

1212

See

P1-80-780

П.Конц, З.В.Крумштейн, Ю.П.Мереков, В.И.Петрухин, З.Шереш, З.Фодор, Н.Н.Хованский, Б.А.Хоменко, М.Чатлош, Я.Эре*

ИЗУЧЕНИЕ РЕАКЦИИ ⁷Li (р,рd)⁵He ПРИ ЭНЕРГИИ 670 МэВ

*Центральный институт физических исследований ВАН, Будапешт.

введение

Ядро ⁷Li состоит из *а*-остова в s-оболочке и трех нуклонов в p-оболочке, т.е. обладает явной кластерной структурой типа (*a*-t). Согласно теоретическим предсказаниям ^{/1/} в структуре ядра играют важную роль также двухнуклонные ассоциации, прежде всего квазидейтроны. На существование таких ассоциаций указывают экспериментальные данные, относящиеся к реакциям (π^+ , 2p) и (π^- , 2n)^{/2,3/}, подхвата ⁷Li(p, ³He) ³H^{/4/} и прямого выбивания дейтронов под малым углом высокоэнергичными протонами^{/5/}.

Более подробно кластерную структуру ядер можно изучать в реакциях квазисвободного рассеяния /КСР/, однако в кинематически полных экспериментах при энергиях ниже 100 МэВ⁶⁶ присутствие квазидейтронов не было доказано однозначно. Лишь при энергиях 155 МэВ⁷⁷ и 670 МэВ⁸⁸ в реакции ⁷Li(p,pd)⁵Не были получены сведения о КСР, но точность этих экспериментов была невелика.

В настоящей работе, как и в ^{/8/}, реакция ⁷Li(p, pd) ⁵Не изучалась в геометрии КСР для больших углов. При этом вылетающие из ядра дейтроны имели большую энергию, что уменьшало их поглощение в ядерном веществе и эффекты вторичных процессов. Кроме того, взаимодействие при больших передачах импульса чувствительно к поведению волновой функции относительного движения двух нуклонов на малых расстояниях ^{/9/}. Оба фактора благоприятны для исследования двухнуклонных ассоциаций с помощью процесса КСР. Целью настоящей работы является изучение квазидейтронных

Целью настоящей работы является изучение касондонтронных ассоциаций в ядре ⁷ Li. Представлены экспериментальные результаты по КСР на p- и s-оболочках, приводится их теоретический анализ на основе плосковолнового импульсного приближения.

1. ЭКСПЕРИМЕНТ

Реакция ⁷ Li(p, pd) ⁵ Не изучалась с помощью двухплечевого спектрометра на синхроциклотроне ОИЯИ при энергии протонов $T_0=670$ МэВ. Аппаратура и методика обработки данных описана в работах ^{/10,11/} Дейтроны, вылетевшие под углом $\theta_d = 6,5^\circ$, анализировались по импульсу магнитным спектрометром и идентифицировались по времени пролета. Сцинтилляционный спектрометр полного поглощения детектировал протоны под углами $\theta_p = 147^\circ$

и 110°. Угол 147° соответствует квазисвободному рассеянию с нулевым импульсом ядра отдачи; при $\theta_{\rm p}$ =110° минимальный импульс ядра отдачи q_{min} =220 MэB/c. Суммарное разрешение спектрометра, включая энергетический разброс пучка, составляло ΔE = 16,3±0,2 MэB /полная ширина на полувысоте/. Использовалась мишень из лития естественного состава,толщина которой составляла 1,17 г/см². Поправка на примесь изотопа ⁶Li была сделана по измерениям реакции ⁶Li(p, pd) ⁴He /11/.

2. РЕЗУЛЬТАТЫ ЭКСПЕРИМЕНТА

А. Спектр энергии возбуждения ядра

Для определения энергии возбуждения вычислялась недостающая энергия реакции Е :

$$E_{miss} = E_B^* - Q_0 = T_0 - T_p - T_d - T_B,$$
 /1/

где E_B^* - энергия возбуждения остаточного ядра; Q_0 - энерговыделение реакции; T_p , T_d и T_B - кинетические энергии вторичных частиц /протона, дейтрона и остаточного ядра/.

