

объединенный NHCTNTYT ядерных исследований дубна

13/11-81

3461/2-81

P1-81-176

ИМПУЛЬСНЫЕ И УГЛОВЫЕ ХАРАКТЕРИСТИКИ *π*⁻ -МЕЗОНОВ, ОБРАЗУЮЩИХСЯ ПРИ ВЗАИМОДЕЙСТВИИ ЯДЕР d, ⁴ He¹² C С ЯДРАМИ ТАНТАЛА ПРИ ИМПУЛЬСЕ 4,2 ГэВ/с._{нукл.}

/141

Сотрудничество: Баку - Белград - Бухарест -Варна - Варшава - Дубна -Москва - Прага - София -Улан-Батор

Направлено в ЯФ

1. ВВЕДЕНИЕ

Данная работа представляет собой продолжение цикла работ по исследованию взаимодействий легких релятивистских ядер дейтерия, гелия и углерода - с тяжелыми ядрами тантала (A=181) при импульсе первичных ядер 4,2 ГэВ/с.нукл.^{(1-5/}. Предыдущие работы были посвящены в основном изучению сечений взаимодействия ядер и множественности вторичных частиц, образующихся при этих взаимодействиях. Было показано, что эти характеристики и их зависимость от атомного веса ядра-снаряда и ядрамишени можно объяснить на основе представления о независимом взаимодействии нуклонов ядра-снаряда с ядром-мишенью. В данной работе представлены импульсные и угловые спектры π^- -мезонов, образующихся при столкновении релятивистских ядер. Эти характеристики уточняют наше представление о механизме взаимодействия ядер с ядрами.

2. ЭКСПЕРИМЕНТАЛЬНАЯ МЕТОДИКА

Экспериментальный материал был получен с помощью 2-метровой пропановой камеры ЛВЭ ОИЯИ, помещенной в магнитное поле напряженностью 15 кГс. В рабочем объеме камеры размещались 3 танталовые пластины толщиной 1 мм на расстоянии 93 мм друг от друга. Камера облучалась ядрами дейтерия, гелия-4 и углерода-12 с импульсами 2,3; 4,2 и 5,1 ГэВ/с.нукл на синхрофазотроне ЛВЭ ОИЯИ. Зарегистрированные в камере взаимодействия измерялись на полуавтоматах САМЕТ и обсчитывались по программе GEOFIT. Средняя относительная ошибка в измерении импульсов составляла 12%, а в измерении углов - 0,01 рад. Более подробно методические вопросы рассмотрены в работе ^{/8/}.

В данной работе исследуются импульсные и угловые характеристики отрицательных частиц, *т* -мезонов, образованных ядрами с первичным импульсом на нуклон 4,2 ГэВ/с. Отрицательные пионы легче других типов частиц идентифицируются в камере, по знаку заряда. Оценки показали, что примесь неидентифицируёмых электронов не превышает 5% ⁷⁷, а отрицательных странных частиц -1%. Средний граничный импульс, начиная с которого *т* -мезоны уверенно идентифицировались, составлял 80 МэВ/с. Была внесена поправка на потерю частиц, вылетающих под углом около 90 °

БИБЛИСТЕКА

OELEDNHEH'

AL PHENX & LL DA

4.	ИМПУЛЬСНЫЕ	И	угловые	РАСПРЕДЕЛЕНИЯ	C	ОТРИЦА	тельных	пионов
----	------------	---	---------	---------------	---	--------	---------	--------

	18		
Ai	đ	⁴ He	¹² C
N	1354	674	1177

к направлению пучка и "застревающих" в пластине, а также на потерю частиц, вылетающих под большим углом к плоскости фотографирования. Эта поправка составила для облучения дейтронами, ядрами гелия и углерода соответственно 11.13 и 7%.

В табл.1 приведено количество зарегистрированных и измеренных событий разных типов / Po = 4,2 ГэВ/с.нукл./.

