

СООБЩЕНИЯ Объединенного института ядерных исследований дубна

2963 2-81

P1-81-126

15/6-81

А.Абдивалиев, К.Бешлиу, А.П.Гаспарян, С.Г.Груиа, А.П.Иерусалимов, Д.К.Копылова, Ф.Которобай, В.И.Мороз, А.В.Никитин, Ю.А.Троян

СЕЧЕНИЯ КАНАЛОВ РЕАКЦИЙ В ТРЕХЛУЧЕВЫХ **пр**-ВЗАИМОДЕЙСТВИЯХ ПРИ **P_n** = 1,25; 1,73; 2,23; 3,83 И 5,10 ГэВ/с

1. УСЛОВИЯ ЭКСПЕРИМЕНТА

Для изучения пр-взаимодействий в интервале импульсов 1÷5 ГэВ/с однометровая водородная пузырьковая камера ^{/1/}была облучена нейтронами от стриппинга ускоренных дейтронов ^{/2/} Импульсы и ширины спектров нейтронов составляли $P_n \pm \sigma_p =$ = /1,25±0,03/ ГэВ/с, /1,73±0,05/ ГэВ/с, /2,23±0,07/ ГэВ/с, /3,83±0,12/ ГэВ/с, /5,10±0,17/ ГэВ/с.

Условия облучения описаны в работе /2/.

Пучок первичных нейтронов был сколлимирован и направлен по оси камеры. Рабочая область пучка равнялась 4х4 см².На расстоянии 0,8 см от границы пучка шли только вторичные нейтроны. Эффективность просмотра составляла более 0,99.

Исследовались реакции:

$np \rightarrow pp\pi \overline{,}$	/1/
$np \rightarrow pp \pi^- \pi^{\circ}$,	/2/
$np \rightarrow p\pi^+\pi^-n$,	/3/
np → 3 луча + m нейтральных части (m > 2)	лц /4/

для чего отбирались трехлучевые звезды; ранее в событиях этой топологии была исследована реакция ^{/3/}:

np $\rightarrow d\pi^+ \pi \overline{}$.

/5/

Ł

При определении сечений были сделаны поправки на пары Далица. Около 1,2% событий /2/ сопровождаются электронно-позитронными парами Далица и при просмотре могли быть ошибочно исключены из трехлучевых звезд. Также могли быть потеряны события /4/ с парами Далица. Оценки показывают,что таких случаев менее 1% числа событий /4/. Однолучевые звезды с парами Далица могли быть ошибочно приняты за трехлучевые звезды. Количество таких случаев соответствует сечению /0,08÷0,13/ мб, они могут в основном попадать в события /4/. Часть случаев однолучевых звезд с парой Далица была исключена при просмотре.

Вторая группа поправок связана со вторичными нейтронами, сопровождающими первичный пучок. Вторичные нейтроны возникают в передней стенке камеры и в слое жидкого водорода, расположенном перед рабочим объемом. Оценки показывают, что таких

> О ВЕДИНЕННЫЙ ИНСТИТИ ЯСЕРНЫХ ИССЛЕДОВАНИИ БИЕЛИОТЕКА

событий, вызванных вторичными нейтронами, не более 6÷9% в зависимости от импульса пучка. Методически они делятся в отношении 1:2 между реакциями /2÷3/ и /4/.

События измерялись на сканирующем автомате HPD /~80%/ и полуавтоматах ПУОС /~20%/. Их геометрическая реконструкция и идентификация выполнялись по программам /5,6/. оптические константы камеры были взяты из работы /7/.

Средняя точность определения Р $_{\Sigma}$ была лучше 2%, где

 $\mathbf{P}_{\Sigma} = \left| \begin{array}{c} \boldsymbol{\Sigma} \\ \boldsymbol{P}_{1} \end{array} \right|,$

Р. - измеренные импульсы частиц; события с

 $\Delta P_{\Sigma} > 0.09P_{n}$ или ΔP, /P, > 0,30

считались неизмеримыми.

