

сообщения объединенного института ядерных исследований

дубна

15/6-81

P1-81-165

ИЗМЕРЕНИЕ ПОЛЯРИЗАЦИИ **Д**^о, РОЖДЕННЫХ В ИНКЛЮЗИВНЫХ ПРОЦЕССАХ НЕЙТРОНАМИ С ЭНЕРГИЕЙ ОКОЛО 40 ГэВ НА ЯДРАХ УГЛЕРОДА

Сотрудничество:

Дубна-Берлин-Москва-Прага-София-Тбилиси

P1-81-165

ИЗМЕРЕНИЕ ПОЛЯРИЗАЦИИ **А[°]**, РОЖДЕННЫХ В ИНКЛЮЗИВНЫХ ПРОЦЕССАХ НЕЙТРОНАМИ С ЭНЕРГИЕЙ ОКОЛО 40 ГэВ НА ЯДРАХ УГЛЕРОДА

Сотрудничество: Дубна-Берлин-Москва-Прага-София-Тбилиси

Алеев А.Н. и др.

P1-81-165

Измерение поляризации Л°, рожденных в инклюзивных процессах нейтронами с энергией около 40 ГэВ на ядрах углерода

Измерена поляризация Λ° , рожденных в инклюзивных процессах нейтронами с энергией около 40 ГэВ на ядрах углерода.Эксперимент выполнен на серпуховском ускорителе с помощью спектрометра БИС-2 ОИЯИ. Результаты данного эксперимента находятся в согласии с результатами измерения поляризации Λ° в пучках протонов. Вероятность того, что поляризация Λ° отсутствует в интервале 0 < P, <1 ГэВ/с, равна 4%.

Работа выполнена в Лаборатории высоких энергий ОИЯИ.

Сообщение Объединенного института ядерных исследований. Дубна 1981

Aleev A.N. et al.

P1-81-165

Measurement of Λ° Polarization Produced by 40 GeV Neutrons on Carbon Nuclei in Inclusive Processes

The Λ° polarization produced by 40 GeV neutrons on carbon nuclei has been measured. The experiment has been performed on Serpukhov accelerator by means of JINR BIS-2 spectrometer. The results are in agreement with measurements of the Λ° polarization produced inclusively by protons on nucleons and nuclei in which the polarization rises with increasing Λ° transverse momentum. The probability that the Λ° polarization is missing within the $0 < P_{\rm L} < 1$ GeV/c range equals 4 percent.

The investigation has been performed at the Laboratory of High Energies, JINR.

Communication of the Joint Institute for Nuclear Research. Dubna 1981

Эксперименты ^{/1-8/} с Λ° , рожденными протонами с энергией больше 20 ГэВ на нуклонах и ядрах в инклюзивных процессах, показали, что Λ° имеет значительную поляризацию /около – 0,2 при P_{\perp} = 1 ГэВ/с/, которая растет с ростом перпендикулярного (P_{\perp}) импульса Λ -частиц и слабо зависит от сорта мишени и энергии частиц пучка.

Для объяснения этого явления предложен ряд моделей^{/3,10,11/}, которые находятся в качественном согласии с экспериментальными данными.

В работе^{/9/} наблюдается близкая к единице поляризация Λ° , рожденных нейтронами 7 ГэВ/с в пропановой камере, в кинематически запрещенной области рождения Λ° на свободных нуклонах.

В данном эксперименте измерена поляризация Λ° , рожденных в инклюзивных процессах нейтронами с энергией около 40 ГэВ на ядрах углерода. Поляризация определялась по измерению асимметрии в распадах $\Lambda^{\circ} + P + \pi^{-}$ в зависимости от $P_{\perp} \Lambda^{\circ}$. Вклад в Λ° от распада Σ° , так же как и в других экспериментах ^{/1-8/}, не определялся.

Первая информация о результатах данного эксперимента сделана в работе Алеева и др.^{/12/}. Здесь сообщаются результаты, полученные на большем статистическом материале.

