

Объединенный институт ядерных исследований дубна

6193

22/12-80 P1-80-606

Ю.Иорданова, В.Б.Любимов, С.Митова, В.Н.Пенев, А.И.Шкловская

РОЖДЕНИЕ ЧАСТИЦ С БОЛЬШИМИ ПОПЕРЕЧНЫМИ ИМПУЛЬСАМИ ВО ВЗАИМОДЕЙСТВИЯХ 77-МЕЗОНОВ С НУКЛОНАМИ И ЯДРАМИ ПРИ 40 ГэВ

Направлено в "Болгарский физический журнал"

§1. ВВЕДЕНИЕ

Изучение взаимодействий с рождением частиц, имеющих большие поперечные импульсы, дает возможность выявить структуру адронов и может оказаться полезным при выборе различных моделей множественного рождения частиц. В частности, это относится к результатам анализа корреляций частиц, образованных во взаимодействиях, сопровождающихся испусканием адрона или группы адронов с большими поперечными импульсами*, т.е. с $P_{\perp} > \bar{P}_{\perp}$, где \bar{P}_{\perp} - средний поперечный импульс "обычного" адрон-нуклон-ного /ядерного/ взаимодействия '3'.

В настоящей работе вопрос об этих корреляциях изучен на примере π^-p – и π^{-12} С -взаимодействий, отобранных по стандартным критериям⁴⁴ на снимках с 2-метровой пропановой камеры, облученной пучком π^- мезонов с импульсом 40 ГэВ/с. При этом отбирались взаимодействия, для которых были измерены импульсы всех вторичных частиц с ошибкой не хуже 30%. Всего для анализа было отобрано 14276 π^-p -, 575 π^-n – и 6481 π^- С-взаимодействий. На основе этой статистики были получены результаты для π^{-12} Сстолкновений, в которых были учтены взаимодействия на квазисвободных нуклонах ядра углерода.

В зависимости от числа частиц (L), имеющих поперечный импульс $P_{\perp} > 0,8$ ГэВ/с, все события были разделены на три группы **. К первой группе были отнесены взаимодействия без вторичных частиц с $P_{\perp} > 0,8$ ГэВ/с (L=0), ко второй - события, имеющие одну такую частицу (L=1), и к третьей - события с L > 2. Соответствующая доля π^- р- и π^{-12} С -взаимодействий, т.е. с L=0, L=1 и L>2, представлена в табл.1.

Как видно из таблицы, доля событий, имеющих вторичные частицы с $P_{\rm L}>0.8$ ГэВ/с, в случае взаимодействий на ядре возрастает. Это можно рассматривать как указание на более сильную Азависимость поперечных сечений для событий с L>1,чём Азависимость сечений для всех неупругих взаимодействий ($\sigma_{\rm in}$).

* Результаты изучения корреляций во всех π^{-12} С-и π^{-} р -взаимодействиях опубликованы в наших работах /1/, а предварительные результаты по исследованию π^{-} р -взаимодействий, сопровождающихся испусканием частиц с большими P_{\perp} , в /2/.

** Выбор такого ограничения был сделан, в частности, из соображений, приведенных в работе ^{/8/}.

Таблица 1

7ип L события	0	1	<u> </u>
π ⁻ p	0,700 <u>+</u> 0,010	0,235 <u>+</u> 0,06	0,065 <u>+</u> 0,004
π ⁻¹² C	0,601 <u>+</u> 0,012	0,301 <u>+</u> 0,008	0,098+0,004

§2. АЗИМУТАЛЬНЫЕ КОРРЕЛЯЦИИ

Азимутальные корреляции во взаимодействиях с различным числом частиц анализировались по переменной:

$$\phi = \arccos |\vec{P}_{\perp 1} \cdot \vec{P}_{\perp 2}| / |\vec{P}_{\perp 1}| \cdot |\vec{P}_{\perp 2}|. \qquad (1)$$

Для событий с L=0 величина ϕ определялась как разность азимутальных углов между всеми парами заряженных частиц, в случае L = 1 ϕ - как разность между азимутальными углами вылета пионов с малым поперечным импульсом и с P_⊥ >0,8 ГэВ/с, в событиях с L = 2 ϕ - как разность между азимутальными углами двух частиц с P_⊥ > 0,8 ГэВ/с.

