

Объединенный институт ядерных исследований дубна

1617/2-81

P1-80-849

30/11-81

С.В.Джмухадзе, Е.Н.Кладницкая, В.М.Попова, Г.П.Тонеева

множественность и инклюзивные спектры у-квантов в  $\pi^-$  р-взаимодействиях с образованием странных частиц

Направлено в ЯФ



В реакциях

$$\pi^{-} \mathbf{p} \rightarrow \gamma + \dots \qquad /1/$$
  

$$\pi^{-} \mathbf{p} \rightarrow \Lambda + \gamma + \dots \qquad /2/$$
  

$$\pi^{-} \mathbf{p} \rightarrow \gamma + \mathbf{K}^{\circ}_{s} + \dots \qquad /3/$$

изучалось образование у -квантов при 40 ГэВ/с.

Использован экспериментальный материал, накопленный при обработке ~80 тыс. снимков с 2-метровой пропановой камеры.

Относительно высокая эффективность этого прибора для регистрации  $e^+e^-$ -пар от конверсии  $\gamma$ -квантов /~20%/ позволила нам определить инклюзивные сечения и средние множественности  $\gamma$ -квантов, а также получить распределения дифференциальных сечений по ряду кинематических переменных не только для реакции /1/, но и для реакций с рождением  $\gamma$ -квантов и странных частиц /реакции /2/ и /3//. Проведен сравнительный анализ для того, чтобы проследить влияние рождения нейтральных странных частиц на характеристики  $\gamma$ -квантов.

## Эксперимент.

В ранних публикациях подробно описаны критерии  $^{11}$ , которые использовались для классификации событий, отобранных в эффективном объеме камеры  $^{/2/}$ ,  $\pi^-$  p-,  $\pi^-$  n,  $\pi^-$ C, и идентификации V° -событий и  $\gamma$ -квантов  $^{/3,4/}$ .

Поскольку в выбранном эффективном объеме камеры регистрируются не все V° и  $\gamma$ , образовавшиеся в изучаемых нами  $\pi^-p^$ взаимодействиях, то вводился ряд поправок. Для каждого V°( $\gamma$ ) определялся геометрический "вес", равный обратной величине вероятности регистрации V°( $\gamma$ ) в эффективном объеме камеры. Кроме того, были введены поправки на потери V° и  $\gamma$ -квантов вблизи звезды /до 2 см/ и в направлении ко дну камеры <sup>/3/</sup>, на эффективность просмотра и неизмеримые V° и  $\gamma$ -кванты, а для V° – еще и на нейтральные моды распада.

В табл.1 дается число  $\gamma$  -квантов, зарегистрированных в реакциях /1/-/3/,  $n_{\gamma}$ , средние геометрические,  $\langle W_{\gamma} \rangle^{\text{геоМ}}$ и полные,

<W  $_{\gamma}$  >, "веса". Там же приведены соответствующие "веса" для  $\Lambda$  -гиперонов и K  $^\circ_{2}$ -мезонов.

| Реакция                                                                        | N <sub>y</sub> | <wy>reom</wy>      | < W <sub>y</sub> > | < W <sub>V</sub> o > Leoi | M. <₩ <sub>V</sub> °> |
|--------------------------------------------------------------------------------|----------------|--------------------|--------------------|---------------------------|-----------------------|
| $\pi^- p \rightarrow \gamma + \dots$                                           | 15491          | 4,40 <u>+</u> 0,04 | 4,98 <u>+</u> 0,05 | **                        | _                     |
| $\pi^- \mathfrak{p} \to \gamma + \Lambda + \dots$                              | 492            | 4,42 <u>+</u> 0,20 | 5,05 <u>+</u> 0,23 | 1,20+0,07                 | 2,28 <u>+</u> 0,17    |
| $\pi^- \mathbf{p} \rightarrow \gamma + \mathbf{K}^\circ_{\mathbf{S}} + \cdots$ | 878            | 4,26 <u>+</u> 0,14 | 4,79 <u>+</u> 0,17 | 1,22+0,06                 | 2,12+0,14             |

