

Объединенный институт ядерных исследований дубна

5822 2

8/12-80 P1-80-537

4

Н.С.Ангелов, О.Балеа, В.Болдеа, В.Г.Гришин, Ш.В.Иногамов, Р.А.Кватадзе, С.Л.Лутпуллаев, К.Олимов, Т.Понта, Л.Симич, С.Хакман, А.А.Юлдашев, Б.С.Юлдашев

ИССЛЕДОВАНИЕ РОЖДЕНИЯ МЕЗОННЫХ РЕЗОНАНСОВ В ПИОН-УГЛЕРОДНЫХ ВЗАИМОДЕЙСТВИЯХ ПРИ Р=40 ГэВ/с

Направлено в ЯФ

§1. ВВЕДЕНИЕ

В последние годы было обнаружено, что при высоких энергиях в множественных процессах большую долю среди вторичных частиц составляют резонансы /1.3/. Поэтому для изучения динамики сильных взаимодействий необходимо получить экспериментальную информацию в первую очередь о характеристиках рождения резонансов. Такие данные по рождению легких резонансов / ρ , ω , K*(892), f, Δ / в адронных взаимодействиях имеются при отдельных энергиях, в то время как образование резонансов в адрон-ядерных соударениях при высоких энергиях / $E_{\rm лаб}$, > 10 ГэВ/ практически не изучалось.

В настоящей работе представлены данные по рождению ρ^{o} , $\omega - \mu$ f – мезонов в π^{-12} C – взаимодействиях при P = 40 ГэВ/с. Они сравниваются с аналогичными результатами для π^{-12} р – взаимодействий, полученными при той же энергии и в одинаковых экспериментальных условиях /4-8/.

§2. МЕТОДИКА ЭКСПЕРИМЕНТА

Экспериментальный материал получен при обработке снимков с двухметровой пропановой пузырьковой камеры ЛВЭ ОИЯИ, облученной π^- -мезонами с импульсом 40 ГэВ/с на ускорителе ИФВЭ. Для анализа было отобрано около 11 тыс. π^{-12} С-взаимодействий с числом вторичных заряженных частиц $n_{\pm} \ge 4$, в которых все вторичные заряженные частицы были измерены. Сечение образования таких событий составляет 150+2 мб. Методические вопросы, связанные с обработкой фильмовой информации, отбором и идентификацией типа взаимодействия, изложены в работах ^{/7,8/}. Отметим, что протоны идентифицировались по ионизации в интервале импульсов 0,15 ГэВ/с $< P_{ЛВO} \le 0,7$ ГэВ/с. Остальные вторичные заряженные частицы считались π^{\pm} -мезонами*. Поэтому при анализе реакций типа

__/1/

$$T + \frac{12}{12}C \rightarrow \pi^+ + \pi^- + 2$$

* Примесь К[±] -мезонов не превышает /4-5/% ^{/7-8/}.

О БЕДИНЕННЫЙ ИНСТИТУ АДЕРНЫХ ИССЛЕДОВАНИ БИБЛИОТЕКА следует учесть, что имеется "примесь" протонов с Р_{лоб}>0,7 ГэВ/с среди "-мезонов. Среднее число таких протонов можно получить на основании данных по коэффициенту перезарядки $a(p \rightarrow n) =$ = 0,37+0,05^{/9/} и среднему числу неупругих взаимодействий пионов с нуклонами ядра углерода (<v>=1,5). Отсюда получается, что <n $_{\rm p}({\rm P}_{\rm Лao}>0,7$ ГэВ/с) $_{\pi-12}$ =0,5 *. При анализе спектра эффективных масс ${\rm M}(\pi^+\pi^-)$ в реакции /1/ исключение протонов с Р_{ляб.} > 0,7 ГэВ/с проводилось двумя способами. В первом предполагалось, что их импульсный спектр таков же, как и для π^+ -мезонов. В этом случае для каждого π^+ -мезона с Р_{лаб.} > > 0,7 ГэВ/с в событии вводился "вес", учитывающий "примесь" протонов. Во втором варианте предполагалось, что протоны распределены в интервале импульсов 0,7-5 ГэВ/с и вводился "вес" только для π^+ -мезонов в этом интервале импульсов. Оба варианта учета "примеси" протонов в событиях типа /1/ дали практически одинаковые результаты по сечениям образования резонансов. Различие между ними составляет < 6%, при ошибках в определении сечений $\sigma(\rho^{\circ}, \omega) \approx 10\%$. В то же время следует подчеркнуть, что в адрон-ядерных взаимодействиях необходимо учитывать "примесь" протонов с Р_{лаб.} > 0,7 ГэВ/с в реакциях типа /1/, на /15-20/% по сравнению что приводит к уменьшению $\sigma(\rho^{\circ}, \omega)$ с обычным анализом без их учета.