3. СРЕДНИЕ ХАРАКТЕРИСТИКИ ОТРИЦАТЕЛЬНЫХ ПИОНОВ

В табл.2 приведены средние характеристики л -- мезонов. образованных во взаимодействиях разных первичных ядер с ядрами тантала, а именно: средний импульс π^- -мезонов – $\langle p > ;$ средний угол вылета по отношению к направлению первичного ядра - $< \Theta>$; средний поперечный импульс – < p, > и средняя быстрота – <у>.В двух первых строках табл.2 приведены полное число зарегистрированных *п* - мезонов - n и их средняя множественность в одном событии - <n >. Как видно из табл.2, средние характеристики л - мезонов почти не зависят от типа ядра-снаряда. Наблюдается только небольшое /~10%/ уменьшение среднего угла <0>и увеличение средней быстроты <у> при переходе от дейтрона к углероду.

	Таблица 2				
A _i	d	α	с С	Модель ДКМ для СТа	
n_	1067	929	3453	3522	
< n_ >	0,91+0,05	1,60+0,11	3,2 <u>+</u> 0,2	4,0+0,2	
ГэВ/с	0,46+0,01	0,50 <u>+</u> 0,02	0,48+0,01	0,47+0,01	
<θ> рад	0,99+0,02	0,91 <u>+</u> 0,02	0,90+0,01	0,96+0,02	
<p_> ГэВ/с</p_>	0,24+0,01	0,26+0,01	0,240 <u>+</u> 0,003	0,225+0,004	
<y></y>	0,70 <u>+</u> 0,01	0,76+0,02	0,79+0,01	0,77+0,01	

Импульсные спектры 🚛 - мезонов, образованных при столкновении различных первичных ядер с ядрами тантала, представлены на рис.1 в полулогарифмическом масштабе. Спектры нормированы

мезонов.

π-мезонов.

на одно взаимодействие. Прямые линии представляют собой результат аппроксимации спектров экспоненциальной зависимостью:

В табл.3 приведены значения параметров а и в для разных типов реакций и соответствующие им значения x² на одну степень свободы. Как видно из рис.1 и табл.3, импульсные спектры л-мезонов хорошо аппроксимируются экспоненциальной зависимостью с одинаковым показателем для всех первичных ядер.

На рис.2 приведены угловые распределения π^-- мезонов в dTa- и СТа -взаимодействиях. Из рисунка видно, что угловое распределение *п*-мезонов в dTa-взаимодействиях несколько шире, чем в СТа-взаимодействиях.

3

	Ta		
Ai	d	a ·	C
a	3,0+0,2	5,0 <u>+</u> 0,3	10,2+0,3
b	2,8+0,1	2,6+0,1	2,6+0,05
x ²	1,11	0,95	1,46

	· · · · · · · · · · · · · · · · · · ·		
A _i	d	a .	С
A	0,88+0,12	0,88 <u>+</u> 0,11	0,85+0,07
В	0,12 <u>+</u> 0,03	0,12+0,04	0,15 <u>+</u> 0,02
а	42 <u>+</u> 6	39 <u>+</u> 5	44 <u>+</u> 4
b	8+1	8 <u>+</u> 1	8,5 <u>+</u> 0,5
x ²	0,89	0,89	0,93

Рис.3. Распределение по квадрату поперечного импульса *т* мезонов в СТа-взаимодействиях.

На <u>рис.3</u> представлено распределение *т* -мезонов из СТавзаимодействий по квадрату поперечного импульса p_{\perp}^2 . Сплошная линия представляет собой результат аппроксимации этого распределения двумя экспонентами:

$$\frac{\mathrm{dn}_{-}}{\mathrm{dp}_{\perp}^{2}} = \mathrm{Ae}^{-\mathrm{ap}_{\perp}^{2}} + \mathrm{Be}^{-\mathrm{bp}_{\perp}^{2}}$$

Коэффициенты A , a , B , b и значения χ^2 на одну степень свободы приведены в <u>табл.4</u> для разных первичных ядер. Как видно из этой таблицы, распределение по p_1^2 хорошо аппроксимируется двумя экспонентами с одинаковыми параметрами для

всех первичных ядер. Такой характер распределения по p_1^2 указывает на существование двух механизмов образования π^- -мезонов в этих взаимодействиях.

5. РАСПРЕДЕЛЕНИЯ ОТРИЦАТЕЛЬНЫХ ПИОНОВ ПО БЫСТРОТАМ И ПО ФЕЙНМАНОВСКОЙ ПЕРЕМЕННОЙ х

На <u>рис.4</u> приведены распределения *т*-мезонов по быстротам в лабораторной системе координат для разных первичных ядер, нормированные на одно взаимодействие. На <u>рис.5</u> показано отно-

Рис.4. Распределения т -мезонов по быстротам в лабораторной системе координат. Рис.5. Отношения распределений по быстротам *п*-мезонов для разных ядер-снарядов.

