

Объединенный институт ядерных исследований дубна

617/9

9/ii-81 P1-80-697

А.И.Аношин, В.Б.Любимов, М.К.Сулейманов

ИНКЛЮЗИВНЫЕ СЕЧЕНИЯ РОЖДЕНИЯ ИЗОБАР В π^{-12} С - ВЗАИМОДЕЙСТВИЯХ ПРИ Р $_{\pi^{-}}$ = 40 ГэВ/с

Направлено в ЯФ

1. ВВЕДЕНИЕ

Продолжены исследования спектров эффективных масс /СЭМ/ ($\pi^{\pm}p$) -пар в π^{-12} С-взаимодействиях при $P_{\pi^{-}}$ = 40 ГэВ/с, отобранных на снимках с двухметровой пропановой камеры. Анализ этих спектров позволил получить указание на рождение изобар с массой m < 2 ГэВ/с² и сечением заметно большим, чем в $\pi^{-}p^{-}$ взаимодействиях при той же энергии налетающего π^{-} -мезона /1/. Анализ СЭМ по материалам /1/ с помощью модифицированного фурьеалгоритма выявил наличие Δ^{++} и Δ° изобар с массами 1,232 и 1,650 ГэВ/с²/2/.

В настоящей работе с помощью стандартного метода аппроксимации СЭМ выражением, описывающим зависимость фона, фазового пространства и распределений Брейта-Вигнера от m. получены оценки инклюзивных поперечных сечений ($\sigma_{\rm NHKЛ}$) рождения этих резонансов. Анализировались СЭМ, опубликованные в работе ^{/1/}. Подробности экспериментальной методики можно найти в этой работе и в ссылках к ней. Отметим только, что для анализа было использовано 8642 неупругих π^- С -столкновений, в которых не учитывались взаимодействия с квазисвободными нуклонами ядра углерода. Кроме этого, для проверки встодики определения $\sigma_{\rm NHKЛ}$ проанализировано 11688 неупругих π^- Р-взаимодействий при той же энергии первичного π^- -мезона. Протоны в исследованных событиях идентифицировались в области импульсов 140 $\leq P_{\rm P} \leq$ 700 MэB/c.

Для получения оценок $\sigma_{\rm NHKR}$ применялось выражение /3/:

$$\frac{dN}{dm} = \exp(-\alpha m + \beta m^2) [Aq + Bf_{BW}(1232) + Cf_{BW}(1650)], /1/$$

где A, B, C соответственно определяют вклады фона и изобар $\Delta(1232)$ и $\Delta(1650)$, q — импульс частицы, испускаемой при двухчастичном распаде частицы с массой m в системе покоя последней,

$$f_{BW} = \frac{m_0 m \Gamma}{(m^2 - m_0^2)^2 + m_0^2 \Gamma^2}$$
 /2/

* Отобранные взаимодействия соответствуют сечению/87,5+1,0/мб.

- распределение Брейта-Вигнера, здесь m₀ - масса покоя изобары, Г - ширина, зависящая от массы:

$$\Gamma = \Gamma_0 \left(\frac{q}{q_0}\right)^{2\ell+1} \frac{\rho(m)}{\rho(m_0)},$$
 /3/

где Γ_0 - центральная ширина резонанса, ℓ - орбитальный угловой момент распада и $\rho(m)$ - поправочный множитель, выбранный, как и в /3/, в виде:

$$\rho(m) = (m_{\pi}^2 + q^2)^{-1} . \qquad /4/$$

В табл.1 приведены значения m_0 , Γ_0 , ℓ для изобар $\Delta(1232)$ и $\Delta(1650)$, взятые для аппроксимации СЭМ на основании/4/. Параметры a, β , A, B, C в /1/ определялись методом наименьших квадратов /МНК/.

Таблица 1

Изобара	т ₀ /Гэ8∙с ^{−2} /	Г ₀ /ГэВ°с ^{~2} /	l	
Δ(1232)	1,232	0,115	1	
· Δ(1650)	1,650	0,140	0	

2. РЕЗУЛЬТАТЫ ДЛЯ " Р-ВЗАИМОДЕЙСТВИЙ

Как уже отмечалось, с целью проверки методики определения $\sigma_{\rm HHK,R}$, было проанализировано 11688 π^-p -взаимодейстзий. В работе²² получено указание на рождение изобар Δ (1650) в этих взаимодействиях, однако МНК дает отрицательные значенил коэффициента С в выражении /1/ как для Δ° , так и для Δ^+ . Поэтому было принято, что C=0, и $\sigma_{\rm HHK,R}$ определялось только для Δ (1232). Результаты приведены в <u>табл.2</u>. В первой строке этой таблицы указаны числа (πp) - пар ($n(\Delta)$). образующих изобары, во 2-й строке - значения x^2 и число степеней свободы ν . в 3-й - отношения $n(\Delta)$ к числу $n(\pi p)$ всех (πp) - пар, входящих в СЭМ в диапазоне 1,078 $\leq m \leq 4$,875 ГэВ/с². в 4-й - значения $\sigma_{\rm ИНК,\Lambda}$ в последней - величина отношения $r = n(\Delta) / n(\Delta)_L$, где $n(\Delta)_L$ – число (πp) - пар, образующих изобары, в которое не включались пары с лидирующими π -мезонами /⁵.