На <u>рис. 1а</u> представлен спектр недостающей энергии, измеренный под углом $\theta_p = 147^{\circ}$. Пик при $E_{miss} = 9,5$ МэВ отвечает преимущественно переходам в основное состояние ⁵Не/энергия реакции $Q_0=9,16$ МэВ/. Около $E_{miss}=35$ МэВ отчетливо виден другой пик, согласующийся с энергией возбуждения $E_B^* = 25$ МэВ. Кривые на этом рисунке представляют собой результаты подгонки данных гауссовыми функциями. Ширина первого пика / $\Delta E_{miss}=20,1\pm0,5$ МэВ/ на ~4 МэВ превышает аппаратурное разрешение, что, вероятно, свидетельствует о наличии переходов в первое возбужденное состояние ⁵He /1/2⁻/ при $E_B^* = 2,6$ МэВ. Пик при $E_B^* = 25$ МэВ близок к возбужденным состояниям ⁵Не с двумя дырками в s-оболочке. Хвост в спектре выше $E_{miss}=50$ МэВ связан, по-видимому, с вторичными взаимодействиями в ядре.

На <u>рис. 16</u> приведен спектр недостающей энергии при $\theta_{\rm p}$ =110°. В этой геометрии пик основного состояния в спектре относительно сильно подавлен; помимо наблюдавшегося под углом 147° пика при E_{miss} =35 МэВ большой вклад дают переходы с E_{miss} =25 МэВ / E_B≈ 14,5 МэВ/. Это значение E_B близко к энергии второго уровня ⁵He/3/2⁺, E_B =16,7 МэВ/.

Б. Энергетические спектры протонов

На <u>рис. 2</u> представлен спектр протонов при $\theta_{\rm p}$ =147° для переходов в основное и первое возбужденное состояния ⁵ Не/собы-

Рис.1. а/ Спектр недостающей энергии при $\theta_p = 147^\circ$. Кривые – результаты подгонки данных гауссовыми функциями. б/ Спектр недостающей энергии при $\theta_p = 110^\circ$. Кривые – гауссовы функции рис. la, нормированные по высоте к экспериментальным данным.

3. ОБСУЖДЕНИЕ РЕЗУЛЬТАТОВ

ėÇ.

Анализ результатов был выполнен в модели КСР. Сечение этого процесса в импульсном приближении представляется формулой

тия с недостающей энергией в интервале -14 <E _{miss} <10 МэВ/. Кривая на рисунке - результат расчета по методу Монте-Карло в предположении гауссового импульсного распределения для внутриядерного движения квазидейтрона: $\rho(q) =$ $= \rho(0) \cdot \exp(-q^2/q_0^2)$. Hawлучшее согласие с экспериментом получилось при q₀ =75+10 МэВ/с с $\chi^2/N = 1,7 / N - число$ степеней свободы; погрешность соответствует _X²/N<3/. При этом полная ширина распределения на полувысоте равна =125+16 МэВ/с, а Q 1/2 плотность в импульсном пространстве при q =0 составляет $\rho(0) = 2, 4x$ 10^{-7} /M₃B/c/ $^{-3}$.

Ширина протонного спектра при высоких энергиях возбуждения больше его ширины в основном состоянии, что

видно из рис. 3, где изображен спектр протонов в области недостающих энергий $23 < E_{miss} < 45$ Мэв. Кривая на рисунке рассчитана в предположении гауссового импульсного распределения с $q_0 =$ 130 Мэв/с, при этом $q_{1/2} = 216 + 28$ Мэв/с и $\rho(0) = 0.6 \times 10^{-7}$ /Мэв/с/⁻⁸.

. . .