Эксперимент выполнен на серпуховском ускорителе с помощью спектрометра 13 БИС-2 ОИЯИ. Схема расположения аппаратуры спектрометра на пучке канала 4Н показана на <u>рис.1</u>. Пучок нейтронов, средняя энергия которого /40+5/ ГэВ, предварительно очищенный свинцовым фильтром от гамма-квантов и магнитным полем магнита СП-129 от заряженных частиц, падал на углеродную мишень диаметром 5 см и толщиной 6,24 г/см².

Все пропорциональные камеры /ПК/ двухкоординатные, за исключением ПК2, и имеют шаг намотки проволок 2 мм. ПК6 и ПК7 повернуты относительно других ПК на угол 10°. Выходы с сигнальных Х-электродов ПК объединялись в группы, образующие систему годоскопических счетчиков. С помощью этих и других детекторов спектрометра формировался триггер, логика которого требовала прохождения четырех и более заряженных частиц через активно работающие детекторы /ПК и Г1/. При прохождении через магнит поперечная составляющая импульса заряженных частиц изменялась на 0,64 ГэВ/с.

В эксперименте записано на магнитные ленты около 2.10⁷ триггеров.Настоящие данные относятся к анализу 0,53.10⁷ триггеров,

первоначально обработанных программой геометрической реконструкции событий "ПЕРУН" ^{/14/}.

В дальнейшем при отборе кандидатов в Λ° использовались следующие критерии:

1. Эффективные массы двух заряженных частиц в предположении, что они обе или пионы или протоны:

 $M(\pi^{\pm}\pi^{\pm}) > 312 \text{ МэВ/с}^2$ или $M(PP) > 1930 \text{ МэВ/с}^2$;

2. Расстояние между продолжениями двух треков в медианную плоскость магнита: D > 10 см;

3. z – расстояние от медианной плоскости магнита до точки распада кандидатов в Λ° : -460 см < $z(P\pi^{-})$ < -270 см;

4. Минимальное расстояние между треками в точке распада кандидатов в Λ° : d(P π^{-}) < 3 мм;

5. Эффективная масса частиц в предположении, что одна - протон, другая - пион:

а/ 1108 МэВ/с² < М(Рπ⁻)<1124 МэВ/с² или б/ 1102 МэВ/с² <М(Рπ⁻)<1108 МэВ/с² или 1124 МэВ/с²<М(Рπ⁻)<1129 МэВ/с²:

4

6. Угол между треками положительно и отрицательно заряженных частиц - не менее 0,002 рад.

Все треки, соответствующие одинаковым знакам зарядов частиц, считались существенно различными, если выполнялось условие 1 или 2. Если для двух или более треков не выполнялись условия 1 и 2, то из этих треков оставлялся один с наилучшим χ^2 на степень свободы. А если оказывалось, что χ^2 для разных треков одинаковые, то оставлялся для дальнейшего анализа "первый" трек. Если в одном событии было несколько кандидатов в Λ° , то оставлялась одна, с минимальным значением χ^2 .

Из отобранных кандидатов в Λ° , события, не удовлетворяющие критерию 5а, служили в дальнейшем только для оценки и вычитания фоновых событий.

Соответствующие распределения 54586 кандидатов в Λ° по эффективной массе М(Р π^{-}), продольному и поперечному импульсам / Р_I и Р_I /, показаны на <u>рис.2.</u>

Для определения поляризации Λ° была выбрана следующая прямоугольная система координат в системе покоя Λ° . Ось \overline{Y} нормаль к плоскости рождения Λ° , т.е. $\overline{Y} = \overline{n} \times \overline{P}_{\Lambda}$, где \overline{n} и \overline{P}_{Λ} есть соответственно единичные векторы вдоль оси пучка нейтронов (Z) и направления полета Λ° в лабораторной системе координат. Ось \overline{Z} - по вектору \overline{P}_{Λ} , а ось \overline{X} - так, чтобы система координат была правой. Угол θ определяется в системе покоя Λ° как угол между импульсом протона и осью \overline{Y} , а полярный угол ϕ относительно оси \overline{X} .