Величина ошибки в приводимых здесь и ниже значениях $\sigma_{\rm HKJ}$ не учитывает неопределенность, вносимую функцией разрешения, выбором фона и формы f вж -распределения. Видно, что полученчая нами величина $\sigma_{\rm MHKJ}$ для рождения изобары $\sigma(1232)$, скорее

2

всего, по указанным методическим причинам оказалась меньше найденной в других экспериментах. Так, величина $\sigma_{\rm NHK,\pi}$ в реакции $\pi^- + p \rightarrow \Delta^{++}(1232) + \dots$ при $P_{\pi^-} = 16$ ГэВ/с составила /2,00+0,13/ мб ^{/8/}: при $P_{\pi^-} = 100,200$ и 360 ГэВ/с /1,20+0,06/, /1,11+0,04/ и /1,25+0,03/ мб соответственно ^{/6/}: при $P_{\pi^-} =$ = 200 ГэВ/с для $-t_{p\to} \Delta < 0.6$ ГэВ/с ² и 1,12 <m(πp)<1,36 /ГэВ/с²/ $\sigma_{\rm NHK,\pi} = /0,8+0,1/$ мб ^{/7/}. Ранее, в условиях нашего эксперимента, но при значительно меньшей статистике $\pi^- p$ -событий была получена верхняя оценка, составившая /0,9+0,4/ мб ^{/8/}.

Если генерация изобар происходит преимущественно через однопионный обмен, то отношение сечений рождения $\Delta^{++}(1232)$ и $\Delta^{\circ}(1232)$ должно быть равно 9. Как видно из табл.2, $\sigma_{инкл}$ обеих изобар оказались близкими по величине. Отличие указанного отношения от 9 может быть связано с тем, что в число неупругих $\pi^- P$ -взаимодействий входят взаимодействия с "квазисвободными" протонами ядра углерода, для которых не исключена возможность рождения изобар по другим каналам.

Изобара	Δ°(1232)	Δ++(1232)	
n(Δ)	245 <u>+</u> 45	176 <u>+</u> 41	-
χ ² /ν	142/73	78/73	
$n(\Delta)/n(\pi p)$	0,042 <u>+</u> 0,006	0,05 <u>+</u> 0,01	
^о инкл /мб/	0,45 <u>+</u> 0,08	0,32 <u>+</u> 0,08	
r	1,1 <u>+</u> 0,2	0,9 <u>+</u> 0,2	

Таблица 2

3. РЕЗУЛЬТАТЫ ДЛЯ "-12 C -ВЗАИМОДЕЙСТВИЙ

Анализ СЭМ ($\pi^{\pm p}$) пар в π^{-12} С-взаимодействиях проводился по формуле /1/. Отдельно были исследованы события с разной множественностью идентифицированных протоное N_p.Коэффициент С оказался меньшим 0 для Δ° изобары при всех N_p и для Δ^{++} при N_p = 3. В этих случаях для коэффициента С принималось значение C=0. В канестве примера на <u>рисунке</u> показан СЭМ для (π^{-p})-пар из π^{-12} С-взаимодействий с N_p=1 /черные точки/ вместе с результатами аппроксимации по формуле /1/ /светлые точки/.

Результаты аппроксимации МНК по всей совокупности исследуемых взаимодействий приведены в <u>табл.3-5</u>. Обозначения в этих таблицах такие же, как и в <u>табл.2</u>.

Как видно из таблиц, с ростом N_p вероятность генерации $\Delta^o(1232)$ возрастает, а вероятность генерации $\Delta^{++}(1232)$ падает /табл.4/, хотя $\sigma_{\rm MHKJ}$ находятся приблизительно на одинаковом уровне /табл.5/, причем сечения генерации нейтральных изобар $\Delta^o(1232)$ существенно превосходят сечения генерации заряженных $\Delta^{++}(1232)$ /табл.5/. Вероятность генерации всех рассмотренных изобар возрастает в событиях с $N_p\geq 4$ /табл.4/.

Необходимым условием надежности примененной методики анализа СЭМ является равенство единице величины:

$$\mathbf{R} = \frac{1}{\mathbf{n}(\Delta)} \cdot \frac{\sum_{\mathbf{N}_{p}=1}^{\mathbf{N}_{p} \geq 4} \mathbf{n}_{\mathbf{N}_{p}}}{\sum_{\mathbf{N}_{p}=1}^{\mathbf{N}_{p}} \mathbf{n}_{\mathbf{N}_{p}}} (\Delta),$$