В рабочем объеме камеры таких событий насчитывалось около 3% при P_n = 5,10 ГэВ/с, с уменьшением P_n относительное количество неизмеримых событий быстро падало. При расчете сечений принималось, что соотношение процессов /1+4/ для группы неизмеримых событий такое же, как и для остальных.

/6/

Идентификация каналов реакций основывалась на использовании величин χ^2 для каждого конкретного события. В качестве доверительных границ принимались значения С _ = 25 для четырех степеней свободы и С 1=12,5 для одной степени свободы.

Следует отметить, что о принадлежности события к процессу /3/ можно сделать два предположения в зависимости от того, какой из положительных треков /быстрый или медленный/ является протоном. Эти гипотезы обозначаются соответственно как "n"и "n" Типичные распределения событий по величине χ^2 показаны на

рис.1:/а - для реакции /1/, б - для реакции /3//. Представление о возможности разделения событий только по χ^2 дает табл.1, в которой показано распределение событий по дове-

рительным областям для различных гипотез и их комбинаций.

Если значения χ^2 для двух или большего числа гипотез попадали в доверительные интервалы, то для идентификации положительных частиц использовалась визуальная оценка ионизации. Эта процедура применялась для Р"_ " < 1100 МэВ/с при условии, что трек частицы имеет угол погружения $|\alpha| < 45^{\circ}$.

2. ВЫДЕЛЕНИЕ СОБЫТИЙ $np \rightarrow pp \pi^{-1}$

В условиях эксперимента имеются достаточно большие группы событий, удовлетворяющие одновременно условиям $\chi_1^2 < C_4$ и $\chi_1^2 < C_1$ (i=2,3), где χ_i^2 относится к гипотезе (i).

Рис.1. Распределение событий по величине $\overline{\chi^2 a}$ Импульс пучка нейтронов P_n=1,25 ГэВ/с, гипотеза пр - ррл , доверительная граница $\chi^{2}_{rp}=25$, число степеней свободы χ^{2} равно 4. Среднее значение $\chi^2 = 4,132.$ б/Импульс пучка нейтронов P_n=3,83 ГэВ/с, гипотеза доверительная граница $\chi^{2}_{\Gamma p.} = 12,5$, число степеней свободы $\chi^{2}_{\Gamma pabho}$ 1. Среднее значение $\sqrt{2} = 1.194$.

Таблица 1

Количество событий /в процентах/, для которых χ^2 попадает в различные доверительные области. В колонках слева единичкой отмечено попадание в доверительную область для соответствующей гипотезы

Гипотези				Импульс пучка /ГэВ/с/				
рр <i>π</i> - "о"	ррл `л° "л°"	pภ†ภ ัก "ก"	π*рл ⁻ п _n′″	1,25	2,23	3,83	5,10	
I	-	-		100	35,2	13,9	5,3	
-	I	1. 14 a g	-		8,5	13,2	13,0	
I	I	- -	1	-	3,0	6,9	10,9	
-	-	I	-	· _	48,2	48,7	45,2	
I	-	I	-	,,	0,1	0,9	0,3	
-	I	I	-	-	0,I	I,8	5,3	
I	Ι	I	- •	-	-	0,1	0,6	
-	-	-	I	-	2,9	11,2	13,1	
I	1-	-	I	-	-		-	
-	I	-	Ι	1	-	I,3	2,2	
I	I	-	I	-		-	-	
-	-	I	I		-	0,9	I,6	
I		I	I	-	-	· -	-	
	I	I	I	-	-	I,I	2,5	
I	I	I	I	-	-	-	-	

Рис.2. Распределение событий с χ_1^2 <25 по недостающей массе M^2 для $P_n = 5,10$ ГэВ/с. а/ Распределение по M^2 событий с $\chi_1^2 < 25$, $\chi_2^2 > 12,5$, $\chi_3^2 > 12,5$. Среднее значение $M^2 = -3552$ /МэВ/с²/². б/ Распределение /черное/ по M² событий с ($\chi_1^2 < 25$, $\chi_2^2 < 12.5$). $M^2 = -3186$ /МэВ/с²/². Тонкой линией нанесено распределение событий по M² для процесса np \rightarrow pp $\pi^- \pi^{\circ}$, который выделен по условию $\chi_1^2 > 25$, x 2<12,5. Максимум распределения соответствует массе *п*⁶ -мезона.

