

Объединенный институт ядерных исследований дубна

> 2/6-80 P1-80-59

2389 2-80

С.И.Биленькая, Ю.М.Казаринов

ФОРМФАКТОРЫ НЕЙТРОНА (анализ данных по упругому ed-рассеянию)

Направлено в ЯФ

I. Электромагнитные формфакторы — важнейшие характеристики нуклона. В настоящее время о формфакторах протона имеется довольно подробная информация в широком интервале q^2 от 0 до ~30 /ГэВ/с/². При малых $q^2/q^2 \le 0.5$ /ГэВ/с/²/ зарядовый и магнитный формфакторы протона описываются так называемой дипольной формулой. При $q^2 \ge 1$ /ГэВ/с/² наблюдается заметное отклонение /20%/ от дипольной формулы /см., напр., 1// . Формфакторы нейтрона известны значительно хуже, чем формфакторы протона.

В настоящей работе проведен анализ всех опубликованных данных по сечениям упругого рассеяния электронов дейтронами. Цель анализа ~ получение информации об электромагнитных формфакторах нейтрона.

Мы использовали тот же метод, который применялся ранее при анализе мировых данных по упругому e-p -рассеянию ^{/1/}. Этот метод требует определенных предположений о функциональной зависимости формфакторов от q^2 , причем в соответствующие выражения для формфакторов входят варьируемые параметры. Эти параметры находятся путем минимизации функционала χ^2 , определяемого следующим образом:

$$\chi^{2} = \sum_{i,k} \frac{1}{\Delta_{i,k}} (\sigma_{i,k} - N_{k} \sigma_{i}^{\text{Teop}})^{2},$$

где $\sigma_{i,k}$ - сечение в i-й точке, измеренное в k-том эксперименте; $\Delta_{i,k}$ - ошибка σ_{ik} ; σ_i^{Teop} - сечение, вычисляемое по теоретическим формулам, N_k - варьируемый параметр, который вводится для учета возможных систематических сшибок каждого эксперимента.

Отметим, что применялись предложенная в работе $^{/2/}$ линеари-зация и программа FUMILI $^{/3/}$.

Используемый метод позволяет получить информацию о формфакторах непосредственно из данных по сечениям. Обычно эта процедура проводится в два этапа. Вначале из данных по сечениям определяются значения формфакторов /путем построения прямой Розенблюта/, затем находятся параметры, характеризующие зависимость формфакторов от q².

II: В однофотонном приближении сечение процесса

OSTOCHUCCOURS UNCURSY ARECHUS SECTOROSIUS EDISTOYTERA

/2/

1

/1/

имеет в лаб.системе следующий вид /4/:

$$\frac{d\sigma}{d\Omega} = \sigma_{\rm M} \left[A(q^2) + B(q^2) tg^2 \Theta/2 \right],$$
(3)

$$Ae \quad \sigma_{\rm M} = \frac{a^2}{4E^2} \frac{\cos^2 \Theta/2}{\sin^4 \Theta/2} \frac{1}{1 + \frac{2E}{M_{\rm d}} \sin^2 \Theta/2}$$

/ Θ - угол рассеяния, Е - начальная энергия электрона, M_d масса дейтрона/.

Величины $A(q^2)$ и $B(q^2)$ даются выражениями $^{/4/}$

$$A(q^{2}) = G_{C}^{2}(q^{2}) + \frac{8}{9}\eta^{2}G_{Q}^{2}(q^{2}) + \frac{2}{3}\eta G_{M}^{2}(q^{2})$$
$$B(q^{2}) = \frac{4}{3}\eta(1+\eta)G_{M}^{2}(q^{2}).$$

Здесь $G_C(q^2)$; $G_Q(q^2)$ и $G_M(q^2)$ - зарядовый, квадрупольный и магнитный формфакторы дейтрона, а $\eta = q^2/4 M_d^2$. Будем, как обычно, предполагать, что справедливо импульсное приближение. В этом приближении формфакторы дейтрона могут быть связаны с зарядовыми и магнитными формфакторами протона $G_E^{-p}(q^2)$, $G_M^{-p}(q^2)$ и нейтрона $G_E^{-n}(q^2)$, $G_M^{-n}(q^2)$ соотношениями.

