

объединенный институт ядерных исследований дубна

1245/2-81

9/111-8/ P1-80-513

В.Г.Гришин, Л.Йеник, Т.Канарек

АЗИМУТАЛЬНЫЕ КОРРЕЛЯЦИИ
ТОЖДЕСТВЕННЫХ ПИОНОВ В ПИОН-ЯДЕРНЫХ
И В ПИОН-НУКЛОННЫХ ВЗАИМОДЕЙСТВИЯХ
ПРИ р = 40 ГэВ/с

Направлено в ЯФ

§1. ВВЕДЕНИЕ

В настоящей работе приведены результаты изучения асимметрии распределений пар тождественных пионов $(\pi^{\mp}\pi^{\mp})$, образованных в π^{-} р-, π^{-} n- и π^{-12} С-взаимодействиях при р = 40 ГзВ/с, по азимутальному углу (ϕ) между их поперечными импульсами.

В общем случае коэффициенты асимметрии

$$A = (N(\phi > 90^{\circ}) - N(\phi \le 90^{\circ})) / (N(\phi > 90^{\circ}) + N(\phi \le 90^{\circ})$$
 /1/

для пион-нуклонных (π N) и пион-ядерных взаимодействий (π A) в мультипериферических моделях связаны между собой простым соотношением $^{/1,2/}$

$$A(\pi A) = A(\pi N) / \langle \nu \rangle, \qquad (2/2)$$

где $<\nu>$ - среднее число неупругих столкновений первичной частицы с нуклонами ядра и

$$A(\pi N) = \frac{1}{2}(A(\pi p) + A(\pi n))$$
 /3/

для ядер с одинаковым числом протонов и нейтронов. Поэтому данные по $A(\pi\pi)$ для разных типов взаимодействий дают важную информацию о характере взаимодействия адронов с ядрами. Такая информация по $\langle \nu \rangle$ была получена нами при изучении $\mathbb{A}(\pi^+\pi^-)$ в π^{-} р- и π^{-12} С -взаимодействиях при р = 40 ГэВ/с /8/. Однако для тождественных пар пионов существенную роль играют интерференционные эффекты при $\phi \to 0$, что приводит к усложнению зависимости $A(\pi A)$ от $A(\pi N)$. В связи с этим, как правило, анализ данных по $A(\pi^{\pm}\pi^{\pm})$ проводится для пионов, имеющих относительно большую разность импульсов $/\Delta p > 0.2$ ГэВ/, что приводит к значительному уменьшению интерференционных эффектов /8,4/ Полученные таким образом значения $A(\pi^{\pm}\pi^{\pm})$ сравнивают с $A(\pi^{+}\pi^{-})$ для определения механизмов образования одинаковых и разных пионов /4/.

Для $\pi^- p$ — и $\pi^{-12} C$ —взаимодействий при p=40 ГэВ/с интерференционные явления были изучены в переменных $q_0=E_1-E_2$ и q_\perp^2 , где q_0 — разность энергий пионов и q_\perp — проекция разности их импульсов на плоскость, перпендикулярную их суммарному импульсу $^{/5,6/}$. Отсюда было получено, что интерференционный

эффект имеет место при $\mathbf{q}_0 \leq 0,3$ ГэВ и $\mathbf{q}_\perp^2 \leq 0,06$ /ГэВ/с/ 2 в лабораторной системе координат. Поэтому, чтобы исключить этот эффект, мы вычисляли $\mathbf{A}(\pi\pi)$ для пар пионов с $\mathbf{q}_0 > 0,3$ ГэВ и $\mathbf{q}_\perp^2 \geq 0.06$ /ГэВ/с/ 2 .

Экспериментальные результаты получены при анализе ≈ 10000 $\pi^- p-$, $3600 \pi^- p-$, и $11000 \pi^{-12} C$ -взаимодействий, зарегистрированных в 2-метровой пропановой пузырьковой камере. ЛВЭ- ОИЯИ, облученной π^- -мезонами c p = 40 ГэВ/с на серпуховском ускорителе ИФВЭ. Методические особенности эксперимента приведены в работах $^{7.8}$ /.

