ в пределах +0,5 массовой единицы при переходе от протонов /8 ГэВ/ к а-частицам /15,2 ГэВ/. Поскольку форма распределения неизменна, меняется только масштаб по оси ординат, уместно говорить о скейлинге изотопического распределения продукреакции глубокого расщепления. Неизменность изотопическо-TOB го распределения при значительной вариации начальных условий реакции, по-видимому, свидетельствует о том, что первый этап взаимодействия - ядерный каскад - оканчивается одинаково как в случае протонов, так и в случае дейтронов и α⊢частиц. При этом распределения энергий возбуждения, уносимых на стадии испарения, оказываются примерно одинаковыми. Этот вывод согласуется с заключением, сделанным в работе /11/.

6

2. На <u>рис.1-4</u> приведены рассчитанные по формуле Рудстама изотопические распределения для продуктов расщепления тантала протонами. Оставив для специального обсуждения <u>рис.3</u>, отметим, что формула Рудстама одинаково хорошо описывает форму изотопического распределения во всех исследованных здесь случаях как для протонов и дейтронов с энергией 8 ГэВ, так и для *a*частиц с энергией 15,2 ГэВ.

Уменьшение энергии протонов до 0,66 ГэВ приводит к заметному отклонению формы изотопического распределения от предсказываемого формулой Рудстама /рис.3/. На наш взгляд, это связано с более существенным, чем при больших энергиях, влиянием процесса деления на формирование спектра масс продуктов, удаленных от мишени. Сечение деления Та при этой энергии ~14 мб/1/, Следует ожидать, что выход индия среди осколков будет такой же по порядку величины, что и за счет реакции расщепления. Однако при делении образуются более тяжелые изотопы. Это приводит к уширению кривой изотопического распределения в сторону больших значений массового числа. При увеличении энергии бомбардирующих частиц сечение деления меняется слабо, а выход удаленных продуктов расщепления резко растет. В результате падает относительный вклад деления в изотопическое распределение такого элемента, как индий, и оно определяется, главным образом, реакциями глубокого расщепления. Аналогичное изменение изотопического распределения при снижении энергии протонов получено и для Rb.

3. В заключение остановимся на полученных данных по изомерным отношениям. Из рис. 3 видно, что при использовании протонов с энергией 0,66 ГэВ низкоспиновый изомер (2+и 1/2)имеет выход примерно в 20 раз меньший, чем его партнер с более высоким спином (7⁺и 9/2⁺ соответственно). При увеличении энергии пучка 1 15 In остается практиотношение выходов изомеров ¹¹³ In и чески неизменным, в то время как для ¹¹⁰ In отношение Y(7⁺)/Y(2⁺) уменьшается в 5-10 раз. Это можно понять в предположении, что вклад pacnaдa ¹¹⁰Sn в выход ¹¹⁰ In(2⁺) существенно меньше при малой энергии, чем при большой. Действительно, изомерное отношение $\sigma(7^+)/\sigma(2^+)$ /то есть отношение независимых сечений образования изомеров/ может быть больше только при повышенной энергии. Это связано с тем, что согласно/1/ при увеличении энергии ожидается рост среднего углового момента возбужденного ядра после ядерного каскада, а этому должно отвечать увеличение отпо статистической модели /18/ носительной вероятности образования высокоспинового изомера. Предположив независящее от энергии $\sigma(7^+)/\sigma(2^+)$ и одинаковый относительный вклад от распада ¹¹⁰ Sn, мы должны получить близкие при большой и малой энергиях отношения выходов

7

 $Y(7^+)/Y(2^+)$. То, что это не так, свидетельствует о том, ЧТО σ(110 Sn)/σ(110 In)в несколько раз меньше при энергии протонов 0,66 ГэВ, чем при высоких энергиях.

Авторы благодарны В.П.Джелепову, К.Я.Громову и И.Н.Семенюшкину за интерес к работе и поддержку, В.Д.Тонееву за полезные обсуждения, В.В.Попову за помощь в работе.

ЛИТЕРАТУРА

- 1. Барашенков В.С., Тонеев В.Д. Взаимодействия высокоэнергетических частиц и атомных ядер с ядрами. "Атомиздат", М., 1972.
- 2. Kaufmann S.B., Steiberg E.P. Phys.Rev., 1980, C22, p.167.
- 3. Kaufmann S.B. et al. Phys.Rev., 1976, C14, p.1121.
- 4. English G. et al. Phys.Rev., 1974, C10, p.2281.
- 5. Cumming J.B. et al. Phys.Rev., 1976, C14, p.1554.
- 6. Cumming J.B. et al. Phys.Rev., 1974, C10, p.739.
- 7. Katcoff S., Hudis J. Phys.Rev.Lett., 1972, 28, p.1066. 8. Greiner D.E. et al. Phys.Rev.Lett., 1975, 35, p.152.
- 9. Sullivan J.D. et al. Phys.Rev.Lett., 1973, 30, p.136.
- 10. Morrissey D.J. et al. Phys.Rev., 1980, C21, p.1783.
- 11. Cumming J.B. et al. Phys.Rev., 1978, C17, p.1632.
- 12. Beyer G.J. et al. Nucl.Instr. Meth., 1971, 96, p.437.
- 13. Карнаухов В.А. и др. ОИЯИ, 13-1211, Дубна, 1979.
- 14. Lederer C.M. et al. Table of Isotopes, VII ed., John Wiley and Sons Inc., New York, 1978.
- 15. Rudstam G. Zeitschrift für Naturforschung, 1966, 21a, p.1027.
- 16. Rudstam G., Sørensen J. J.Inorg.Nucl.Chem., 1966, 28, p.771.
- 17. Hagebø E., Ravn H. J.Inorg.Nucl.Chem., 1969, 31, p.897.
- 18. Sarantites D.C. Nucl.Phys., 1967, A93, p.576.

Рукопись поступила в издательский отдел 2 апреля 1981 года.