Таблица I

Инклюзивные сечения и средние множественности у -квантов в реакциях /1/-/3/

Для определения инклюзивных сечений образования, у -квантов в реакциях /1/-/3/ использовалось следующее соотношение:

 $\sigma_{\gamma} = (3\sigma_{in}^{\pi^{-1}2}C + 8\sigma_{in}^{\pi^{-p}}) \cdot \alpha N_{\gamma} / 8 \cdot N_{in}^{C_{3}H_{8}}$ , где  $\sigma_{in}^{\pi^{-p}} = 21,38\pm0,16$  мб <sup>/5/</sup>,  $\sigma_{in}^{\pi^{-1}2}C = 179\pm2$  мб <sup>/6/</sup>,  $N_{in}^{C_{3}H_{8}} = 34469$  полное число неупругих взаимодействий в пропане,  $\alpha = 0,56\pm0,01$  доля взаимодействий  $\pi^{-}$ -мезонов со свободными протонами в пропане <sup>/7/</sup> Полное число  $\gamma$ -квантов в реакциях /1÷3/ определялось как:

| ·γ | $= n_{\gamma} < n_{\gamma} >$                       | - | для | реакции | /1/  |
|----|-----------------------------------------------------|---|-----|---------|------|
| Ňγ | $= n_{\gamma} < W_{\gamma} > < W_{\Lambda} >$       | - | для | реакции | /2/  |
| Nγ | $= n_{\gamma} < W_{\gamma} > < W_{K_{S}^{\circ}} >$ | - | для | реакции | /3/. |

Инклюзивные сечения образования  $\gamma$ -квантов во всех  $\pi^- p$ взаимодействиях и  $\pi^- p$ -событиях с рождением  $\Lambda$ -гиперонов и  $K_{a}^{\circ}$ -мезонов даны в табл.2.

Таблица 2

| Реакция | < n <sub>y</sub> > | <n <sub="">10 &gt;</n> | σ <sub>γ</sub> /мб/ |
|---------|--------------------|------------------------|---------------------|
| 1       | 5,10 <u>+</u> 0,07 | 2,55 <u>+</u> 0,04     | 110,9 <u>+</u> 2,6  |
| 2       | 5,76 <u>+</u> 0,57 | 2,88+0,28              | 8,0+0,8             |
| 3       | 5,26+0,40          | 2,63+0,20              | 12,7+1,0            |



Рис.1. Энергетическая зависимость инклюзивных сечений у-квантов в т<sup>-</sup>рвзаимодействиях.

Энергетическая зависимость сечений образования у -квантов в  $\pi^-$ р -взаимодействиях в интервале импульсов от 40 до 360 ГэВ/с /10,11/ показана на рис.1.

Среднее число  $\gamma$  -квантов на одно  $\pi^- p$  -взаимодействие в реакциях /1÷3/ приведено в табл.2. Там же даны значения  $\langle n_{\pi^0} \rangle$  в предположении, что  $\langle n_{\pi^0} \rangle = 1/2 \langle n_{\gamma} \rangle$ . Следует отметить, что в событиях с рождением  $K_s^\circ$ -мезонов в среднем рождается столько же  $\gamma$ -квантов, сколько и во всех  $\pi^- p$  -взаимодействиях, а в реакции /2/ даже больше, хотя можно было ожидать некоторого уменьшения  $\langle n_{\gamma} \rangle$  в реакциях /2/,/3/, поскольку полная энергия, которая может пойти на образование  $\pi^\circ$ -мезонов, в этих реакциях в среднем меньше, чем в реакции /1/. Рост  $\langle n_{\gamma} \rangle$  в реакции /2/ естественно объяснить вкладом  $\gamma$ -квантов от распада  $\Sigma^\circ \rightarrow \Lambda + \gamma$ .



Рис.2.Зависимость средней множественности  $\pi^{\circ}$  -мезонов от числа заряженных частиц в  $\pi$  р-взаимодействиях при 40 ГэВ/с;  $\circ$  – для реакции /1/,  $\times$  – для реакции /2/, • – для реакции /3/.