Анализ распределений по недостающей массе M² показывает /рис.2/, что все эти события следует отнести к событиям /1/.

Действительно, форма распределения /1/ по M² на рис.2а полностью совпадает с формой распределения по M² всех событий с $\chi_1^2 < C_4 / рис. 26/$. Распределение оставшихся событий на рис. 26 $(\chi^2 > C_1, \chi^2 < C_1)$ симметрично, его максимум отвечает массе π° мезона. Таким образом, к событиям $np \rightarrow pp\pi^{-}$ были отнесены все

события с $\chi_1^2 < C_4$. Вывод о том, что события с $\chi_1^2 < C_4$ вызваны процессом /1/, согласуется с приведенными в работе ^{/8/} соображениями о преимущественном отнесении событий, удовлетворяющих одновременно 4с-и 1с-фиту, к реакциям, соответствующим 4с-фиту, и подтверждается тем, что при проведении идентификации событий по ионизации положительных треков не найдено противоречий условию $\chi^{2}_{1} < C_{4}$.

3. ВЫДЕЛЕНИЕ СОБЫТИЙ $np \rightarrow pp \pi^- \pi^\circ$ $M np \rightarrow p\pi^+\pi^- n$

Из табл.1 следует, что при P_n = 5,10 ГэВ/с для 13 и 60% событий χ^2 попадает только в доверительную область соответственно процессов /2/ или /3/ и для 10% событий одновременно выполняется условие $\chi {}_2^2 < C_1$ и $\chi_3^2 < C_1$. Для разделения событий по реакциям /2/ и /3/ была использо-

вана изотопическая симметрия процесса /3/, вследствие которой

Рис.3.Распределение в СЦМ частиц по сов θ^* из событий, идентифицированных как np \rightarrow p $\pi^{+}\pi^{-}$ n при P_n =3,83 ГэВ/с. а/ Протоны, $\cos\theta_{\rm p}^{*} = -0,308$; б/ нейтроны, $\cos\theta_{\rm n}^{*} = 0,289$, в/ π^+ -мезоны, $\cos \theta^*_{\pi^+} = -0,156$; г/ π^- -мезоны, $\cos \theta^*_{\pi^-} = 0,173$.

Рис.4. Распределение по $\cos\theta^*$ в СЦМ частиц из событий, идентифицированных как $np \rightarrow p\pi^+\pi^-n$, при P == 5,10 ГэВ/с. а/ Протоны, $\cos \theta_p^* = -0.415$; б/ нейтроны, $\cos \theta_n^* = 0.391$; в/ π^+ -мезоны, $\cos \theta_{\pi^+}^* = -0.215$; г/ π^- мезоны, $\cos \theta_{-}^{*} = 0,202$.

импульсные спектры π^+ -мезонов в лабораторной системе и π^- мезонов в антилабораторной системе должны совпадать. Спектр π^- -мезонов имеет довольно четкую границу при $P_{lim}=2,3$ ГэВ/с

4

/значение для $P_n = 5,10$ ГэВ/с/. В области выше этой границы попадает не более 1,1% π^- -мезонов из событий реакции /3/. Поэтому все положительные частицы с импульсом $P > P_{1im}$ можно считать протонами. Этот прием резко уменьшает количество неразделенных событий. Для получения лучшего согласия между спектрами π^+ и π^- - мезонов в лабораторной и антилабораторной системах соответственно большую часть оставшихся неразделенными событий из групп (π° n) и (π° , n') необходимо было отнести к событиям процесса /2/ для улучшения симметрии в СЦМ между распределениями изотопически сопряженных частиц /рис. 3 и 4/. Справедливость такого разделения подтверждают результаты, полученные при моделировании реакций /2/ и /3/, которое описывается ниже. При этом разделение событий "n" и "n' было сделано по относительной величине χ^2 .