§3. СРЕДНИЕ МНОЖЕСТВЕННОСТИ РЕЗОНАНСОВ

Для получения данных о характеристиках образования резонансов в реакциях /1/ анализировался спектр эффективных масс $M(\pi^+\pi^-)$. Как было показано в работах /4-8/, здесь следует учесть возможность образования $\omega - \varkappa - \eta$ -мезонов ($\omega(\eta) \rightarrow \pi^+\pi^-\pi^0$). Однако по оценкам сечение рождения η -мезона в пион-углеродных взаимодействиях при P = 40 ГэВ/с мало. Кроме того, вероятность распада $\eta \rightarrow \pi^+\pi^-\pi^0$ составляет примерно 25%. Поэтому далее мы будем рассматривать только "отражение" распадов $\omega \rightarrow \pi^+\pi^-\pi^0$ в спектре эффективных масс $M(\pi^+\pi^-)$.

Экспериментальное распределение по $M(\pi^+\pi^-)$ анализировалось с помощью функции:

 $\frac{\mathrm{dN}}{\mathrm{dM}(\pi^+\pi^-)} = \phi(\mathbf{M}) \cdot [\mathbf{1} + a \cdot \mathbf{BW}_{\rho^\circ}(\mathbf{M}) + \beta \cdot \mathbf{BW}_{f}(\mathbf{M}) + \gamma \cdot \mathbf{F}_{\omega}(\mathbf{M})], \qquad /2/$

в которой a, β , γ - относительные вклады резонансов ρ° , f, ω . BW - релятивистские функции Брейта-Вигнера, F (M) -

* При этом учитывалось, что <n $_{\rm p}$ > с Р_{лаб.} $\stackrel{<}{_\sim}$ 0,7 ГэВ/с составляет 0,2 в π р -взаимодействиях \approx 0,1 в π - n -соударениях при Р = 40 ГэВ/с. распределение $M(\pi^+\pi^-)$ от распадов $\omega \to \pi^+\pi^-\pi^\circ$ и $\phi(M)$ фоновое распределение. В качестве фоновой кривой использовалось распределение эффективных масс одноименно заряженных пионов:

$$\phi(M) = \frac{dN}{dM(\pi^{+}\pi^{+})} + \frac{dN}{dM(\pi^{-}\pi^{-})} .$$
 /3/

Функции Брейта-Вигнера брались в виде /10,11/:

$$BW(M) = \frac{M^2}{q} \cdot \frac{M_0 \Gamma}{(M^2 - M_0^2)^2 + M_0^2 \Gamma^2}, \qquad (4/4)$$

$$\Gamma = \Gamma_0 \left(\frac{q}{q_0}\right)^{2\ell+1} \left(\frac{M_0}{M}\right),$$
 /5/

где $M_0 = 770$ МэВ, $\Gamma_0 = 150$ МэВ, $\ell = 1$ для ρ° -мезона, $M_0 = 1270$ МэВ, $\Gamma_0 = 180$ МэВ, $\ell = 2$ для f -мезона, q - импульс распадного пиона в системе покоя резонанса / q₀ есть q при $M = M_0/$. Функция "отражения" F_ω(M) вычислялась с учетом матричного элемента распада $\omega \to \pi^+\pi^-\pi^{\circ/4,5/}$.

Мы также учитывали искажение функций, описывающих резонансы (ρ°, ω, f) из-за экспериментальных ошибок в измерении эффективных масс. Оказалось, что распределение ошибок удовлетворительно аппроксимируется кривой Гаусса. Поэтому учет экспериментальных погрешностей $\sigma(m)$ в измерении $M(\pi^+\pi^-)$ был сделан в виде:

$$BW(M) = \frac{1}{\sqrt{2\pi}} \int BW(m) \frac{1}{\sigma(m)} \exp[-\frac{(M-m)^2}{2\sigma^2(m)}] dm , \qquad /6/$$

где

$$\sigma(m) = 0.071 \cdot m - 0.019 \Gamma_{3B}$$
, /7/

Распределение по $M(\pi^+\pi^-)$ в интервале 0,3-2,3 ГэВ аппроксимировалось функцией /2/ с помощью метода наименьших квадратов /см. <u>рис.1/</u>. В результате инклюзивные сечения образования резонансов в π^{-12} С-взаимодействиях оказались равны: $\sigma(\rho^\circ) =$ = 70,5+7,5 мб, $\sigma(\omega)=75,0+9,0$ мб и $\sigma(f)=7,5+7,5$ мб*. В табл.1 приведены средние множественности ρ° - и ω -резонансов в зависимости от n_{\pm} . Там же даны топологические сечения образования заряженных частиц в π^{-12} С-взаимодействиях при P=40 ГэВ/с.