$$G_{C}(q^{2}) = (G_{E}^{p}(q^{2}) + G_{E}^{n}(q^{2}))C_{E}$$

$$G_{Q}(q^{2}) = (G_{E}^{p}(q^{2}) + G_{E}^{n}(q^{2}))C_{Q} /5/$$

$$G_{M}(q^{2}) = \frac{M_{d}}{M} [(G_{M}^{n}(q^{2}) + G_{M}^{p}(q^{2}))C_{g} + \frac{1}{2}(G_{R}^{p}(q^{2}) + G_{R}^{n}(q^{2}))C_{I}].$$

Здесь

$$C_{E} = \int_{0}^{\infty} \{ u^{2}(r) + w^{2}(r) \} j_{0}(\frac{qr}{2}) dr$$

$$C_{Q} = \frac{3}{\sqrt{2}\eta} \int_{0}^{\infty} w(r) \{ u(r) - \frac{w(r)}{\sqrt{8}} \} j_{2}(\frac{qr}{2}) dr$$

$$C_{L} = \frac{3}{2} \int_{0}^{\infty} w^{2}(r) \{ j_{0}(\frac{qr}{2}) + j_{2}(\frac{qr}{2}) \} dr$$

$$C_{S} = \int_{0}^{\infty} \{ u^{2}(r) - \frac{w^{2}(r)}{2} \} j_{0}(\frac{qr}{2}) dr + \frac{1}{\sqrt{2}} \int_{0}^{\infty} w(r) \{ u(r) + \frac{w(r)}{\sqrt{2}} \} j_{2}(\frac{qr}{2}) dr.$$
(6)

В этих выражениях $j_0(\frac{qr}{2})$ и $j_2(\frac{qr}{2})$ - сферические функции Бесселя, а u(r) и w(r) - радиальные волновые функции, описывающие S и D -состояния и удовлетворяющие следующему условию нормировки:

$$\int_{0}^{\infty} \left[u^{2}(r) + w^{2}(r) \right] dr = 1.$$
 (7/

Нами использовались функции u(r) и w(r), полученные в работе $^{75/2}$:

$$u(\mathbf{r}) = N(e^{-\alpha \mathbf{r}} + \sum_{i=1}^{n} C_{i}e^{-\epsilon_{i}\mathbf{r}})$$

$$w(\mathbf{r}) = \rho N(\alpha \mathbf{r}h_{2}(i\alpha \mathbf{r}) + \sum_{i=1}^{m} C_{i}\epsilon_{i}\epsilon_{i}\mathbf{r}h_{2}(i\epsilon_{i}\mathbf{r})).$$

$$/8/$$

Здесь

141

$$xh_2(ix) = e^{-x} [1 + \frac{3}{x} + \frac{3}{x^2}],$$
 /9/

а α , N , ρ , C $_i$, ϵ_i , C $_j$, ϵ_j - параметры. Для того, чтобы волновая функция не имела сингулярности в точке r = 0, параметры C $_i$, ϵ_i , C $_j$, ϵ'_j должны удовлетворять условиям

Параметры / C_i , ϵ_i и т.д./ подбираются так, чтобы значения u(r) и w(r) совпадали со значениями, найденными путем численного интегрирования уравнения Шредингера с потенциалом Хамада-

2

3

/10/

Джонсона*. Полученные в работе^{/5/} значения параметров C_i , ϵ_i , C_j , ϵ_j' удовлетворяют условиям /10/ лишь приблизительно, с точностью, недостаточной при практическом вычислении форм-факторов дейтрона на ЭВМ. В связи с этим найдены новые уточненные значения этих параметров. Значения параметров a, N и ρ были взяты из работы^{/5/}: a = 0,2338 F ⁻¹, N = 0,8896 F ^{-1/2} $\rho = 0,0269$. В табл. 1 приведены полученные нами значения параметров C_i , ϵ_i , C_j' и ϵ_j' (i = 1,...,4; j = 1,....,5).