Сравнение импульсных спектров сопряженных частиц / π^+ и π^- , р и n / позволяет ввести коррекцию на потерю событий с малоэнергичными частицами /рис.5/.

Анализ распределений по величине χ^2 для событий (π° , n) и (π° , n') показывает, что неопределенность предложенной процедуры разделения составляет – 0,23 мб при $P_n = 5,10$ ГэВ/с. С уменьшением P_n эта неопределенность быстро убывает, и при $P_n =$ = 3,83 ГэВ/с ее уже практически нет /<u>рис.6</u>/, так как распределение по χ^2 в предположении о принадлежности этих событий к реакции /2/ близко в теоретическому, а в предположении об их принадлежности к реакции /3/ резко от него отличается. Поэтому события этого класса следует отнести к реакции /2/.

4. ОПРЕДЕЛЕНИЕ ПОПРАВКИ НА СОБЫТИЯ

С ДОПОЛНИТЕЛЬНЫМ *п*°-мезоном или двумя нейтронами

При Р_п=5,10 и 3,83 ГэВ/с с довольно большим сечением идут процессы

$np \rightarrow pp \pi^{-} \pi^{0} \pi^{0},$	(2F)
$np \rightarrow p \pi^+ \pi^- n \pi^{\circ},$	(3F)
$np \rightarrow \pi^+ \pi^+ \pi^- nn$.	(4F)

'На <u>рис.7÷9</u> представлены распределения по квадрату недостающей массы (M²) событий, отнесенных к реакциям /2/ и /3/.

Максимумы распределений хорошо согласуются с массами π^{o} - мезона и нейтрона соответственно. Однако ясно заметна несимметрия распределений. Правая часть распределения /"хвост"/ выше, чем левая. Естественное объяснение связано с тем, что события (2F), (3F) и (4F) имеют определенную вероятность получить малый χ^2 в предположении о принадлежности их к процессам /2/ или /3/.

Для определения величины фона была использована специальная процедура ^{/9/}, которая будет изложена на примере реакций /3/ и фоновой реакции (3F).

6

Рис.7. Распределение событий, идентифицированных как пр $\rightarrow p\pi^+\pi^-n$, по величине квадрата недостающей массы для P_n = 5,10 ГэВ/с. а/ Пунктиром обозначено смоделированное распределение, которое на участке 0,294 < M² < <1,05 /ГэВ/с²/² подгонялось по оси ординат к экспериментальному распределению. События в области M² > > 1,05 /ГэВ/с²/² имеют вес W<1, так как там есть примесь от процесса пр $\rightarrow p\pi^+\pi^-n\pi^0$. M² = 0,937 /ГэВ/с²/² до коррекции, M² = 0,882 /ГэВ/с²/² после коррекции весов; в распределении – 3178 событий. б/ Выборка из экспериментальных событий по условию χ_3^2 <1. В распределении – 1964 события.

Из событий, попавших в распределение по M^2 /рис.76/, делается выборка по $\chi^2_{p\pi^+\pi^-n} < 1$ /закрашено черным/. Распределение отобранных событий симметрично по M^2 , так как такая выборка уменьшает долю фоновых событий. Каждое из событий выборки используется как исходное при моделировании процесса измерений, который будет менять подобранные программой идентификации параметры частиц. /Распределение измерительных ошибок считается нормальным, дисперсии параметров для каждого трека берутся из программы геометрической реконструкции/.

Рис.8. Распределение событий, идентифицированных как пр $\rightarrow p\pi^+\pi^-n$, по величине квадрата недостающей массы для $P_n = 2,23$ и 3,83 ГэВ/с. а/ $P_n = 2,23$ ГэВ/с, $M^2 =$ = 0,878 /ГэВ/с²/², 3723 событий, б/ $P_n = 3,83$ ГэВ/с, $M^2 = 0,897$ /ГэВ/с²/² до коррекции на фон от процесса пр $\rightarrow p\pi^+\pi^-n\pi^\circ$, $M^2 = 0,880$ /ГэВ/с²/² после коррекции, в распределении – 5843 события.