*Везде сечения и средние множественности ω-и f -мезонов даны с учетом их распадов по всем возможным каналам.

	Tat	<mark>Блица 1</mark>	•
Средние	множественности	<i>р°</i> - и	ω-резонансов
	/ π^{-12} С	- 40 Гэ∣	3/с/

n±	<n(p)></n(p)>	<n(w)></n(w)>	б(n±) мо
4	0,I2 ± 0,03	0,07 <u>+</u> 0,03	I8,44 <u>+</u> I,07
5	0,18 <u>+</u> 0,06	0,15 <u>+</u> 0,07	$20,59 \pm 1,07$
6	0,23 <u>+</u> 0,05	0,29 <u>+</u> 0,05	20,59 ± 1,07
7	0,35 <u>+</u> 0,09	$0,35 \pm 0,11$	I8,97 <u>+</u> I,07
8	0,52 <u>+</u> 0,10	$0,51 \pm 0,11$	$16,47 \pm 0,90$
9	0,43 <u>+</u> 0,15	0,56 ± 0,17	12,71 ± 0,90
10	0,96 <u>+</u> 0,17	0,79 ± 0,21	$II,46 \pm 0,72$
≥11	0,88 <u>+</u> 0,19	I,07 <u>+</u> 0,24	30,77 ± 1,29
≥4	0,47 ± 0,05	0,50 <u>+</u> 0,06	150 <u>+</u> 2

Таблица 2

Доля π^- -мезонов от распадов резонансов в π^{-12} С-и π^- р взаимодействиях при P=40 ГэВ/с

Тип взаннодействия	$\frac{\langle n(R) \rangle}{\langle n(x) \rangle}$
IT ¹² C — R+X	$\frac{\langle n(p^{\circ}) \rangle}{\langle n(\mathcal{T}) \rangle} = 0,15 \pm 0,02$
	$< n(w) > = 0.16 \pm 0.02$
	$\frac{\langle n(f) \rangle}{\langle n(T) \rangle} = 0.02 \pm 0.02$
II ⁻ p R + X	$< n(p^{\circ})_{>} = 0.14 \pm 0.01$
	$\frac{\langle n(\omega) \rangle}{\langle n(\pi) \rangle} = 0.13 \pm 0.01$
	$\frac{\langle n(\frac{1}{2}) \rangle}{\langle n(3) \rangle} = 0.02 \pm 0.01$

Видно, что среднее число резонансов растет с ростом n_{\pm} . В среднем же, в каждом взаимодействии рождается один резонанс ρ° или ω . Далее, мы исследовали отношение числа π^{-} -мезонов, образованных от распадов этих резонансов, к их полному числу. В <u>табл.2</u> представлены величины этих отношений для π^{-12} Си π^{-} рвзаимодействий. Видно, что примерно 30% π^{-} -мезонов образуются от распадов ρ° -, ω - и f -мезонов.

§4. ДИФФЕРЕНЦИАЛЬНЫЕ СЕЧЕНИЯ ОБРАЗОВАНИЯ ρ° -мезонов в π^{-12} С-взаимодействиях

1 1

()

Для получения дифференциальных сечений образования ρ° -мезонов в процессах /1/ спектр $M(\pi^{+}\pi^{-})$ был разделен на несколько интервалов по переменным $P_{\perp}^{2}(\pi^{+}\pi^{-})$ и $Y(\pi^{+}\pi^{-})$. Далее анализ проводился с помощью процедуры, описанной в §3. При этом учитывалось изменение распределений $M(\pi^{+}\pi^{-})$ от распадов $\omega \to \pi^{+}\pi^{-}\pi^{\circ}$

<u>Рис.2.</u> Распределение ρ° -мезонов, образованное в π^{-12} С – и π^{-} р -взаимодействиях, по P_{\perp}^{2} .

связать с тем, что в соударениях участвует в среднем больше одного протона. Уменьшение $\langle n(\rho^{o}) \rangle$ в области фрагментации пиона ($Y_{,nab}$, >3,2) в ядерных соударениях удовлетворительно объясняется в рамках аддитивной кварковой модели /АКМ/ поглощением кварков при прохождении ядра ^{/12/}. В табл.3 приведены значения $\langle n(\rho^{o}) \rangle$ для разных областей в $\pi^{-}p - \mu \pi^{-12}C$ -взаимодействиях при P= 40 ГэВ/с. Здесь же даны их отношения и предсказания АКМ.

* Для дифференциальных сечений $\sigma(\rho^{\circ})$ эти изменения оказались несущественными.