§2. ЗАВИСИМОСТЬ $\mathbf{A}(\pi^{\pm}\pi^{\pm})$ ОТ РАЗНОСТИ БЫСТРОТ ВТОРИЧНЫХ ПИОНОВ

В табл.1-3 приведены значения $A(|\Delta y|)$ для $(\pi\pi)$ -пар, образованных в π^-p- , π^-n- и π^{-12} С-взаимодействиях при p=240 ГэВ/с. Эти значения $A(|\Delta y|)$ были получены с исключением области интерференции /см. §1/, что естественно приводит к увеличению асимметрии распределений по $\phi^{-/8/}$. Здесь же даны значения $A(\pi\pi)$ для разных типов взаимодействий лионов с ядрами углерода в зависимости от

$$Q = n_{+} - n_{-}, \qquad /4/$$

где Q - разность зарядов пионов в событии. События с Q \geq 1 относятся к взаимодействиям π -мезонов с двумя и более протонами ядра углерода /многонуклонные взаимодействия/ $^{/8}$ /.

Как видно из таблиц, зависимость $A(\pi\pi)$ от $|\Delta y|$ для тождественных и разных пар пионов примерно одинакова. Значения $A(\pi\pi)$ максимальны при $\Delta y \to 0$ и уменьшаются в 3-4 раза при $|\Delta y| \sim 2$. Большая величина $A(\pi\pi)$ (= 0.4) при $|\Delta y| \leq 0.4$ связана с исключением области интерференции, в которую, как правило, попадают пионы с близкими значениями у и $\phi \to 0$. Напомним, что $A(\pi^+\pi^-) = 0$, 101 + 0, 004 при $|\Delta y| \leq 0.4$, если рассматривать все $(\pi^+\pi^-)$ -пары $^{/3/}$. Для всех типов $(\pi\pi)$ -пар наблюдается уменьшение значений A при переходе от πN -взаимодействий к многонуклонным соударениям $(Q \ge 1)$, что связано с увеличением числа неупругих взаимодействий (π, π) -тами связано с увеличением числа неупругих взаимодействий (π, π) -тами связано с увеличением числа неупругих взаимодействий (π, π) -тами связано с увеличением числа неупругих взаимодействий (π, π) -тами связано с увеличением числа неупругих взаимодействий (π, π) -тами связано с увеличением числа неупругих взаимодействий (π, π) -тами связано с увеличением числа неупругих взаимодействий (π, π) -тами связано с увеличением числа неупругих взаимодействий (π, π) -тами связано с увеличением числа неупругих взаимодействий (π, π) -тами связано с увеличением числа неупругих взаимодействий (π, π) -тами связаноствий (π, π) -тами связаностви $(\pi,$

§3. АЗИМУТАЛЬНЫЕ КОРРЕЛЯЦИИ ВТОРИЧНЫХ ПИОНОВ В ЦЕНТРАЛЬНОЙ И ФРАГМЕНТАЦИОННЫХ ОБЛАСТЯХ

В табл.4-6 приведены значения $A(r_1r_2)$ для разных областей образования π -мезонов. При этом полагалось, что в области фрагментации мишени $\mathbf{y}_1.\mathbf{y}_2 < 1.2$, в центральной $-1.2 \le \mathbf{y}_1,\mathbf{y}_2 \le 8.2$ и в области фрагментации первичного пиона: $\mathbf{y}_1.\mathbf{y}_2 > 3.2$, где \mathbf{y}_1 и \mathbf{y}_2 - быстроты π -мезонов в лабораторной системе координат.