'N

100 -

80

60

40

20-

0.1

Рис.9.Распределение событий, идентифицированных как пр \rightarrow pp $\pi^- \pi^{\circ}$, по величине квадрата недостающей массы M² при P_n = 5,10 ГэВ/с.Пунктиром обозначено смоделированное распределение, которое на участке $-0,2 < M^{<}(0,07/\Gamma) B/c^{2/2}$ подгонялось по оси ординат к экспериментальному распределению. События с M² > 0,07/ГэВ/c^{2/2} имеют вес W <1, так как в это<u>й</u> области есть примесь событи<u>й</u> пр \rightarrow pp $\pi^- \pi^{\circ} \pi^{\circ}$, M² = 0,0380/ГэВ/c^{2/2} до коррекции, M² = 0,0185 /ГэВ/с^{2/2} после коррекции, всего 1185 событий. Для событий, отобранных согласно условию $\chi^2_2 < 1$, $\overline{M^2} =$ = 0,0202 /ГэВ/с^{2/2}, в выборке – 613 событий.

Таблица 2

На <u>рис.7а</u> показано, как моделирующая кривая /отмечено точками/ совмещается с распределением по недостающей массе. Превышение справа компенсируется уменьшением весов событий, попавших в эту область. Подробнее изложение использованного метода моделирования приведено в ^{/9/}.

Распределение событий по M^2 для процесса /3/ при $P_n=2,23$ ГэВ/с /a/ и $P_n=3,83$ ГэВ/с /б/ показано на <u>рис.8.</u>

5. ОПРЕДЕЛЕНИЕ ПОПРАВОК К СЕЧЕНИЯМ МЕТОДОМ МОДЕЛИРОВАНИЯ НА ОСНОВЕ РЕАЛЬНЫХ СОБЫТИЙ

Как сказано выше, наличие "хвостов" в распределениях по квадрату недостающей массы в реакциях /2/ и /3/ может быть объяснено тем, что часть событий из реакций ($2F \div 4F$), а также событий, обусловленных вторичными нейтронами (FB), может быть ошибочно идентифицирована как события реакций /2/ или /3/. Однако, как будет показано ниже, большая часть событий из ($2F \div 4F$) и (FB) будет отнесена к реакциям с несколькими нейтральными частицами /4/. Для определения вкладов процессов ($2F \div 4F$) и (FB) в канал /4/ использовалась идентификация положительных частиц канала /4/. В зависимости от идентификации события канала /4/ можно разбить на 5 групп /<u>табл.2</u>/. Аналогично следует разбить на группы и события реакций ($2F \div 4F$) и (FB), отнесенные к каналу /4/.

Поскольку фоновые события не разделены по отдельным каналам, приходится прибегнуть к моделированию. Для моделирования реакций (2F÷4F), использовались 5-лучевые звезды из np-взаимодействий/^{10/} при этих же импульсах налетающего нейтрона.

2F) При моделировании реакции $np \rightarrow pp\pi - + k\pi^{\circ}$ (k ≥ 2) использовались события реакции

$$p \rightarrow pp \pi^+ \pi^- \pi^- + m\pi^0 \quad (m = 0, 1)^{11, 12/}$$
. (7/

Предполагалось, что существенные в нашем случае характеристики реакции (2F) можно получить на основе событий реакции /7/ при замене комбинации ($\pi^+\pi^-$) в реакции /7/ на комбинацию ($\pi^\circ\pi^\circ$), т.е. исключив в событиях реакции /7/ по одному треку π^+ и π^- мезона.