Таблица 3

Np	Изобара	Δ°(123	β2) Δ ⁺⁺	(1232)	Δ ⁺⁺ (1650)
	n(Δ)	655 <u>+</u> 80) 304+	64	228 <u>+</u> 82
•	x ² /v	331/73	}	169/72	
	n(Δ)	1022 <u>+</u> 10	16 <u>337+</u>	70	126 <u>+</u> 88
2	χ^2/ν	562/73	}	279/72	
	n(Δ)	766 <u>+</u> 10	0 122 <u>+</u>	56	-
3	χ^2/ν	390/73	174/	73	-
 > 4	n (Δ)	568 <u>+</u> 10	1 305 <u>+</u>	62	127 <u>+</u> 52
.	χ^2/ν	332/73	}	158/72	
>1	n (∆)	3268 <u>+</u> 19	980 <u>+</u>	124	399 <u>+</u> 151
_/	χ ² /ν	1444/73	}	645/73	
		<u></u>	блица 4		:
		n(Δ)/n(πp)		
Np	Δ°(1232) Δ ⁺⁺ (Δ ⁺⁺ (1232)	Δ+	+ (1650)
1	0,06	0+0,006	0,027+0,006	0	,020+0,006
2	0,07	1 <u>+0,006</u>	$0,024 \div 0,004$	0	,00 <u>9+</u> 0,006
ر 4 <	0,09	-0,01	0,014+0,000 0,07+0.01	0	.03+0.01

где $n(\Delta)$ - число (πp) -пар, образующих изобары во всех π^{-12} взаимодействиях, $n_{N_p}(\Delta)$ - число этих пар в событиях с числом протонов N_{P} . В пределах экспериментальных ошибок величина R оказалась близкой к единице для всех рассматриваемых изобар /1-я строка <u>табл.6</u>/. Величины во второй строке <u>табл.6</u> имеют тот же смысл, что и в последней строке табл.2. Эти величины

Np	^о инкл /мб/		
	Δ° (1232)	Δ ⁺⁺ (1232)	Δ ⁺⁺ (1650)
1	6,6 <u>+</u> 0,8	3,1 <u>+</u> 0,7	2,3 <u>+</u> 0,8
2	10 <u>+</u> 1	3,4 <u>+</u> 0,7	1,3 <u>+</u> 0,9
3	8 <u>+</u> 1	1,2 <u>+</u> 0,6	-
≥ 4	6 <u>+</u> 1	3,1 <u>+</u> 0,6	1,3 <u>+</u> 0,5
2_1	31 <u>+</u> 2	11 <u>+</u> 1	5 <u>+</u> 1

Таблица 5

Таблица 6

Изобара	Δ° (1232)	Δ ⁺⁺ (1232)	Δ ⁺⁺ (1650)	
R	0,93 <u>+</u> 0,08	1,1+0,2	1,2 <u>+</u> 0,7	
T	1,03 <u>+</u> 0,08	0,9 <u>+</u> 0,1	1,3 <u>+</u> 0,9	

в пределах ошибок не отличаются от единицы как для "^{~12}Свзаимодействий /табл.6/, так и для "Гр-взаимодействий /табл.2/. Это означает, что лидирующие "-мезоны не образуются от распада изобар.

4. ВЫВОДЫ

Аппроксимация спектров эффективных масс (тр)-пар в т С взаимодействиях распределением /1/ позволила получить следующие оценки инклюзивных поперечных сечений рождения изобар:

 $\sigma_{\Lambda^{\circ}}(1232) = /31 \pm 2/M_{0}, \sigma_{\Lambda^{++}}(1232) = /11 \pm 1/M_{0}, \sigma_{\Lambda^{++}}(1650) = /5 \pm 1/M_{0}.$

Отношение сечений $\sigma_{\Delta^{++}}(1232)$ и $\sigma_{\Delta^o}(1232)$ указывает на присутствие механизма генерации этих изобар, отличающегося от модели однопионного обмена. Эксперимент, однако, не позволяет сделать аналогичного вывода относительно генерации изобар $\Delta(1650)$. Вероятность рождения $\Delta^o(1232)$ возрастает с ростом числа испущенных протонов N_p , в то время как вероятность рождения $\Delta^{++}(1232)$ в этих условиях падает. Для изобары $\Delta^{++}(1650)$ намечается падение вероятности с ростом N_p до значения N_p =3. Наибольшая вероятность генерации всех указанных изобар наблюдается в событиях с $N_p ≥ 4$.

Рождающимся изобарам не передается столь большой импульс, чтобы пионы от их распада входили в состав лидирующих.

Авторы благодарны коллективу Сотрудничества по обработке снимков с 2-метровой пропановой пузырьковой камеры за помощь в получении экспериментальной информации и полезные обсуждения, В.В.Ужинскому ~ за помощь в работе.

ЛИТЕРАТУРА

- 1. Аношин А.И. и др. ОИЯИ, Р1-80-313, Дубна, 1980.
- 2. Аношин А.И. и др. ОИЯИ, Р1-80-574, Дубна, 1980.
- 3. Bartke I. et al. Nucl. Phys., 1978, B137, p. 89.
- Review of Particle Properties. Rev.Mod.Phys., 1976, 48, No.2, part 11.
- 5. Аношин А.И. и др. ЯФ, 1978, 27, с.1001.
- 6. Higgins P.D. et al. Phys.Rev.D, 1979, 19, p.731.
- 7. Bingham H.H. et al. Preprint 750527, LBL-3855, 1975.
- 8. Ангелов Н. и др. ОИЯИ, Р1-9810, Дубна, 1976.