Данные для коэффициента асимметрии

$$B = \frac{N(\phi > 90^{\circ}) - N(\phi < 90^{\circ})}{N(\phi > 90^{\circ}) + N(\phi < 90^{\circ})}$$

приведены в табл.2.

тарлица	2

121

L	B(π ⁻ p)	$B(\pi^{-12}C)$
0	0,065+0,001	0,032+0,001
1	0,193+0,005	0,111+0,004
2	0,55+0,06	0,37+0,04

Видно, что в отсутствие частиц, имеющих большие поперечные импульсы, азимутальные корреляции малы как для π p-, так и для π 19 C -взаимодействий. При переходе к L = 1 коэффициенты В существенно возрастают и при L = 2 увеличиваются почти на порядок. Из приведенной таблицы следует также, что для всех L азимутальные корреляции на ядре меньше, чем на нуклоне, а при L = 2 их значения сближаются.

Коэффициенты асимметрии /2/ были рассчитаны также для разных интервалов продольных быстрот * и при разных комбинациях зарядов пар частиц. Рассмотрены три интервала быстрот в зависимости от попадания одной из двух частиц в области фрагментаций (|Y| > 1) или в центральную область (|Y| < 1).

Полученные результаты для взаимодействий частиц с большими Р (L = 0) приведены в табл.3.

Тип события	Интервал быстрот	Величина коз	оффициента аси	ента асимметрии	
		$\pi^+\pi^+$	$\pi^+\pi^-$	π-π-	
<i>π</i> _p	$Y_{1}, Y_{0} > 1$	-0,010+0,003	0,150+0,007	-0,020+0,003	
-	$Y_{1}, Y_{2} < -1$	0,067 <u>+</u> 0,011	0,090 <u>+</u> 0,008	-0,037 <u>+</u> 0,009	
	$-1 < Y_2, Y_2 < 1$	0,005 <u>+</u> 0,001	0,092 <u>+</u> 0,002	0,010 <u>+</u> 0,001	
$\pi^{-12}C$	$Y_{1}, Y_{2} > 1$	-0,08+0,02	0,16+0,01	-0,095+0,01	
	$Y_1, Y_2 < -1$	0,026+0,004	0,067 <u>+</u> 0,005	-0,007 <u>+</u> 0,003	
	$-1 < Y_1, Y_2 < 1$	0,008 <u>+</u> 0,001	0,069 <u>+</u> 0,003	0,008 <u>+</u> 0,001	

Таблица 3

Как видно из табл.3, корреляции малы как для π^-p_- , так и для π^-1^2C -взаимодействий; они несколько больше для пионов с разными знаками для всех интервалов быстрот. В табл.4 приводятся азимутальные корреляции в центральной области (-1 < Y <1) для событий, в которых рождается один (L=1) или два (L=2) пиона с $P_\perp > 0,8$ ГэВ/с.

Центральная область быстрот для <u>табл.4</u> была выбрана из соображений наибольшей статистической обеспеченности. Данные, приведенные в <u>табл.3</u> и 4, указывают, что в случае рождения хотя бы одной частицы с $P_{\perp} > 0,8$ ГэВ/с азимутальные корреляции возрастают и для π^-p_- , и для π^{-12} С -взаимодействий, становясь одинаковыми в пределах экспериментальных ошибок для разноименно и одинаково заряженных пионов.

^{*} Продольные быстроты рассчитывались в системе центра масс пион-нуклон.