3F) При моделировании реакции

пр → pπ⁺π⁻ + n + π^o использовались события реакции

 $np \to pp \pi^+ \pi^- \pi^-, /11/$ /8/

причем комбинация ($p\pi^{-}$) в реакции /8/ заменялась комбинацией ($n\pi^{\circ}$), т.е. исключались треки одного протона и одного π^{-} -мезона. 10 Классификация экспериментальных событий, отнесенных к процессу /4/, и моделированных событий реакций (2F÷4F) и (FB) в зависимости от идентификации положительных треков

		I	2	3	4	5	
	N _{tot}		ภุภ	πр	рл	рр	X
ЕХР З-луч + тХ ^е	2063	134	379	157	1187	206	-
2F (kji°)	5626	545	0	0	0	1607	0,071
3F (n+3;*)	6864	315	0	463	4378	0	0,211
4F (2n)	2796	81	2645	0	24	0	0,139
FB	10000	428	283	645	4049	I340	0,065

Первый символ в каждой из 5 групп соответствует идентификации в л.с. положительного трека быстрой частицы, второй – идентификации трека медленной частицы: "- " - нет идентификации, " π " - трек идентифицирован как π -мезон, "р" - трек идентифицирован как протон, α - величины вклада фоновых процессов.

В строках, относящихся к реакциям (2F÷4F) и (FB), указано число моделированных событий.

4F) При моделировании реакции

 $np \rightarrow \pi^+ \pi^+ \pi^- + 2n + m\pi^\circ (m = 0,1)$

использовались события реакции /7/. Процесс моделирования заключался в переходе в антилабораторную систему координат с последующим изотопическим сопряжением:

$$np \rightarrow pp \pi^+ \pi^- \pi^- \frac{ALAB}{I_3 \rightarrow -I_3} np \rightarrow nn \pi^- \pi^+ \pi^+.$$

FB) Для моделирования событий, обусловленных взаимодействием непучковых нейтронов, использовались 3-лучевые события при меньших значениях импульсов налетающего нейтрона P_n . Так, при определении поправок для событий с $P_n = 5,10$ ГэВ/с в качестве фона были взяты 3-лучевые события с $P_n = 3,83$ и 2,23 ГэВ/с; при определении поправок для событий с $P_n = 3,83$ ГэВ/с использовались данные для $P_n = 2,23$ ГэВ/с и т.д.

11

Следует отметить, что вклады от реакций ($2F \div 4F$) необходимо учитывать только при импульсах $P_n = 5,10$ и 3,83 ГэВ/с, в то время как вклад от (FB) - при всех значениях P_n .

Затем для моделированных таким образом событий реакций (2F÷4F) и (FB)вычислялся в предположении о принадлежности этих событий к реакциям /2/ и /3/ оценочный χ_a^2 по формуле

 $\chi_{q}^{2} = \frac{(MM^{2} - M_{X^{0}}^{2})^{2}}{(\Delta MM^{2})^{2}},$

где $\rm MM^2$ - квадрат недостающей массы для моделированного события, вычисленный в предположении о его принадлежности реакции /2/или /3/; $\rm M_{X^0}^2$ - квадрат массы $\pi^{\rm o}$ -мезона или нейтрона соответственно. Анализ показал, что для реальных событий реакций /2/и /3/ оценочный χ_q^2 близок по величине $\rm k\chi^2$, вычисленному по программе идентификации каналов реакций ^{6/}.В соответствии с этим было выбрано граничное значение χ_q^2 гр. =12 /в программе идентифи-кации каналов реакций использовалось $\chi_{\rm Гр.}^2 = C_1 = 12.5$ /. Использование χ_q^2 и учет возможности идентификации поло-

Использование χ_q^2 и учет возможности идентификации положительных треков частиц в моделированных событиях позволили выделить из реакций (2F÷4F) и (FB) события, имитирующие процессы /2/ и /3/, и события, идентифицированные как процесс /4/. Для моделированных событий процесса /4/ было также проведено разбиение на группы в зависимости от идентификации положительных частиц /табл.2/.