-	~				-
Ι.	ah.	D14	H.	a	
	av,	,,,,,	ч	а	

Значения параметров, входящих в волновую функцию дейтрона

ε _i	C _i	€́j	Cj	
5,733a 12,844 <i>a</i> 17,331 <i>a</i> 19,643 <i>a</i>	-0,63608 -6,615 15,2162 -8,9651	4,833a 10,447a 14,506a 16,865354a 21,1542a	-20,34 -36,60 -123,02 305,12 -126,16	

III. Перейдем теперь к изложению результатов анализа экспериментальных данных. Мы проанализировали данные, полученные в работах $^{7-14/}(0.3 \mathrm{F}^{-2} \le \mathrm{q}^2 \le 34.1 \mathrm{F}^{-2})$ при разных предположениях о формфакторах нуклона.

1. Предположим, что имеют место масштабные соотношения

$G_{M}^{p}(q^{2}) = \mu_{p}G_{E}^{p}(q^{2})$		/11/

 $G_{M}^{n}(q^{2}) = \mu_{n}G_{E}^{p}(q^{2})$ /12/

 $G_{E}^{n}(q^{2})=0.$ /13/

Здесь μ_p и μ_n - полные магнитные моменты протона и ней†рона в магнетонах Бора. Для зарядового формфактора протона примем выражение

*Этот потенциал позволяет описать данные по n-p рассеянию в области малых энергий, а также получить согласующееся с опытом значение величины $\frac{\mathrm{dG}_{\mathrm{E}}^{n}}{\mathrm{dq}^{2}}|_{q}{}^{2}_{=0}$ /см.^{6/}/.

$$G_{E}^{p}(q^{2}) = \frac{a_{3}}{1 + a_{1}q^{2}} + \frac{1 - a_{3}}{1 + a_{2}q^{2}}$$
 /14/

/ a₁ , a₂ , a₃ - параметры/.

Как показано в работе $^{/1/}$, с помощью /11/ и /14/ могут быть описаны все имеющиеся данные по упругому рассеянию электронов протонами. Для параметров a_i при этом были получены следующие значения:

$$a_1 = 0,67 / \Gamma \Im B/c/^2; a_2 = 2,23 / \Gamma \Im B/c/^2; a_3 = -0,45.$$
 /15/

Если предположить, что формфакторы нейтрона удовлетворяют соотношениям /12/ и /13/, а для формфакторов протона принять /11/, /14/ и /15/, то при этом может быть получено удовлетворительное описание $/\chi^2/\bar{\chi}^2 = 105/89$ / данных по сечениям упругого e-d рассеяния, полученных в работах^{/7-14/}. Единственными варьируемыми параметрами являются нормировочные множители N_k(k=1,...,8). Их значения приведены в табл. 2.

Таблица 2

Нормы, полученные в результате анализа данных по упругому е-d -рассеянию

Работа	Число	Параметризация	Параметризация
	точек	/11/-/15/	/19/-/21/
/7/	6	0,999+0,006	1,001+0,006
/8/	4	1,099+0,036	1,096+0,036
/9/	7	1,022+0,011	1,025+0,011
/10/	6	0,870+0,026	0,867+0,026
/11/	14	0,939+0,026	0,938+0,026
/12/	10	0,902+0,019	0,888+0,018
/13/	37	0,902+0,024	0,886+0,023
/14/	13	0,815+0,005	0,807+0,005

2. Соотношение /13/ заведомо должно нарушаться. В опытах по рассеянию медленных нейтронов на электронах^{/15/} получено, что

$$\frac{dG_{E}^{n}(q^{2})}{dq^{2}} |_{q^{2}=0} = (0,0195 \pm 0,0003) F^{2} .$$
 /16/