На рис.2 приведены зависимости среднего числа  $\pi^{\circ}$  -мезонов от множественности n<sub>+</sub> для реакций /1/-/3/. Эти зависимости аппроксимировались прямыми  $< \mathbf{n}_{\pi^{\mathbf{o}}} > = \mathbf{a} + \mathbf{b} \cdot \mathbf{n}_{\pm}$ для 2<n+<14. Результаты аппроксимации приведены в табл.3. Аппроксимирующие прямые показаны на рис.2. Можно видеть, что в событиях с рождением А-гиперонов и K<sup>o</sup><sub>s</sub> -мезонов при 40 ГэВ/с, практически нет корреляции между  $< n_{_{\mathcal{V}}} >$  и  $n_{\pm}$ . Для всех  $\pi^-$  p-взаимодействий корреляция имеет место для 2<n<sub>+</sub><14 и значение параметра "b" совпадает со значением, определенным ранее на меньшей статистике у -квантов /4/.

| Реакция | a                  | b                  | $\chi^2/N_{CT.CB}$ . |
|---------|--------------------|--------------------|----------------------|
| 1       | 1,74+0,07          | 0,17+0,01          | 3,77                 |
| 2       | 2,22 <u>+</u> 0,53 | 0,05+0,09          | 0,19                 |
| 3       | 1,75 <u>+</u> 0,28 | 0,13 <u>+</u> 0,05 | 0,38                 |

Таблица З





<u>Рис.3</u>.Зависимость  $< n_{\pi^0} >$  от  $\eta_+$  при 40, 100 и 360 ГэВ/с.

На <u>рис.3</u> приведены зависимости < $n_{\pi^{o}}$ > от  $n_{\pm}$  для реакции *π*¬р→у+... при импульсах первичного *π*¬-мезона 40,100 и 360 ГэВ/с. Сплошная линия соответствует функции  $<n_{\pi^0}>=1/2 n_{\pm}$ . Видно, что с ростом энергии  $<n_{\pi^0}>$  растет по топологиям и увеличивается диапазон  $n_{\pm}$ , в котором  $<n_{\pi^0}>=1/2 n_{\pm}$ . Превышение  $<n_{\gamma}>$  над прямой в двухлучевых событиях связано с дифракционными событиями  $^{/12,10/}$ .

Зависимость  $<n_{\pi^{o}} >$  от энергии в с.ц.м.  $(\sqrt{s})$  аппроксимируется функцией  $<n_{\pi^{o}} > = A + B \ln \sqrt{s}$  с  $A = -0,24\pm0,06$  и  $B = 1,3\pm0,2$ ,  $\chi^{2}/N_{\text{CT.CB}} = 3.8$  в интервале импульсов от 5 до 360 ГэВ/с  $^{/8,9,10/}$ . В табл.4 приведены средние значения некоторых характеристик

В табл.4 приведены средние значения некоторых характеристик у -квантов для реакций /1/-/3/. Обращает на себя внимание тот факт, что импульсы у -квантов в лаб. системе для реакций со странными частицами значительно меньше, чем для всех  $\pi^- p$ событий. Здесь сказываются два фактора: первый - в событиях, где родились тяжелые частицы, на образование у -квантов остается меньше энергии, и второй - среднее число у -квантов для реакций со странными частицами не меньше, чем для всех  $\pi^- p$  -взаимодействий.

| 1<br>1 | ر:<br>بر | Таблица | 4 |
|--------|----------|---------|---|
|        | 1.87     |         |   |

| Реакция                                                  | <Р <sub>лаб</sub> ,> <sub>γ</sub><br>ГэВ/с | <p<sub>⊥&gt;<sub>γ</sub><br/>ΓэΒ/c</p<sub> | $<\cos\theta^{*}>_{\gamma}$ |
|----------------------------------------------------------|--------------------------------------------|--------------------------------------------|-----------------------------|
| $\pi^- p \rightarrow \gamma + \dots$                     | 1,87 <u>+</u> 0,02                         | 0,166+0,001                                | 0,185+0,003                 |
| $\pi^- \mathbf{p} \rightarrow \gamma + \Lambda + \cdots$ | 1,51 <u>+</u> 0,08                         | 0,165 <u>+</u> 0,004                       | 0,076 <u>+</u> 0,019        |
| $\pi^- p \rightarrow \gamma + K_s^o + \cdots$            | 1,52+0,05                                  | 0,156+0,003                                | 0,148+0,011                 |

Средние поперечные импульсы у -квантов в пределах ошибок для всех трех реакций одинаковы.