Для определения величины вкладов a_j реакций (2F÷4F)и (FB) в экспериментальные события, идентифицированные как процесс /4/, использовались данные по сечениям реакций 5-лучевых звезд из пр-взаимодействия ^{/10/} и данные о величине примеси вторичных нейтронов в пучке, полученные при изучении топологических сечений ^{/4/}. С учетом этого проводилась минимизация по всем a_j следующего функционала:

$$F = \sum_{i} \frac{(N_{i}^{exp} - \sum_{j} \alpha_{i} N_{j}^{j})^{2}}{(\Delta N_{i}^{exp})^{2}} \Longrightarrow \text{ min, } i = 1 \div 5,$$

где N_i^{exp} - количество экспериментальных событий, отнесенных к процессу /4/, в і -идентификационной группе; N_i^{\dagger} - количество моделированных событий реакции (j) в і-идентификационной группе; α_i - вклад реакции (j) в процесс /4/, j=2F,3F,4F,FB. Полученные значения α_1 приведены в табл.3.

Тогда истинное число событий реакций /2/ и /3/ определяется по формуле:

$$N_{k} = N_{k}^{exp} - \sum_{j} \alpha_{j} N_{k}^{j}, \quad k = 2,3, \quad j = 2F, 3F, 4F, FB,$$

где N_k^{exp} - количество событий канала (k), включая и фон; N_k^j - количество моделированных событий фоновой реакции (j), имитирующих реакцию (k).

Таблица З

Сечения идентифицированных процессов в трехлучевых звездах из пр-взаимодействий. Данные по пр $\rightarrow d\pi^+\pi^-$ взяты из '3', топологические сечения – из работы '4/

P _n /ГэВ/с/	I ,2 5	I,73	2,23	3,83	5,10	
N _{tot} (событий)	I624	6026	6026 7686		7253	
G(ррл ⁻) (мб)	I,45 <u>+</u> 0,06	3,15 <u>+</u> 0,14	<u>+</u> 0,I4 3,46 <u>+</u> 0,I5 2,84 <u>+</u> 0,I2			
G(ррлл)(мб)		0,10 <u>+</u> 0,01	0,56 <u>+</u> 0,05	2,21 <u>+</u> 0,13	2,27 <u>+</u> 0,12	
G(p57 Jin) (MO)	· .	0,58 <u>+</u> 0,04	4,35 <u>+</u> 0,18	7,80 <u>+</u> 0,32	6,89 <u>+</u> 0,28	
G(dл ๋л ๋) (мо́)		0,27 <u>+</u> 0,02 0,33 <u>+</u> 0,02		0,05 <u>+</u> 0,02	0,03 <u>+</u> 0,02	
G(3-л.+mX)(мб)				2,31 <u>+</u> 0,24	5,95 <u>+</u> 0,30	
б _{top.3} (мб)	I,45 <u>+</u> 0,06	4,10 <u>+</u> 0,15	8,7 <u>+</u> 0,3	15,2 <u>+</u> 0,5	17,5 <u>+</u> 0,5	
G _{tot} (MO)	37,5 <u>+</u> 0,4	40 ,0<u>+</u>0,2	42,0 <u>+</u> 0,I	42,5 <u>+</u> 0,I	42,0 <u>+</u> 0,I	

Как отмечалось в п.3, часть экспериментальных событий /~10% при Р.= 5,10 ГэВ/с/ удовлетворяет как гипотезе реакции /2/,так и гипотезе реакции /3/. Чтобы определить, какую долю в этих событиях составляют события реакции /2/, а какую - реакции /3/, было проведено моделирование реакций /2/ и /3/ по программе FOWL с использованием матричного элемента, аналогичного примененному в работе/11/ и обеспечивающего периферичность характеристик 3-лучевых событий / 13/. В качестве ошибок измерений треков брались значения соответствующих средних ошибок для данного импульса частиц. Для каждого моделированного события вычислялся χ^2_a и с учетом возможности идентификации вторичных частиц определялось, гипотезе какой реакции, /2/ или /3/, удовлетворяет моделированное событие. Анализ показал, что при импульсе налетающего нейтрона P_n = 5,10 ГэВ/с из числа событий, удовлетворяющих одновременно гипотезам /2/ и /3/, к реакции /2/ следует отнести $a_{\pi_{0,n}}^{\pi_{0}} = 77,24\%$ событий, а осталь-ные - к реакции /3/. Для импульса $P_n = 3,83$ ГэВ/с $a_{\pi_{0,n}}^{\pi_{0}} = 83,67\%$.