Известно, что плотность вероятности протонов от распада $\Lambda^{\circ} \rightarrow P + \pi^{-}$ в системе центра масс Λ° относительно направления спина Λ° дается выражением /см., напр., /15//,

$$\frac{\mathrm{dW}}{\mathrm{d}\cos\theta} = (1 + a \cdot \mathcal{P} \cdot \cos\theta)/2, \qquad /1/$$

где \mathscr{P} - поляризация Λ° , а $a = 0,642^{/16/}$.

Так как сохранение четности в сильных взаимодействиях требует, чтобы спин Λ° был перпендикулярен плоскости рождения Λ° , то угол θ в соотношении /1/ совпадает с углом θ в системе координат ($\vec{X}, \vec{Y}, \vec{Z}$), т.е.

 $\cos\theta = \overline{\mathbf{Y}} \cdot \overline{\mathbf{P}}_{\mathbf{p}} / |\overline{\mathbf{P}}_{\mathbf{p}}^*| , \qquad /2/$

где \bar{P}_p^* и \bar{P}_p^- импульсы протона в системе покоя Λ° и в лабораторной системе координат, соответственно.

Мы определяли поляризацию Λ° в зависимости от P_{\perp} , используя соотношения /1/ и /2/ и следующую процедуру. Все кандидаты в Λ° были разделены на группы по P_{\perp} Лервые интервалы P_{\perp} равны по 0,2 ГэВ/с, а последний открыт со стороны больших значений.

Для всех групп событий были построены распределения по эффективным массам M(P π⁻), которые аппроксимировались функциями вида:

$$K_{0,i} \cdot \exp\{-(M_i - M_{\Lambda})^2 / 2\sigma_i^2\} + K_{1,i} + K_{2,i} \cdot M_i$$
, /3/

где К $_{0,i}$, К $_{1,i}$, К $_{2,i}$ - константы, М $_{\Lambda}$ и М $_i$ - табличное и текущие для i-й группы событий значения масс $\Lambda^{\rm o}$ и М(Р π^{-}), соответственно, $i=1,2,\ldots$.

Затем для каждой группы событий были построены распределения по $\cos\theta$ с шагом 0,1 как для событий, удовлетворяющих критериям 1÷5а,6, так и для фоновых событий, удовлетворяющих критериям 1÷4,5б,6. Распределения фоновых событий были нормированы на основе соотношений /3/ и вычтены из соответствующих распределений событий, удовлетворяющих критериям 1÷5а,6.

Таким образом, во всех интервалах по P_{\perp} были получены распределения по $\cos\theta$ зарегистрированных Λ° распадов. Используя обозначения $X = \cos\theta$ и $\beta_i = a \mathscr{P}_i$, экспериментальные распределения событий /для каждого конкретного интервала по P_{\perp} /, в за-

висимости от X, можно представить в виде:

$$\frac{dN_{3,i}(x)}{dx} \cdot \Delta x = \frac{dW_{i}(x)}{dx} \cdot F_{i}(x) \cdot \Delta x, \qquad /4/$$

где $F_i(x) \cdot \Delta x = \Delta x \cdot \int du \cdot N_i(u) \cdot \epsilon(u, x),$ (5/

"u" – шестимерная переменная, характеризующая импульс и координаты точки распада рожденных Λ° ; N_i(u) du – число рожденных Λ° в интервале du с характеристиками u; ϵ (u,x) – эффективность регистрации таких Λ° спектрометром и восстановления их программой геометрической реконструкции с учетом критериев 1÷5a,6.