Таблица 1. Значения $\mathbf{A}(\pi^-\pi^-)$ в зависимости от $|\Delta y| = |y_1 - y_2|$ 100 Bce 0.0-0.4 0.4-0.8 0.8 - I.2I.6-2.0 338.TMO-I.2-I.6 **HORCTHEE** II-I2_C 0,195+0,003 0.397+0.010 0.313+0.009 0,118+0,010 0,207±0,009 0,167+0,009 Q = -I0,214+0,006 0,416+0,016 0.319+0.016 0.242+0.0I5 0.182 + 0.0160.148 + 0.017Q = 00,190+0,006 0,388+0,016 0.309+0.015 0.194+0.0I5 0.146+0.016 0.118+0.017 Q= I 0,187+0,009 0,368+0.025 0,317+0,028 0.190+0.022 0.138+0.025 0.182 ± 0.023 Q > 2 0,136±0,012 0,423±0,036 0,297+0,034 0.103+0.032 0.I04+0.03I -0.047+0.033 ľπ 0.201+0.004 0.406+0.0II $0,317\pm0,010$ 0.193+0.0IO 0,158+0,010 0.132+0.011ITN 0,316+0,016 0,225+0,006 0,423+0,016 0,239±0,0I5 0.198+0.016 0,142+0,017 $\Lambda(\pi^+\pi^+)$ Таблица 2. Значения в зависимости от $|\Delta \mathbf{v}|$ THE BOOK-MOZERCZ-0.0-0.4 0.4 - 0.80.8-1.2 I,2-I,6 I.6-2.0 BCe MAG II Tac 0,177+0,003 0,373+0,009 0,279+0,009 0,195+0,009 0,129+0,009 0,083+0,0IO Q = -I0,202+0,008 0.397+0.022 0.325+0.02I 0.186 + 0.0200.II8+0.02I 0.105+0.023 Q =0 0,149+0,015 0.092±0.016 0.183+0.006 0.378+0.016 0,276+0,0I5 0.209 + 0.015Q = I0.163±0,007 0.071+0.019 $0,382\pm0,019$ 0.238+0.0180.181 + 0.0180,113+0,018 Q ≥ 2 0,300±0,019 0,162+0,007 0.332+0.020 0,220+0,019 0,III±0,020 0.065 ± 0.022 $\Pi_{\mathbf{p}}$ 0.422 ± 0.011 0.107 ± 0.012 0.204+0.004 0,275+0,010 0,197±0,010 0,173±0,0II In 0,211±0,009 0,394+0,023 0,339+0,022 0.184 + 0.0220,140+0,0230,072±0.0II

<u>Таблица 3</u>. Значения $\mathbb{A}(\pi^+\pi^-)$ в зависимости от $|\Delta y|$

				I,2-I,6	I,6-2,0
214 <u>+</u> 0,002	0,449±0,006	0,527 <u>+</u> 0,006	0 ,229<u>+</u>0,00 5	0,163±0,006	0,I05 <u>+</u> 0,006
,242 <u>+</u> 0,004	0,467 <u>+</u> 0,0II	0,570 <u>+</u> 0,010	0,262 <u>+</u> 0,010	0,176 <u>+</u> 0,0II	0,II3±0,0I2
,224 <u>+</u> 0,004	0,46I <u>+</u> 0,0I0	0,339±0,009	0,225±0,009	0,173 <u>+</u> 0,009	0,107±0,010
,185 <u>+</u> 0,005	0,422+0,013	0,278±0,013	0,205 <u>+</u> 0,0I2	0,157 <u>+</u> 0,013	0,087±0,0I4
,162 <u>+</u> 0,006	0,399 <u>+</u> 0,017	0,265 <u>+</u> 0,016	0,191 <u>+</u> 0,016	0,099 <u>+</u> 0,016	0,09I <u>+</u> 0,0IB
,2 49<u>+</u>0,00 2	0,464±0,006	0,350 <u>+</u> 0,006	0,25I <u>+</u> 0,006	0,186 <u>+</u> 0,006	0,I37±0,007
,256±0,004	0,48I±0,0II	0,357 <u>+</u> 0,0II	0,269±0,0II	0,168 <u>+</u> 0,011	0, 142<u>+</u>0, 017
	242±0,004 224±0,004 185±0,005 162±0,006 249±0,002	242±0,004 0,467±0,011 224±0,004 0,461±0,010 185±0,005 0,422±0,013 162±0,006 0,399±0,017 249±0,002 0,464±0,006	242±0,004 0,467±0,0II 0,570±0,0I0 224±0,004 0,461±0,0I0 0,359±0,009 185±0,005 0,422±0,0I3 0,278±0,0I3 162±0,006 0,399±0,0I7 0,265±0,0I6 249±0,002 0,464±0,006 0,350±0,006	242±0,004 0,467±0,0II 0,570±0,0I0 0,262±0,0I0 224±0,004 0,461±0,0I0 0,339±0,009 0,225±0,009 185±0,005 0,422±0,0I3 0,278±0,0I3 0,205±0,0I2 162±0,006 0,399±0,0I7 0,265±0,0I6 0,191±0,0I6 249±0,002 0,464±0,006 0,350±0,006 0,251±0,006	242±0,004 0,467±0,011 0,370±0,010 0,262±0,010 0,176±0,011 224±0,004 0,461±0,010 0,339±0,009 0,225±0,009 0,173±0,009 185±0,005 0,422±0,013 0,278±0,013 0,205±0,012 0,157±0,013 162±0,006 0,399±0,017 0,265±0,016 0,191±0,016 0,099±0,016 249±0,002 0,464±0,006 0,350±0,006 0,251±0,006 0,186±0,006