<u>Рис.2.</u> Спектр протонов при $\theta_p = 147^\circ$ для переходов в основное и первое возбужденное состояния ⁵Не. Кривая – результат моделирования при гауссовом импульсном распределении для внутриядерного движения квазидейтрона.

<u>Рис.3.</u> Спектр протонов в области недостающих энергий 23 <E miss 45 МэВ. Кривая рассчитана в предположении гауссового импульсного распределения с q₀=130 МэВ/с.

$$\frac{d^{5}\sigma}{d\Omega_{d} d\Omega_{p} dE} = K \left(\frac{d\sigma}{d\Omega}\right)_{0} S_{d} P(q) = K \left(\frac{d\sigma}{d\Omega}\right)_{0} \rho(q), \qquad (2/2)$$

где К - кинематический фактор; $\left(\frac{d\sigma}{d\Omega}\right)_0$ - сечение квазисвободного $p-\langle d \rangle$ рассеяния, приблизительно равное сечению свободного p-d рассеяния; S_d - спектроскопический множитель для дейтронной компоненты в конфигурации ядра-мишени, соответствующей данному состоянию остаточного ядра; P(q) - искаженное импульсное распределение квазидейтрона, равное в рамках плосковолнового приближения квадрату формфактора межкластерной волновой функции $\phi(\vec{r})$, нормированной на единицу; $\rho(q) = S_d P(q)$ - плотность в импульсном пространстве.

А. Низколежащие уровни

При переходах в основное и первое возбужденное состояния ⁵Не /пик $E_{miss} = 9,5$ МэВ/ взаимодействие происходит с нуклонами p - оболочки в ядре ⁷Li, при этом α -остов остается невозбужденным. При небольших значениях q формфакторы волновых функций разного типа, описывающих s -состояние, по форме мало отличаются друг от друга, и в эксперименте можно определить лишь полуширину распределения $q_{1/2}$ и нормировочный коэффициент $\rho(q)^{11/2}$

Межкластерная волновая функция квазидейтронов, образованных нуклонами р-оболочки, является суперпозицией 2s- и 1d-состояний. При этом импульсное распределение имеет вид /1/

$$P(q) = a_0 P_0(q) + a_2 P_2(q), \qquad 757$$

где

$$P_{0}(q) = \frac{b^{3}}{4\pi} \frac{6}{\sqrt{\pi}} \{ \left[1 - \frac{2}{3} (bq)^{2} \right]^{2} \exp[-(bq)^{2}] \}, \qquad /4a/$$

$$P_{2}(q) = \frac{b^{3}}{4\pi} \frac{16}{15\sqrt{\pi}} (bq)^{4} \exp[-(bq)^{2}]$$
 (46)

для случая гармонического осциллятора. В этих формулах $b = b_0/\sqrt{\mu}$, где b_0^- размерный параметр осцилляторного потенциала, а μ - приведенная масса системы (d- ⁵He).Значение функции $P_0(q)$ умень-шается в два раза при q_{2s} =0,532/b. Оценка q_{2s} с помощью полуши-

рины гауссового распределения, хорошо описывающего экспериментальные данные $/q_{1/2} = 2q_{2s} = 125 \pm 16 \text{ МэB/с/}, приводит к b_0 = 2,05 \pm 0,25 \ {\rm Mm}$, что находится в хорошем согласии со значением 2,02 \pm 0,06, полученным в экспериментах по рассеянию электронов на p-оболочке ⁷ Li /12/. Функция P_2 (q) имеет максимум при $q_{1D} = \sqrt{2}/b = 225 \ {\rm MaB/c}$, и в изучаемой при $\theta_p = 147^\circ$ области импульсов вклад $P_2(q)$ составляет несколько процентов, если отношение a_2/a_0 близко к единице в соответствии с теоретическими предсказаниями ¹¹. При $\theta_p = 110^\circ$, то есть в области 220 < q < 280 MaB/c, P_2(q) $\approx 0,1P_0(0)$, и это отражается в соответственном уменьшении сечения реакции с низким возбуждением остаточного ядра.