в зависимости от P_{\perp}^2 и Y*. На <u>рис.2</u> приведены распределения ρ° -мезонов по P_{\perp}^2 для π^- р и π^{-12} С-взаимодействий, прямые линии результаты аппроксимации данных формулой:

$$\frac{1}{\sigma_{\text{in}}} \frac{d\sigma(\rho^{\circ})}{dP_{\perp}^{2}} = A \cdot \exp(-BP_{\perp}^{2}) , /8/$$

где В - параметр наклона, значение которого равно: $B=2,7\pm0,3$ /ГэВ/с/ 2 и $B=2,7\pm0,4$ /ГэВ/с/ 2 для $\pi^- p- \overline{u}$ π^{-12} С-взаимодействий соответственно, то есть распределение ρ° -мезонов по P_1^2 не зависит от типа мишени.

На <u>рис.3</u> представлены распределения ρ° -мезонов по быстроте для $\pi^{-}p$ - и π^{-} ¹²Свзаимодействий. В этом случае имеется разница в их поведении в зависимости от типа взаимодействия во фрагментационных областях

 $(Y_{лаб.} < 1,2$ и $Y_{лаб.} > 3,2)$. Увеличение $< n(\rho^{\circ}) > в$ области фрагментации мишени $(Y_{лаб.} < 1,2)$ для π^{-12} Свзаимодействий естественно

H ົຈ **Öper**rearanns ຕັ 0,8 ± 0,01 ц, zeó. +1 +1 ກ 80,0 0,14 0,57 Oduractis -Soma (L OGIBCTE ≤ 3,2) lad. 0 8 0,19 0,31.± 0,04 lent parteas +1 +1 1,2 ≪ 0,28 I,I фрагментация (у дал. < 1,2) **B** 0,0 0,08 ± 0,02 1.1 +1 OGIZACTE MIREEHE (+1 0**,**8 5 2 0°)>31-37C BSSEMOLEECTBER ÷ ¥ + °a o ר) ארא

D21-11

員

цЪ

-взаимодействиях

р

1²C-M

١

<lool
 <lool

Значения

m

Таблица

1,2

p°)>______

ל ע

പ

Моделт

7

0,8

<u>Рис.3.</u> Распределение ρ° -мезонов, образованное в π^{-12} Си π^{-p} -взаимодействиях, по продольной быстроте.

§5. ЗАКЛЮЧЕНИЕ

Таким образом обнаружено. что в π^{-12} С-взаимодействиях при P = 40 ГэВ/с интенсивно образуются ρ° – и ω -мезоны с примерно одинаковыми сечениями ($\sigma(\rho^{\circ}) = 70,5+7,5$ мб и $\sigma(\omega) = 75,0+9,0$ м $\overline{6}$). Около 30% "-мезонов образуются в результате распадов этих резонансов. Эти результаты показывают, что пионы в ос-НОВНОМ ЯВЛЯЮТСЯ ВТОРИЧНЫМИ продуктами реакции и слабо отражают динамику множественных процессов. В связи с этим экспериментальное изучение образования других резонансов в инклюзивных процессах при высоких энергиях необходимо для понима-НИЯ СТРУКТУРЫ СИЛЬНЫХ ВЗАИМОдействий.

При сравнении дифференциальных сечений образования ρ° -мезонов в $\pi^{-}p_{-}$ и $\pi^{-12}C$ взаимодействиях было обнаружено, что их распределение по P_{\perp}^{2} не зависит от типа

мишени. С другой стороны, распределение ρ° -мезонов по быстроте показывает различие их образования в этих взаимодействиях, которое удовлетворительно описывается в рамках АКМ.

Авторы признательны <u>В.М.Шехтеру</u> за многочисленные и плодотворные обсуждения этих вопросов и участникам Сотрудничества за помощь в обработке экспериментального материала.

ЛИТЕРАТУРА

- 1. Bockmann K. Proc. of the I int. Symp. on Hadron Struct. and Multiparticle Product., Warszawa, 1977, p.21.
- Kittel W. Proc. of the VIII Int. Symp. on Multipart. Dynam., France, 1977, p.A-81.
- 3. Гришин В.Г. УФН, 1979, т.127, с.51.
- 4. Ангелов Н. и др. ЯФ, 1977, т.25, с.117.

5. Ангелов Н. и др. ОИЯИ, Р1-9810, Дубна, 1976. 6. Ангелов Н. и др. ОИЯИ, Р1-80-377, Дубна, 1980. 7. Абдурахимов А.У. и др. ЯФ, 1973, т.18, с.545. 8. Абдурахимов А.У. и др. ЯФ, 1973, т.18, с.1251.

- 9. Гришин В.Г. и др. ЯФ, 1979, т.30, с.1548.
- 10. Jackson J.D. Nuovo Cim., 1964, v.34, p.1644.
- 11. Pisut J., Roos M. Nucl.Phys., 1968, B6, p.325.
- 12. Анисович В.В., Шабельский Ю.М., Шехтер В.М. ЯФ, 1978, т.28, с.1063.

Рукопись поступила в издательский отдел 28 июля 1980 года.