Таблица 4

Тип событи	IR	Величина	коэффициента а	симметрии (В)
		$\pi^{+}\pi^{+}$ -	$\pi^+\pi^-$	π π
L=1	π ⁻ p	0,16 <u>+</u> 0,01	0,1 <u>8+</u> 0,01	0,16 <u>+</u> 0,02
	π ⁻¹² C	0,065 <u>+</u> 0,01	0,1 <u>4+</u> 0,01	0,15 <u>+</u> 0,02
L=2	π ⁻ p	0,47 <u>+</u> 0,13	0,43 <u>+</u> 0,08	0,52 <u>+</u> 0,15
	π ^{- 12} C	0,30 <u>+</u> 0,11	0,48 <u>+</u> 0,11	0,36 <u>+</u> 0,14

\$3. СРЕДНЕЕ ЧИСЛО НУКЛОНОВ, ВЗАИМОДЕЙСТВУЮЩИХ В ЯДРЕ УГЛЕРОДА

Мультипериферическая модель $^{/5/}$ позволяет связать отношение коэффициентов азимутальной асимметрии на нуклоне и ядре со средним числом провзаимодействовавших в ядре нуклонов (ν):

$$\nu = \frac{B_{hN}}{B_{hA}}, \qquad (3/$$

где

$$B_{hN} = \frac{1}{2} (B_{hp} + B_{hn}) .$$
 (4/

Здесь B_{hA} и B_{hN} - значения коэффициентов азимутальной асимметрии в центральной области на ядре с атомным номером A и на нуклоне соответственно.

Исходя из данных, приведенных в табл.3 и 4, и усреднив их по знакам пар пионов, мы получили значения величин ν в зависимости от числа частиц с большими $P_{\perp}(L)$. Эти значения приведены в табл.5.

L	B _{πN}	$B_{\pi} - 12_{C}$	ν
0	0,054+0,001	0,039+0,001	1,39+0.04
1	0,170 <u>+</u> 0,006 .		1,41+0,09
2	0,46 <u>+</u> 0,06	0,41+0,07	1,15+0,20

Таблица 5

4

Рис.1. Распределение по быстротам одной из двух частиц с $P_1 > 0,08$ ГэВ/с для случая, когда вторая частица попадает в интервал быстрот, указанный на рисунке.

ł

Видно,что в пределах ошибок нет зависимости числа взаимодействующих частиц в ядре углерода от *v*.

\$4. СВЯЗЬ МЕЖДУ ДВУМЯ ЧАСТИЦАМИ С БОЛЬШИМИ Р.

В событиях с рождением двух частиц, имеющих $P_{\perp} > 0,8$ ГэВ/с, была обнаружена интересная особенность. Если в этих взаимодействиях выбрать одну частицу в одном из трех интервалов быстрот:

$$Y_1 > 1$$
, $Y_1 < -1$, $-1 < Y_1 < 1$,

то распределение по быстротам второй частицы будет иметь максимум в этом же интервале быстрот,что может означать стремление частиц с большими Р_ рождаться с близкими по величине быстротами. Эта особенность наблюдается как для $\pi^- p_-$, так и для $\pi^{-12}C$ взаимодействий. Суммарные результаты для обоих типов взаимодействия показаны на рис.1. Отметим, что вид распределений не меняется и для пар частиц с $\phi > \pi/2$. Это подтверждает предположение о связи между быстротами частиц с большими \mathbf{P}_{\perp} И азимутальной асимметрией в их вылете.

Построено распределение по абсолютной разности между поперечными импульсами (ΔP_{\perp}) пионов с большими P_{\perp} для π^-p_{\perp} /<u>рис.2a/, π^-n_{\perp} /<u>рис.26/</u> и для π^-C_{\perp} -взаимодействий /<u>рис.2в/</u>. Из рисунка видно, что значительная доля этих разностей попадает в первый интервал этих распределений, т.е. поперечные импульсы соответствующих пар частиц отличаются меньше чем на 50 МэВ/с. В табл.6 приведены данные о доле таких комбинаций (β).</u>

5

Таким образом, около 1/3 пар частиц с большими поперечными импульсами имеют одинаковые с точностью до 50 МэВ/с поперечные импульсы.