Спектроскопический множитель S $= \rho(0)/P_0(0)$ равен 1,7+0,1, если не учитывать поглощения. Это значение больше теоретического / S_{Teop}=1,48 для суммы 2s-и 1s-компонент ^{/1/}/, но надо отметить, что из данных при малых импульсах трудно определить спектроскопический множитель, так как высокоимпульсная часть распределений может дать существенный вклад в интегральное сечение.

Б. Высоковозбужденные состояния

Спектр недостающей энергии, полученный при угле 147°, в области энергий выше первого пика связан с возбуждением уровней ⁵Не около $E_B^*=25$ МэВ. Эти уровни, имеющие структуру s ${}^2p^3$ с двумя дырками в s-оболочке, были наблюдены в реакциях ${}^7Li(\pi^+, 2p)$ и ${}^1Li(p, {}^3He)'{}^{2,4'}$. Сравнение спектров возбуждения в реакциях ($\pi^+, 2p$) на 7Li и 6Li показывает, что высоковозбужденные уровни в ядрах 5He и 4He имеют практически одинаковую энергию. На рис. 4 приведена зависимость отношения сечений реакций ${}^7Li(p, d)^5He$. ${}^6Li(p, pd)^4He$ от энергии возбуждения остаточного ядра. Обе реакции были измерены в аналогичных условиях ${}^{/11'}$. Постояна то, что и в реакциях (p, pd) наблюдается сходство характера возбуждения остаточных ядер.

Рис.4. Зависимость отношения сечений реакций 7 Li(p, pd) 5 He и 6 Li(p, pd) 4 He от энергии возбуждения остаточного ядра.

В области энергий возбуждения двухдырочных состояний /25 < E_{miss}< 45 МэВ/ энергетическое распределение хорошо описывается формулой /2/ /кривая на рис. 3/, что указывает на справедливость предположения о доминирующей роли КСР в этих переходах. Квазидейтроны на s-оболочке находятся в состоянии 1s, при этом импульсное распределение в осцилляторном потенхорошо аппроксимирующую экспегауссову форму, циале имеет риментальные данные. Полуширина распределения $q_{\frac{1}{2}} = 2q_{\frac{1}{18}} = 216+28$ МэВ/с соответствует размерному параметру $b_0 = 1.85+0.24$ Фм /q1==0,83/b/ в согласии со значением 2,05+0,25, полученным для p-оболочки, а из экспериментального значения $\rho(0)$ спектроскопический множитель получается равным s =0,79+0,08 /без учета поглощения/.

Ширина импульсного распределения квазидейтронов в s -оболочке ⁷Li в пределах ошибок совпадает с соответствующими ширинами для ядер 6 Li и 4 He, измеренными в реакциях 6 Li(p, pd) 4 He $^{/11/}$ и ⁴ Не(p, pd) ² Н^{/13/}. Плотность распределения при нулевом импульсе в случае реакции ⁷ Li(p,pd) на _ 25% меньше, чем в реакции $^{6}\mathrm{Li}(\mathrm{p,pd})$, что отражает повышенное, по сравнению с 4 He, поглощение в остаточном ядре⁵Не. Одинаковость характеристик процесса КСР в s ~оболочках ядер ⁴ He, ⁶Li и ⁷Li указывает на сходство структур s-оболочки этих ядер для двухнуклонных ассоциаций.