Мы рассмотрели интересную возможность нарушения масштабных соотношений /12/-/13/, обсуждавшуюся в работе^{/16}/Предположим, что изовекторные и изоскалярные ($G_M^{v}(q^2), G_E^{v}(q^2), G_M^{s}(q^2), G_E^{v}(q^2)$, $G_M^{s}(q^2)$, $G_E^{v}(q^2)$, $G_M^{s}(q^2)$, $G_M^{$

$$G_{M}^{v}(q^{2}) = \frac{\mu_{V}}{1/2}G_{E}^{v}(q^{2})$$

$$G_{M}^{s}(q^{2}) = \frac{\mu_{S}}{1/2}G_{E}^{s}(q^{2}),$$
/17/

где

$$\mu_{\rm v} = \frac{1}{2} \left(\mu_{\rm p} - \mu_{\rm n} \right)$$
 /18/

$$\mu_{\rm s} = \frac{1}{2} (\mu_{\rm p} + \mu_{\rm n}).$$

Из /17/ и /18/ получаем

$$G_{M}^{p}(q^{2}) = \mu_{p}G_{E}^{p}(q^{2}) + \mu_{n}G_{E}^{n}(q^{2})$$

$$G_{M}^{n}(q^{2}) = \mu_{n}G_{E}^{p}(q^{2}) + \mu_{p}G_{E}^{n}(q^{2}).$$
/19/

Выразим формфакторы нейтрона через формфакторы протона. Имеем

$$G_{E}^{n}(q^{2}) = \frac{1}{\mu_{n}} [G_{M}^{p}(q^{2}) - \mu_{p}G_{E}^{p}(q^{2})]$$

$$(20)$$

$$G_{M}^{n}(q^{2}) = \mu_{n}G_{E}^{p}(q^{2}) + \frac{\mu_{p}}{\mu_{n}} [G_{M}^{p}(q^{2}) - \mu_{p}G_{E}^{p}(q^{2})].$$

Как видно из /20/, соотношения для формфакторов нейтрона /12/ и /13/ нарушаются только в случае, если не имеет места масштабное соотношение /11/, связывающее магнитный и зарядовый формфакторы протона.

При анализе данных по упругому e-d -рассеянию для формфакторов протона мы приняли выражения

$$G_{E}^{p}(q^{2}) = \frac{-0.24}{1+0.37 q^{2}} + \frac{1.24}{1+2.50 q^{2}} / (21)$$

$$G_{M}^{p}(q^{2}) = \mu_{p}(\frac{-0.33}{1+0.58 q^{2}} + \frac{1.33}{1+2.42 q^{2}}),$$

полученные^{/1/} в результате анализа мировых данных по упругому e_p -рассеянию. Нормировочные множители /единственные варьируемые параметры/ приведены в табл. 2. В пределах ошибок они совпадают со значениями N_k , полученными в предыдущем случае.

Описание удовлетворительное: $\chi^{2}/\overline{\chi}^{2} = 106/89$. Зарядовый формфактор нейтрона во всей рассматриваемой области q^{2} мал /не превосходит ~5·10⁻³ / и при $q^{2} \simeq 22 \, \mathrm{F}^{-2}$ меняет знак. Производная зарядового формфактора в точке $q^{2} = 0$ положительна и равна

$$\frac{\mathrm{dG}_{\mathrm{E}}^{n}(q^{2})}{\mathrm{d}q^{2}}\Big|_{q^{2}=0} = 0,023.$$
 /22/

Отметим, что это значение производной $\frac{dG_E^{n}(q^2)}{dq^2}|_q^2=0$ согласу-

ется со значением, полученным в недавнем опыте по упругому e-d рассеянию в области малых q^2 , выполненном на ереванском ускорителе $^{/17/}$.