шение распределений по быстротам для СТа- и $_{\alpha}$ Та -взаимодействий к распределению для dTa-взаимодействий. Из рис.4 и 5 видно, что увеличение множественности π^- -мезонов с увеличение нием атомного веса налетающего ядра происходит почти одинаково во всех интервалах быстрот.

На рис.6 и 7 представлены распределения π^- -мезонов из СТа -взаимодействий в системе центра масс нуклон-нуклон по фейнмановской переменной х и по косинусу угла вылета Θ * соответственно. Оба эти распределения не симметричны. Распределе-

4

Рис.6. Распределения *п* -мезонов из СТа-взаимодействий по фейнмановской переменной **х** в системе центра масс нуклоннуклон.

Рис.8.Сравнение экспериментального распределения т мезонов по переменной х с предсказанием модели внутриядерного каскада/ДКМ/ /15/ Рис.7. Угловое распределение *п*-мезонов из СТа-взаимодействий в системе центра масс нуклон-нуклон.

Co\$ 6*

CTa

ние по х хорошо описывается экспоненциальной зависимостью еах с коэффициентами наклона a_н=-6,0+0,2 (у²=0,96)в передней полусфере (x>0) и a₉ = = 4,6+0,1 (χ^2 =0.77) в задней полусфере (x<0). Отсюда следует, что система центра масс нуклон-нуклон не является системой центра масс для всей совокупности π^- -мезонов. образованных в СТа-взаимодействиях. Следовательно, для описания этих распределений требуется учет внутриядерных процессов. На рис.8 сравнивается экспериментальное распределение по х с предсказанием модели внутриядерного каскада /15/ /ДКМ/. Видно, что

модель удовлетворительно описывает экспериментальное распределение, за исключением области x<-1, где в эксперименте, по-видимому, наблюдаются кумулятивные π^- -мезоны. В последней колонке <u>табл.2</u> приведены предсказания модели ДКМ для средних характеристик π^- -мезонов из СТа-взаимодействий. Эти предсказания хорошо согласуются с экспериментальными значениями, кроме средней множественности.

6. КОРРЕЛИРОВАННОЕ ИСПУСКАНИЕ ОТРИЦАТЕЛЬНЫХ ПИОНОВ

Исследование интерференции двух π^- -мезонов в ядро-ядерных столкновениях ^(8,9) позволило оценить размеры области генерации π^- -мезонов. Многочастичные корреляции в системах тождественных частиц изучались ранее в адрон-адронных и адрон-ядерных взаимодействиях ⁽¹⁰⁻¹⁴⁾. Было показано, что мезоны одного знака чаще, чем разноименные, вылетают сравнительно узким пучком. Одним из результатов работ ^(10,13,14) является вывод о том, что корреляции в системах из трех и четырех пионов обусловлены двухчастичными корреляциями.

В настоящей работе изучается процесс коррелированного испускания нескольких #--мезонов, образующихся при взаимодействии ядер углерода с ядрами тантала. Для этого анализируются спектры эффективных масс $M_{n\pi}$ систем, состоящих из n_{π} -мезонов (n=2,3,4). При построении распределений по $M_{n\pi}$ за величину "шага" было принято экспериментальное разрешение по массе системы n_m-мезонов, которое в области эффективных масс M nm , меньших среднего значения <M nm >, составляло ΔMnm /20;40;60/МэВ соответственно для n=2;3;4. Для получения фонового распределения проводилась случайная выборка π^- -мезонов из разных событий. Так как импульсные и угловые спектры 🚛 - мезонов зависят от числа π^- -мезонов в событии, случайные выборки для фонового распределения осуществлялись только из событий с одинаковым числом π^- -мезонов, а затем случайные комбинации суммировались с весами, пропорциональными вкладу в экспериментальное распределение событий с данным числом 🚛 - мезонов. Фоновые распределения нормировались на число комбинаций в экспериментальных распределениях в области $M_{n\pi} > M_{n\pi}^{\Gamma p}$, где $M_{n\pi}^{\Gamma p}$ некоторое граничное значение эффективной массы, которое выбиралось так, чтобы при увеличении $M_{n\pi}^{\Gamma p}$ превышение числа экспериментальных комбинаций над фоновыми" практически не менялось.