Описанный в п.4 способ определения поправок к сечениям основан на предположении, что для событий реакций /2/ и /3/ с $\chi^2 < 1$ можно пренебречь вкладом в них фона при моделировании распределений квадратов недостающих масс. Величина фона в этом классе событий, вычисленная при помощи изложенного здесь /п.5/ метода моделирования реакций (3F÷4F) и (FB), действительно, оказалась равной < 7%. Количество событий реакций /2/ и /3/, определенное в п.4, в пределах ошибок совпадает с количеством событий, найденным методикой моделирования фона.

6. ОПРЕДЕЛЕНИЕ СЕЧЕНИЙ

Определение сечений происходит по формуле

$$\sigma_{i} = \frac{N_{i}}{N_{tot}} \sigma_{top.3},$$

/7/

где: N_i - количество событий /с учетом весов и поправок/, идентифицированных как процесс (i); N_{tot} - количество трехлучевых событий, зарегистрированных в рабочей области камеры /без неизмеримых/; $\sigma_{top.3}$ - топологическое сечение трехлучевых звезд ^{/4/}.

Ошибка в сечении определяется с учетом ошибок всех членов в формуле /7/.

Сечения каналов реакций представлены в табл.3.

Полученные данные по сечениям каналов реакций 3-лучевых np -взаимодействий необходимы при изучении нуклон-ядерных и ядро-ядерных взаимодействий при высоких энергиях, а также для проверки применимости некоторых моделей взаимодействий элементарных частиц, в частности OPE-модели.

Авторы выражают свою благодарность лаборантам нейтронной группы ЛВЭ, коллективам секторов HPD и ПУОС ЛВТА за проведение измерений и Л.С.Акимовой за подготовку материала к печати.

ЛИТЕРАТУРА

- 1. Belonogov A.V. et al. Nucl.Instr. and Meth., 1963, 20, p.114.
- 2. Гаспарян А.П. и др. ОИЯИ, 1-9111, Дубна, 1975; ПТЭ, 1976, т.2, с.37-42.
- 3. Абдивалиев А. и др. ОИЯИ, 1-10034, Дубна, 1976.
- Абдивалиев А. и др. ОИЯИ, 1-8565, Дубна, 1975; Nucl.Phys., 1975, В99, р.445,450.
- 5. Которобай Ф., Мороз В.И., Родионов А.И. ОИЯИ, Р10-9314, Дубна, 1975.
- Маркова Н.Ф. и др. ОИЯИ, Р10-3768, Дубна, 1968;
 Иванченко З.М. и др. ОИЯИ, Р10-3983, Дубна, 1968.
- 7. Иерусалимов А.П., Которобай Ф., Мороз В.И. ОИЯИ, Р10-9502, Дубна, 1976.
- 8. Мороз В.И. и др. ЯФ, 1967, т.6, вып.1, с.90-93.

9.	Абдивалиев	Α.	и	др.	ОИЯИ,	Р1-12179, Дубна, 1979.
10.	Абдивалиев	Α.	и	др.	оияи,	1-10669, Дубна, 1977.
11.	Абдивалиев	Α.	и	др.	оияи,	Р1-11614, Дубна, 1978.
12.	Абдивалиев	Α.	и	др.	оияи,	Р1-11615, Дубна, 1978.
13.	Абдивалиев	Α.	и	дD.	ОИЯИ.	Б1-1-12181, Дубна, 1979.

Рукопись поступила в издательский отдел 18 февраля 1981 года.