Чтобы оценить функцию $F_i(x)$ и, следовательно, найти $\frac{dW_i(x)}{dx_e}$, при моделировании по методу Монте-Карло в качестве исходных мы использовали события,зарегистрированные в эксперименте, удовлетворяющие критериям 1÷5а,6.В этом случае число зарегистрированных Λ° в интервале du равно:

$$\frac{|N_{3, i}(u)|}{du} \cdot du = du \cdot N_{i}(u) \cdot \int_{-1}^{1} dx \frac{dW_{i}(x)}{dx} \cdot \epsilon(u, x) .$$
 (6)

Далее при моделировании по методу Монте-Карло использовались изотропный распад Λ° на протон и пион в системе покоя Λ° по х и ϕ , известные условия эксперимента, логика программ геометрической реконструкции событий и статистического анализа данных с вышеизложенными критериями отбора событий /1÷5a,6/.

Таким образом, были получены распределения:

$$\frac{dN_{n,i}(x)}{dx} \cdot \Delta x = C_{n,i} \cdot \Delta x \cdot \int du \cdot N_i(u) \cdot \epsilon_0(u,x) \cdot (1+\beta_i \cdot \widetilde{X}(u)) \cdot \widetilde{X}^n(u) , /7/$$

$$de \quad n = 0,1,2,3; \qquad C \quad - \text{ константы, } i = 1,2, \dots$$

$$\overline{X}(u) = \frac{\int_{-1}^{1} dx \cdot X \cdot \epsilon_0(u,x)}{\int_{-1}^{1} dx \cdot \epsilon_0(u,x)} \cdot \frac{\int_{-1}^{1} dx \cdot \xi_0(u,x)}{\int_{-1}^{1} dx \cdot \xi_0(u,x)} \cdot \frac{\int_{-1}^{1} dx \cdot \xi$$

На <u>рис.3</u> приведены распределения /7/ при n=0 для всех интервалов по P_1 . Из /5/ и /7/ для n=0 видно, что их правые части отличаются друг от друга. Во-первых, на несущественные для формы распределений константы $C_{0,i}$, во-вторых - под интегралом на множители $(1+\beta_i\cdot \bar{X}(u))$. И, наконец, $\epsilon(u,x)$ и $\epsilon_0(u,x)$ в общем случае не тождественно равны друг другу. В дальнейшем мы полагали, что $\epsilon(u,x) = \epsilon_0(u,x)$.

Так как $\beta_i \cdot X(u) = \alpha \cdot \mathcal{P}_i \cdot X(u) < 1$, то для вычисления β_i был использован метод итераций. Первые приближения $\beta_{i,0}$ были найдены путем аппроксимации отношения левых частей уравнений

6 • •

Рис.3. Первые приближения / /7/ при n = 0 / эффективности регистрации Λ° для шести интервалов по P₁ в относительных единицах. Цифрами обозначены интервалы P₁: 1 - /0÷0,2/ ГэВ/с; 2 -/0,2÷0,4/ ГэВ/с; 3 -/0,4÷0,6/ГэВ/с; 4 - /0,6÷0,8/ ГэВ/с; 5 -/0,8÷1,0/ ГэВ/с; 6 - больше 1.0 ГэВ/с.

/4/ к /7/ при n = 0 линейной функцией $B_0(1+\beta_{i,0}X)$.Последующие приближения находились путем аппроксимации отношений:

$$\frac{dN_{9, i}(x)}{dx} \cdot \Delta x / \sum_{n=0}^{3} (-\beta_{i,j})^{n} \cdot \frac{dN_{n,i}(x)}{dx} \Delta x / \frac{\delta x}{/8} / \frac{\delta x}{\sqrt{8}}$$

линейной функцией $B_j(1 + \beta_{i,j} \cdot X)$, где j=1,2,3,.... Практически достаточно вторых приближений, т.е. можно ограничиться вычислениями $\beta_{i,1}$.

Корректность этой процедуры восстановления численных значений β_i проверена на образце моделированных Λ° с известными значениями β_i .