На <u>рис.9</u> приведены значения отношения R_n экспериментального и фонового распределений по эффективной массе систем n π^- -мезонов (о). Левая граница распределений совпадает с суммой масс π^- -мезонов. Для всех трех систем π^- -мезонов / n = = 2,3,4/ наблюдается превышение экспериментальных распределе-

6

7

Рис.9.Отношения экспериментальных распределений по эффективной массе системы п *п* -мезонов к фоновым распределениям.

ний над фоновыми в области малых эффективных масс, что свидетельствует о наличии корреляций в испускании двух, трех и четырех π^- -мезонов, рожденных в СТа-взаимодействиях при импульсе 4,2 ГэВ/с.нукл.

Для исследования влияния двойных и тройных корреляций на корреляции более высокой кратности было построено другое фоновое распределение, в котором (n-1) π^- -мезон брался из одного события и только n-й π^- -мезон - из другого. Значения R_n для такого фона тоже приведены на <u>рис.9</u> (**A**) для n=3 и 4. Как видно из <u>рис.9</u>, превышение экспериментального распределения над фоновым в области малых эффективных масс сохраняется и при таком фоне, что свидетельствует о существовании коррелированного испускания трех и четырех π^- -мезонов, не обусловленного двойными и тройными корреляциями *. Подобный результат предсказывался в работе^{/12/}, в которой утверждалось, что парные корреляции могут воспроизвести лишь $1/2 \cdot (n-2)!$ часть высоты интерференционного максимума в точке $\vec{p}_1 = \vec{p}_2 = ... = \vec{p}_n$.

* В дальнейшем будет проведен более подробный анализ влияния процедуры построения фонового распределения на величину эффекта.

выводы

1. Импульсные и угловые распределения *m*⁻-мезонов, образующихся во взаимодействиях легких ядер с ядрами тантала, слабо зависят от природы налетающего ядра.

2. Увеличение множественности π^- -мезонов с увеличением атомного веса налетающего ядра происходит почти одинаково во всех интервалах быстрот.

3. В СТа-взаимодействиях наблюдается образование кумулятивных *п* -мезонов в области фрагментации ядра-мишени.

4. В СТа-взаимодействиях наблюдается коррелированное испускание трех и четырех π^- -мезонов, не сводящееся к парным корреляциям.

Авторы выражают благодарность персоналу 2-метровой пропановой камеры за получение снимков и лаборантам за помощь в просмотре и обработке экспериментального материала.

ЛИТЕРАТУРА

- 1. Ангелов Н. и др. ОИЯИ, Р1-10779, Дубна, 1977; ЯФ, 1978, 27, с.1020.
- 3. Ангелов Н. и др. ОИЯИ, Р1-12281, Дубна, 1979; ЯФ, 1979, 30, с.1590.
- 4. Angelov N. et al. JINR, E1-12548, Dubna, 1979.
- 5. Ангелов Н. и др. ОИЯИ, Р1-80-473, Дубна, 1980.
- 6. Ангелов Н. и др. ОИЯИ, 1-12424, Дубна, 1979.
- 7. Гаспарян А.П. и др. ОИЯИ, 1-80-778, Дубна, 1980.
- 8. Fung S.Y. et al. Phys.Rev.Lett., 1978, 41, p.1592.
- 9. Ангелов Н. и др. ОИЯИ, Р1-12504, Дубна, 1979; ЯФ, 1980, 31, с.411.
- 10. Бумажнов В.А. и др. ЯФ, 1980, 32, с.1020.
- 11. Бацкович С. и др. ЯФ, 1980, 31, с.1234.
- 12. Копылов Г.И. ОИЯИ, Р2-7211, Дубна, 1973; Kopylov G.I. et al. JINR, E2-9249, Dubna, 1975.
- 13. Boesebeck K. et al. Nucl. Phys., 1973, B52, p.189.
- 14. Le Guyader J., Sene M. Nucl.Phys., 1973, B52, p.422.
- 15. Гудима К.К., Тонеев В.Д. ОИЯИ, Р2-10431, Дубна, 1977; яФ, 1978, 27, с.658.

Рукопись поступила в издательский отдел 11 марта 1981 года.

8