3. В литературе /см., напр., ^{/18/} / часто обсуждается возможность того, что

$$F_1^{n}(q^2) = 0.$$
 /23/

В этом случае

$$G_{E}^{n}(q^{2}) = -\frac{q^{2}}{4M^{2}}G_{M}^{n}(q^{2}).$$
 /24/

При этом предполагают также, что

$$G_{M}^{p}(q^{2}) = \mu_{p}G_{E}^{p}(q^{2})$$

$$(25)$$

$$G_{M}^{n}(q^{2}) = \mu_{n}G_{E}^{p}(q^{2}).$$

Мы провели обработку данных по е-d-рассеянию в предположении, что имеют место соотношения /24/, /25/. Удовлетворительного описания данных получить в этом случае не удается ($\chi^2/\bar{\chi}^2 = 179/89$); все параметры N_k на много ошибок отличаются от единицы/. Отметим, что если

$$G_{E}^{n}(q^{2}) = -b \frac{q^{2}}{4M^{2}} G_{M}^{n}(q^{2})$$
 /26/

/ b - варьируемый параметр/, то при этом может быть получено удовлетворительное описание данных ($\chi^2/\bar{\chi}^2 = 105/88$). Однако параметр b в пределах ошибок равен нулю / b = -0,05+0,11/.

IV. Итак, полученные в работах^{/7-14/} данные по упругому е-d-рассеянию могут быть удовлетворительно описаны, если предположить, что изовекторный и изоскалярный формфакторы связаны масштабными соотношениями /17/, а для формфакторов протона

6

принять полюсные выражения /21/ со значениями параметров, найденными при анализе мировых данных по е-р-рассеянию. При

этом производная $\frac{dG_E^{n}(q^2)}{dq^2}|_{q^2=0}$ близка к значению, полученному

в эксперименте по n-e рассеянию, а также в опыте $^{/17/}$ по ed – рассеянию в области малых q^2 .

Данные по e-d-рассеянию могут быть также описаны, если предположить, что имеют место масштабные соотношения /11/-/13/.

Таким образом, точность имеющихся данных не позволяет получить однозначной информации о зарядовом формфакторе нейтрона.

ЛИТЕРАТУРА

- Биленькая С.И., Казаринов Ю.М., Лапидус Л.И. ЖЭТФ, 1971, 61, с.2225.
- 2. Соколов С.Н., Силин И.Н. ОИЯИ, 1961, Д-810, Дубна.
- 3. Силин И.Н. Библиотека программ на ФОРТРАНе. ОИЯИ, Б-1-11-5144, Дубна, 1970, т.1.
- 4. Gourdin M. Nuovo Cim., 1963, 28, p.533; 1964, 32, p.493(E); 1964, 33, p.1391.
- 5. McGee I.J. Phys.Rev., 1966, 151, p.772.
- 6. Schumacher C.R., Bethe H.A. Preprint CLNS-180, 1972.
- 7. Drickey D.J., Hand L.N. Phys.Rev.Lett., 1962, 9, p.521.
- Ganichot D., Grossetete B., Isabelle D.B. Preprint LAL 1250, April 1970.
- 9. Grossetete B., Drickey D., Lehmann P. Phys.Rev., 1966, 141, p.1435.
- 10. Benaksas D., Drickey D., Frerejacque D. Phys.Rev., 1966, 143, p.1227.
- 11. Friedman J.I., Kendall H.W., Gram P.A.M. Phys.Rev., 1960, 120, p.992.
- 12. Galster S., et al. Nucl.Phys., 1971, B32, p.221.
- 13. Ellias J.E. et al. Phys.Rev., 1969, 177, p.2075.
- 14. Buchanan C.D., Yearian M.R. Phys.Rev.Lett., 1965, 15,p.303.
- 15. Koester L. et al. Phys.Rev.Lett., 1976, 36, p.1021.
- 16. Schumacher C.R., Engle I.M. Preprint ANL/HEP 7032.
- 17. Акимов Ю.К. и др. ЯФ, 1979, 29, с.649.
- 18. Hand L.N., Miller D.G., Wilson R. Rev.Mod.Phys., 1963, 35, p.335.

Рукопись поступила в издательский отдел 25 января 1980 года.