§5. ЭФФЕКТИВНЫЕ МАССЫ

Спектры эффективных масс были исследованы для π^-p , π^-n , и π^-C -взаимодействий с разным числом вторичных частиц с большими P₁. В спектре эффективных масс $\pi^+\pi^-$ для π^-p взаимодействий с L=0 наблюдается ρ° -мезон, особенно четко в области фрагментации налетающего π^- -мезона /<u>рис.3a</u>/. Заметен эффект от ρ° -мезона и в суммарном распределении для π^-p , π^-n , π^- С-взаимодействий с L=0 /<u>рис.36</u>/, точно так же, как и в событиях с L≥1 /<u>рис.4</u>/. В качестве фона использовалось распределение эффективных масс одинаково заряженных пар частиц из того же класса событий, для которых строился спектр эффективных масс $\pi^+\pi^-$ -пар. Основной вывод из приведенных

6

.

<u>Рис.3.</u> Спектры эффективных масс $\pi^+\pi^-$ -пар в событиях с L = 0.

Рис.4. Суммарное распределение эффективных масс $\pi^+\pi^-$ – пар в π^-p -, π^-n - и π^-C -взаимодействиях с $L \ge 1$ для разных интервалов быстрот (Y).

<u>Рис.5</u>. Распределение по эффективным массам $\pi^+\pi^-$ -пар с P₁>0,8 ГэВ/с.

распределений: присутствие в событиях частиц с большими P_{\perp} не влияет на образование, по крайней мере ρ° -мезона.

Распределение эффективных масс для частиц с большими P₁ приведено на рис.5. Оно имеет широкий максимум в районе 2 ГэВ/с², причем положение этого максимума меняется с величиной ограничения на поперечный импульс рассматриваемых частиц. Наблюдается изменение положения максимума в сторону смещения границы по Р., Последнее, по-видимому, является отражением того факта, что в значительном числе случаев п-мезоны рождаются с близкими быстротами, углами и поперечными импульсами.

ЗАКЛЮЧЕНИЕ

Изучение рождения частиц с поперечными импульсами $P_1 > >0,8$ ГэВ/с в π^-p- и $\pi^{-12}C$ -взаимодействиях, выполненное с помощью 2-метровой пропановой камеры, облученной пучком π -мезонов с $P_{\perp}=40$ ГэВ/с, позволяет сделать следующие выводы:

1/ присутствие во взаимодействиях частиц с $P_{\perp} > 0,8$ ГэВ/с увеличивает азимутальные корреляции;

2/ значительная часть пар π -мезонов с $P_{\perp} > 0,8$ ГэВ/с /не меньше 30%/ рождается с близкими быстротами, углами и поперечными импульсами;

3/ присутствие во взаимодействии частиц с $P_{\perp} > 0,8$ ГэВ/с не влияет на образование резонансов /в частности, ρ° -мезона/;

4/ распределение по эффективной массе двух частиц с $P_{\perp} > -$ >0,8 ГэВ/с имеет широкий максимум в районе 2 ГэВ/с².

Авторы благодарны всем участникам сотрудничества по обработке снимков с 2-метровой пропановой пузырьковой камеры за помощь в получёнии экспериментального материала.0собую признательность авторы выражают Е.М.Левину и М.Г.Рыскину за многократные обсуждения и ценные советы, а также Н.С.Ангелову, Т.Канареку, А.Н.Соломину за помощь в составлении программ, Е.Н.Кладницкой и Ю.А.Трояну за полезные дискуссии и советы, В.Г.Гришину, И.А.Ивановской, М.И.Соловьеву за внимательное прочтение рукописи и полезные замечания.

ЛИТЕРАТУРА

- 1. Ангелов Н. и др. ОИЯИ, Р1-10768, Дубна, 1977; ЯФ, 1977, 26, с.554. 1029; ЯФ, 1977,25, с.343; ЯФ, 1976, 24, с.83; Бацкович С. и др. ЯФ, 1980, 31, с.1234.
- 2. Ангелов Н. и др. ЯФ, 1978, 27, с.381.
- Левин Е.М., Рыскин М.Г. Материалы XI зимней школы ЛИЯФ по физике ядра элементарных частиц. Л., 1976, с. 267.
- 4. Абдурахимов А.У. и др. ЯФ, 1972, 16, с.989; Ангелов Н. и др. ЯФ, 1977, 25, с.1013.
- 5. Levin E.M., Nikolaev N.N., Ryskin M.G. TH-2780, CERN, 1979.

Рукопись поступила в издательский отдел 12 сентября 1980 года.

9