## Инклюзивные распределения у-квантов

Чтобы выяснить, как влияет рождение странных частиц на образование у-квантов, были построены некоторые инклюзивные распределения у-квантов для реакций /1/-/3/.

Нормированные импульсные распределения у-квантов приведены на рис.4<sup>\*</sup>. Они совпадают для импульсов, меньших 4 ГэВ/с.

При более высоких импульсах спектр  $\gamma$ -квантов для реакций /2/ и /3/ падает быстрее, чем для реакции /1/.

<sup>\*</sup> d $\sigma$ / d $p_{лa6}$ . для реакции /1/ нормировались на  $\sigma_{in}^{\pi^-p}$ , а для реакций /2/ и /3/ - на инклюзивные сечения  $\Lambda$  и  $K_s^{\circ}$ , соответст-венно.



Рис.4. Нормированные импульсные распределения у-квантов в лаб.системе для реакций /1/, /2/, /3/.



<u>Рис.5</u>. Нормированные угловые распределения у-квантов в с.ц.м. для реакций /1/, /2/, /3/.



Рис.6. Нормированные распределения у-квантов по быстроте в с.ц.м. для реакций /1/,/2/,/3/.

Нормированные распределения по  $\cos\theta^*$  показаны на рис.5. Определены коэффициенты асимметрии этих распределений

 $A = (N_{f} - N_{b})/(N_{f} + N_{b})$ 

 $/N_{\rm f}$ ,  $N_{\rm b}$  - числа  $\gamma$ -квантов, вылетающих в переднюю и заднюю полусферы, соответственно/. Для реакции /1/ A= 0,22+0,05.Для реакций /2/ и /3/ величины А в пределах экспериментальных ошибок равны нулю.

Интересно рассмотреть распределение у -квантов по продольной быстроте  $y = 1/2 \ln(E^* + P_{\parallel}^*) / (E^* - p_{\parallel}^*) / (puc.6)$ . Видно, что как для реакции /1/, так и для реакций /2/ и /3/ главным источником у -квантов является центральная область. Для реакций с  $\Lambda$ -гиперонами максимум несколько смещен к полусфере мишени. Основным источником  $\Lambda(\Sigma^\circ)$ -гиперонов является фрагментация мишени, поэтому возможно, что рождение  $\Sigma^\circ$ -гиперонов и  $\Lambda\pi^\circ$ резонансов является причиной такого смещения максимума распределения для реакции /2/.

Нормированные распределения у-квантов из реакций /1/-/3/ по квадрату поперечного импульса,  $p_{\perp}^2$ , в пределах ошибок совпадают /<u>рис.7/</u>.



Рис.7. Нормированные распределения у -квантов по квадрату поперечного импульса для реакций /1/, /2/, /3/.



<u>Рис.8.</u>Нормированные структурные функции  $F_1(x)$  для у-квантов из реакций /1/, /2/, /3/.



Рис.9.Нормированные структурные функции  $F_2(p_{\perp}^2)$ для у-квантов из реакций /1/, /2/, /3/.

Рассмотрим нормированные структурные функции  $F_1(x)$  и  $F_1(p_1^2)$  для  $\gamma$  -квантов из реакций /1/-/3/.

$$\begin{split} \mathbf{F}_{1}(\mathbf{x}) &= 1/\sigma_{\mathrm{in}} \int 2\mathbf{E}^{*}/\pi\sqrt{\mathbf{s}} \cdot \mathrm{d}\sigma/(\mathrm{d}\mathbf{x} \cdot \mathrm{d}\mathbf{p}_{\perp}^{2}) \mathrm{d}\mathbf{p}_{\perp}^{2} ,\\ \mathbf{F}_{2}(\mathbf{p}_{\perp}^{2}) &= 1/\sigma_{\mathrm{in}} \int 2\mathbf{E}^{*}/\pi\sqrt{\mathbf{s}} \cdot \mathrm{d}\sigma/(\mathrm{d}\mathbf{x} \cdot \mathrm{d}\mathbf{p}_{\perp}^{2}) \mathrm{d}\mathbf{x} , \end{split}$$

где  $x = 2p^* / \sqrt{s}, E^*$  и  $p^*$  - энергия и продольный импульс  $\gamma$  - квантов в с.ц.м.