Высоковозбужденным состояниям отвечает значительная часть спектра недостающей энергии,измеренного под углом 110°/рис.16/. Вклад этих переходов можно оценить путем сравнения реакций на $^7\mathrm{Li}$ и $^6\mathrm{Li}$, имея в виду сходство характера возбуждения в ядрах 5 Не и 4 Не выше ${\rm E}_{{\rm B}^{st}}^{*}$ 20 МэВ. На <u>рис. 5</u> приведена разность сечений реакций $^{7}\text{Li}(p, pd)$ ⁵ He и $^{6}\text{Li}(p, pd)$ ⁴ He, измеренных под углом 110°, в зависимости от E_{B}^{*} . Избыток событий в области E_{B}^{*} =16 МэВ с большой вероятностью обусловлен переходами в состояние

⁶Li(p.pd) ⁴He, измеренных под углом 110°, в зависимости от энергии возбуждения.

 $^{7}\mathrm{Li}(\mathrm{p},^{3}\mathrm{He})~^{5}\mathrm{He}^{/4/}$. Тот факт, что этот переход не был заметен в области малых импульсов / θ_{p} =147°/, можно объяснить орбитальным моментом межкластерного движения квазидейтрона L для этого уровня, равным 1.

4. ВЫВОДЫ

При энергии 670 МэВ рассеяние на квазидейтронах играет основную роль в реакции $^7 \text{Li}(p, pd)^5 \text{He}$ при больших углах рассеяния протона. Кроме переходов в основное состояние остаточного ядра, этим механизмом обусловлены переходы с возбуждением высоколежащих уровней, представляющие квазисвободное рассеяние на квазидейтронах в s-оболочке. Импульсное распределение остаточного ядра хорошо описывается плосковолновым импульсным приближением с межкластерными волновыми функциями типа гармонического осциллятора. Значение пространственного параметра осциллятора совпадает с величиной, полученной в экспериментах по рассеянию электронов.

Спектроскопический множитель для квазидейтрона в р-оболочке существенно больше теоретического, и возникает вопрос о применимости осцилляторной волновой функции для описания межкластерного движения на этой оболочке.

Взаимодействие протонов с двумя нуклонами в s -оболочке ядра 7L_i происходит аналогично взаимодействию в ядрах 4He и 6Li . Вследствие большой ширины импульсного распределения квазидейтрона в s -оболочке ядер, т.е. наличия существенной высокоимпульсной компоненты, рассеянные назад протоны могут иметь энергию, которая существенно превышает энергию, характерную для фермиевского движения в ядрах.

Спектр недостающей энергии в области больших импульсов содержит компоненту, которая может отвечать переходам в состояние 5 Не при 16,7 МэВ с конфигурацией ${}^{s}{}^{9}{}_{2}$.

ЛИТЕРАТУРА

- 1. Balashov V.V. et. al. Nucl. Phys., 1964, 59, p. 417.
- Charpak G. et al. Phys.Lett., 1965, 16, p. 54; Favier J. et. al. Nucl.Phys., 1971, A169, p. 540.
- Fick D. Proc. of 3rd Int.Conf. on Clustering Aspects of Nuclear Structure and Nuclear Reactions, Winnipeg, 1978, p. 326.
- 4. Cerny J. et al. Phys.Rev., 1966, 152, p. 950.
- 5. Azhgirei L.S. et al. Nucl. Phys., 1972, A195, p. 581.
- Devins R.E. et al. Nucl. Phys., 1969, A126, p. 261; Warner R.E. et al. Nucl. Phys., 1976, A269, p. 286.

- 7. Ruhla C. et al. Phys.Lett., 1963, 6, p. 282.
- 8. Albrecht D. et al. JINR, E1-8935, Dubna, 1975.
- 9. Vegh L., J.Phys.G: Nucl.Phys., 1979, 5, p. L121.
- 10. Конц П. и др. ОИЯИ, 13-12076, Дубна, 1979;Альбрехт Д. и др. ОИЯИ, 13-80-177, Дубна, 1980.
- 11. Albrecht D. et al. Nucl. Phys., 1980, A338, p. 477.
- 12. Suelzle L.R. et al. Phys.Rev., 1967, 162, p. 992.
- 13. Frascaria R. et al. Phys.Rev., 1975, C12, p. 243.

Рукопись поступила в издательский отдел 1 декабря 1980 года.