Таблица 4. Значения $A(\pi^*\pi^*)$

Thi B38R- Modelct- Nes	y ₁ , y ₂ ≤ 1,2	y ₄ , y ₂ ≥ 5,2	1,2<41,42<3,2
п- С ₁₃	0,205±0,028	0,349±0,017	0,290±0,006
Q=-I	0,246±0,057	0,388 <u>+</u> 0,025	0,309±0,011
ૐ =0	0,318 <u>+</u> 0,053	0,313 <u>+</u> 0,029	0,272±0,0II
2 = I	0,206±0,065	0,350 <u>+</u> 0,059	0,259 <u>+</u> 0,015
2, ≽ 2	0,008 <u>+</u> 0,062	0,350 <u>+</u> 0,118	0, 292<u>+</u>0,01 3
Гp	0,291 <u>+</u> 0,047	0,337 <u>+</u> 0,017	0,283 <u>+</u> 0,007
rn	0 ,297<u>+</u>0, 083	0,397±0,023	0,2 99<u>+</u>0,0 II
	Таблица 5.	, Значения А(π ⁺ π ⁺)
OEOECT-	<u>Таблица 5</u> . У1,У2≤1,2		··
ogefor- na 1 ⁻¹² C			1,2<41,42<3,2
ogefor- na 1 ⁻¹² C	y ₁ ,y ₂ ≤1,2	y,, y2≥ 3 2	···
In I ¹² C ice)	<i>y</i> ₁ , <i>y</i> ₂ ≤ 1,2 0,235±0,016	<i>J</i> ₄ , <i>Y</i> ₂ > 3 /2 0,369±0,028	1,2< <i>y</i> ₁ , <i>y</i> ₂ <3,2
T-12C C C C C C C C C C	9 ₁ , 9 ₂ ≤ 1,2 0,235±0,016 0,147±0,064	31,72≥34 0,369±0,028 0,360±0,049	1,2< <i>y</i> ₁ , <i>y</i> ₂ <3,2 0,264±0,006 0,278±0,014
magefor- mar T-12 _C mage) mage = -1 t =0 t =1	91, 92 = 1,2 0,235±0,016 0,147±0,064 0,234±0,036	31,72≥32 0,369±0,028 0,360±0,049 0,320±0,044	1,2 <y<sub>1,y₂<3,2 0,264±0,006 0,278±0,014 0,257±0,010</y<sub>
Thin bear- more cor- mag T ¹² C Mag Cec) C=-I C=0 C=I C>2	9 ₁ , y ₂ ≤ 1,2 0,235±0,016 0,147±0,064 0,234±0,036 0,226±0,028	31,72≥33 0,369±0,028 0,360±0,049 0,320±0,044 0,481±0,082	1,2< y ₁ ,y ₂ < 3,2 0,264±0,006 0,278±0,014 0,257±0,010 0,265±0,013

Как видно из приведенных данных, корреляции разных пионов, как правило, несколько больше, чем корреляции тождественных пионов. Это различие может быть связано с интенсивным образованием легких резонансов $(\rho^{\circ},\omega^{\circ},f^{\circ})$, распадающихся на $(\pi^{+}\pi^{-})$ -пары, особенно в центральной области и в области фрагментации пиона.