Таблица	
	-

Интервал поР /ГэВ/с/	Среднее значение в интервале	Р_ Поляризация Λ-частиц	χ ² на 18 степе- ней свободы
0÷0,2	0,13	+0,036 <u>+</u> 0,037	20,0
0,2÷0,4	0,30	-0,032+0,023	28,5
0,4÷0,6	0,49	-0,093+0,028	22,7
0,6÷0,8	0,68	-0,138+0,049	10,7
0,8÷1,0	0,88	-0,299+0,092	21,5
больше 1	1,15	-0,079 <u>+</u> 0,296	18,7

Рис. 4. Поляризация Λ° в зависимости от Р. 4 – наши данные, 5 – данные работы 77', 4 4 – данные работы 76'.

Анализ событий К° - $\pi^+\pi^-$, зарегистрированных в этом эксперименте, показал, что поляризация К° согласуется с нулевым значением ($\mathscr{P}(K^\circ) = 0,027\pm0,041$ для интервала Р₁ от 0 до 1,2 ГэВ/с). При этом анализ К° событий выполнен строго по формулам 1+8.

В таблице и на рис.4 приведены результаты измерения поляризации зации Λ° в зависимости от P_{\perp} . Ошибки в величинах поляризации даны с учетом процедуры их вычисления. Эти экспериментальные данные показывают, что характер зависимости от P_{\perp} поляризации Λ° , рожденных в инклюзивных процессах нейтронами при 40 ГэВ и, соответственно, протонами /1-8/, одинаков, т.е. поляризация Λ° растет с ростом P_{\perp} . Эти экспериментальные данные подтверждают теоретические предсказания /10/ о слабой зависимости поляризации Λ° при высоких энергиях и больших P_{\perp} от сорта частиц пучка.

Авторы выражают глубокую благодарность А.М.Балдину, Н.С.Амаглобели, И.С.Златеву, К.Ланиусу, М.Г.Мещерякову, И.А.Савину, Л.Д.Соловьеву, П.А.Черенкову и Х.Я.Христову за поддержку этих экспериментов; инженерно-техническому персоналу серпуховского ускорителя за обеспечение работы ускорителя; сотрудникам СНЭО ОИЯИ, ОННР ЛВЭ, сектора №4 НЭЭО ЛВЭ за участие в подготовке БИС-2 к сеансам и помощь при проведении сеансов на серпуховском ускорителе.

ЛИТЕРАТУРА

- 1. Bunce G. et al. Phys.Rev.Lett., 1976, 36, p.1113.
- 2. Heller K. et al. Phys.Lett., 1977, 68B, p.480.
- 3. Heller K. et al. Phys.Rev.Lett., 1978, 41, p.607.
- 4. Skubic P. et al. Phys.Rev., 1978, D18, p.3115.
- 5. Aahlin P. et al. Lett. Nuovo Cim., 1978, 21, p.236.
- 6. Erhan S. et al. Phys.Lett., 1979, 82B, p.301.
- 7. Lomanno F. et al. Phys.Rev.Lett., 1979, 43, p.1905.
- 8. Raychaudhuri K. et al. Phys.Lett., 1980, 90B, p.319.

- 9. Темников П.П. и др. ОИЯИ, Р1-12138, Дубна, 1979.
- 10. Andersson B. et al. Phys.Lett., 1979, 85B, p.417.
- 11. Ефремов А.В. ЯФ, 1978, 28, с.166.
- 12. Алеев А.Н. и др. Материалы XX Международной конференции по физике высоких энергий, Мэдисон, США, июль, 1980 г.
- 13. Айхнер Г. и др. ОИЯИ, 1-80-644, Дубна, 1980.
- 14. Бурилков Д.Т. и др. ОИЯИ, 1-80-656, Дубна, 1980.

1 ... 1 MA

- Bourrely C. et al. Phys.Rep., 1980, 59/80/, No.2, p.95-297.
 Bricman C. et al. Phys.Lett., 1978, 75B, p.1; "Review of Particle Properties", Rev.Mod.Phys., 1980, 52. No.2. part 11.

Рукопись поступила в издательский отдел 9 марта 1981 года.