Максимумы  $F_1(x)$  для у-квантов из реакций /1/-/3/ находятся при x=0 и совпадают между собой. С ростом  $x F_1(x)$  для реакций /2/ и /3/ убывает быстрее, чем для реакции /1/ /рис.8/. Значения  $F_2(p_{\perp}^2)$  для у-квантов из реакций /1/-/3/ совпадают до  $p_{\perp}^2 \approx 0.2$ . При более высоких  $p_{\perp}^2 F_2 \cdot (p_{\perp}^2)$  для реакций со странными частицами уменьшается быстрее, чем для реакции /1//рис.9/.

На рис.10 приведены распределения  $F_1(x)$  для  $\gamma$  -квантов из реакции  $\pi^- p \rightarrow \gamma + ...$  при 40, 100 и 360 ГэВ/с. Видно, что с ростом энергии  $F_1(x)$  растет в центральной области.



Рис.10. Структурные функции  $F_1(x)$  для  $\gamma$ -квантов из  $\pi^-p$ -взаимодействий при 40, 100 и 360 ГэВ/с.

## Выводы

1. Образование  $\Lambda$ -гиперонов и  $K_s^{\circ}$ -мезонов в  $\pi^- p$ -взаимодействиях при 40 ГэВ/с /реакции /2/ и /3// не приводит к уменьшению среднего числа  $\gamma$ -квантов в этих реакциях по сравнению со всеми  $\pi^- p$ -взаимодействиями /реакция /1//, однако уменьшает корреляцию между  $< n_{\gamma} >$  и  $n_+$ .

2. Рождение  $\Lambda$ -гиперонов и  $K_s^{\circ}$ -мезонов сказывается на уменьшении доли быстрых  $\gamma$ -квантов по сравнению с реакцией /1/, что приводит к уменьшению среднего импульса  $\gamma$ -квантов в лаб. системе в реакциях /2/ и /3/.

3. Рождение  $\Lambda$  и  $K_s^\circ$  частиц не влияет на распределение  $\gamma$  - квантов по поперечному импульсу.

Авторы благодарят дубненскую группу Сотрудничества по обработке снимков с двухметровой пропановой камеры за участие в получении экспериментального материала, Ю.М.Шабельского за полезные обсуждения, И.А.Первушину и Н.В.Печенова - за оформление рисунков. ЛИТЕРАТУРА

- 1. Абдурахимов А.У. и др. ОИЯИ, Р1-6326, Дубна, 1972.
- 2. Абдурахимов А.У. и др. ОИЯИ, 1-6967, Дубна, 1973.
- Абдурахимов А.У. и др. ОИЯИ, Р1-7267, Дубна, 1973; ЯФ, 1973, т.18, с.1261; Nucl.Phys., 1974, В79, р.57.
- 4. Абдурахимов А.У. и др. ОИЯИ, Р1-6928, Дубна, 1973; Яф, 1973, т.17, с.1235.
- 5. CERN Serpukhov Collaboration. Phys.Lett., 1969, 30, p.500; Ангелов Н. и др. ОИЯИ, P1-9785, Дубна, 1976; ЯФ, 1977, т.25, с.581.
- 6. Аллаби Д.В. и др. ЯФ, 1970, т.12, с.538.
- 7. Ангелов Н. и др. ЯФ, 1976, т.24, с.732.
- 8. Амаглобели Н.С. и др. ЯФ, 1975, т.22, с.1269.
- 9. Elbert J.W. et al. Nucl. Phys., 1970, B19, p.95.
- 10. Biswas N.N. et al. Nucl.Phys., 1980, B167, p.41.
- 11. Brick D. et al. Phys.Rev., 1979, D20, p.2123.
- 12. Ангелов Н. и др. ОИЯИ, Р1-7024, Дубна, 1974; ЯФ, 1975, т.21, с.139.

Рукопись поступила в издательский отдел 24 декабря 1980 года.