В области фрагментации мишени значения А уменьшаются при переходе от $\pi N-$ к многонуклонным взаимодействиям, что можно связать с увеличением числа неупругих соударений $^{/1-3/}$. В области фрагментации первичного пиона корреляции не зависят от типа мишени, что естественно ожидать, если они в основном определяются характеристиками падающей частицы.

Таблица 6. Значения $A(\pi^+\pi^-)$

The HSAN- Mogefict- Bus	y, , y, ≤ 1, 2.	y ₄ ,y ₂ ≥3,2.	1,2<41,42<5,2	
II ⁻¹² C	0,2 25<u>+</u>0, 0I3	0,452 <u>+</u> 0,011	0,307 <u>+</u> 0,004	
Q =-I	0,280 <u>+</u> 0,032	0,476 <u>+</u> 0,017	0,325 <u>+</u> 0,007	
Q =0	0,218 <u>+</u> 0,024	0,490 <u>+</u> 0,018	0,326 <u>+</u> 0,006	
Q =I	0,203 <u>+</u> 0,024	0,455 <u>+</u> 0,034	0,275 <u>+</u> 0,009	
Q ≥ 2	0,186 <u>+</u> 0,026	0,496±0,054	0,25I <u>+</u> 0,0II	
П_р	0,372 <u>+</u> 0,02I	0,422_±0, 010	0,334 <u>+</u> 0,004	
「ル	0,272 <u>+</u> 0,046	0,48 <u>9+</u> 0,016	0,324 <u>+</u> 0,008	

В центральной области значения $\mathbb{A}(\pi^+\pi^-)$ уменьшаются с увеличением \mathbb{Q} , в то время как $\mathbb{A}(\pi^\pm\pi^\pm)$ одинаковы в пределах ошибок для всех типов рассматриваемых соударений. Для интерпретации этого различия в поведении $\mathbb{A}(\pi\pi)$ для тождественных и разных пионов необходим дальнейший анализ импульсных характеристик вторичных пионов.

Таким образом, анализ азимутальных корреляций тождественных пионов в пион-нуклонных и в пион-углеродных взаимодействиях показывает, что после исключения области интерференции пионов поведение $\mathbf{A}(\pi\pi)$ слабо зависит от зарядового состояния $(\pi\pi)$ - системы, за исключением центральной области. По абсолютной величине значения $\mathbf{A}(\pi^{+}\pi^{-})$, как правило, больше $\mathbf{A}(\pi^{-}\pi^{-})$, что может быть связано с образованием ρ, ω -мезонов. Представляет интерес проведение аналогичного анализа с исключением только самого интерференционного эффекта, а не всей области интерференции.

Мы признательны Е.М.Левину и М.Г.Рыскину за полезные обсуждения и участникам Сотрудничества по исследованию множественных процессов за помощь в обработке экспериментального материала.

BUTEPATYPA

- 1. Levin E.M. et al. TH-2780-CERN, 1979.
- 2. Золлер В.Р. и др. В кн.: Элементарные частицы. Шестая школа физики ИТЭФ, выпуск 3. Атомиздат, М., 1979, с.3.
- 3. Бацкович С. и др. ЯФ, 1980, т.31, с.1234.
- 4. Дремин И.М., Файнберг Е.Л. ЭЧАЯ, 1979, т.10, с.996.
- 5. Ангелов H.C. и др. ЯФ, 1977, т.26, с.796.

- 6. Ангелов Н.С. и др. ЯФ, 1978, т.27, с.675. 7. Абдурахимов А.У. и др. ЯФ, 1972, т.16, с.989. 8. Абдурахимов А.У. и др. ЯФ, 1973, т.17, с.1235.