

4586/2-80

P1-80-472

В.В.Ализаде, С.Ф.Бережнев, Т.Д.Блохинцева, А.В.Демьянов, А.В.Купцов, В.П.Курочкин, Л.Л.Неменов, Ж.П.Пустыльник, Г.И.Смирнов, Д.М.Хазинс

ОПРЕДЕЛЕНИЕ

НУКЛОННОГО И ПИОННОГО ФОРМФАКТОРОВ ИЗ АНАЛИЗА РЕАКЦИИ **π** р → e+e n ПРИ ЭНЕРГИИ ПИОНА Е π = 164 МэВ

Направлено в ЯФ

Ализаде В.В. и др.

P1-80-472

Определение нуклонного и пионного формфакторов из анализа реакции $\pi^- p \rightarrow e^+ e^- \pi$ при энергии пиона $E_{\pi} = 164$ МэВ

Определены изовекторный нуклонный формфактор и формфактор пиона при значении квадрата переданного импульса 0,054 /ГэВ/с/².Получены величины сечений, соответствующие рождению виртуальных фотонов с поперечной и продольной поляризациями. Приведены все данные о F_1^{\forall} и F_{π} , полученные из анализа реакции $\pi^- p + e^+ e^- \pi$, и определен среднеквадратичный радиус π -мезона.

Работа выполнена в Лаборатории ядерных проблем ОИЯИ.

Препринт Объединенного института ядерных исследований. Дубна 1980

Alizade V.V. et al.

P1-80-472

Determination of Nucleon and Pion Form Factors by Analysing the $\pi^- p \rightarrow e^+ e^- \pi$ Reaction at $E_{\pi} = 164$ MeV

Анализ реакции обратного электророждения пионов /09П/

/1/

 $\pi^- + \mathbf{p} \rightarrow \mathbf{e}^+ + \mathbf{e}^- + \mathbf{n}$

дает возможность исследовать электромагнитную структуру нуклона и пиона в области времениподобных переданных импульсов (k $^2>0$), причем в допороговой области /т.е. при k $^2<4M$ $_N^2$ и k $^2<4m$ $_\pi^2$ / реакция /1/, по-видимому, является единственным реальным источником информации такого рода.

Как было показано ранее $^{/1\cdot3/}$, экспериментальные данные по реакции 0ЭП при низких энергиях хорошо описываются дисперсионной моделью $^{/4/}$, единственными параметрами которой являются формфактор пиона F_{π} и изовекторный нуклонный формфактор F_1^v . Их величины могут быть определены из сравнения экспериментальных и теоретических распределений по косинусу угла вылета виртуального фотона $\Theta^{\gamma/2/}$.

В предыдущих работах $^{/1-8/}$ реакция /1/ изучалась при энергии π -мезонов $E_{\pi} = 276$ МэВ. Проведенный анализ позволил определить электромагнитные формфакторы F_{π} и F_{1}^{v} в области переданных импульсов от 0,058 до 0,119 /ГэВ/с/².

В настоящей работе анализируются угловые распределения в процессе 03П при энергии π -мезонов E_{π} =164 МэВ. Данные были получены на мезонном пучке синхроциклотрона Лаборатории ядерных проблем ОИЯИ. Экспериментальная установка, критерии отбора и идентификация событий описаны в работе ^{/5/}. Для анализа было выделено 127+15 событий, причем примесь фоновых событий составляла /25+127. Среднее значение квадрата переданного импульса равнялось /0,054+0,013/ /ГэВ/с/².

Для определения электромагнитных формфакторов адронов анализировалось распределение событий по косинусу угла вылета виртуального фотона Θ^{γ} /рис.1/. Именно это дифференциальное сечение является наиболее чувствительным к величинам F_1^{ν} и F_{π} . Экспериментальное распределение аппроксимировалось теоретическим, рассчитанным в рамках дисперсионной модели ^{/4/} с учетом конкретных условий эксперимента. Следует отметить, что благодаря квазипороговому поведению амплитуды процесса /1/^{/6/} влияние Δ -резонанса незначительно, так что амплитуда практически полностью описывается полюсными диаграммами.

> Объединенный институт ядерених вссяедований

Рис.1. Распределение событий по косинусу угла вылета виртуального фотона ⁰^γ. Сплошная кривая - расчет по дисперсионной модели с формфакторами, полученными в настоящей работе.

дели с использованием условия /2/, привела к следующему результату:

 $F_{\pi} = 0.88 \pm 0.10$, $\chi^2 = 5.8$ /3/ $F_1^v = 0,94 \pm 0,10$ $\overline{\chi^2} = 7,0$.

Указанная здесь ошибка является статистической. Систематическая ошибка, связанная с учетом погрешности в абсолютном измерении сечения, также равняется 0,10.

На рис. 1-3 приведены угловые распределения событий реакции /1/ и теоретические кривые, рассчитанные по дисперсионной модели с использованием полученных значений F, и F, Видно, что модель хорошо описывает экспериментальные данные. На рис. 4 и 5 представлены значения $\mathbf{F}_{1}^{\mathbf{v}}$ и \mathbf{F}_{π} , полученные в на-

Если формфакторы F_{π} и F_{1}^{v} варьировать независимо, то получающиеся значения имеют большие ошибки /~100%/. На основе имеюшихся теоретических представлений формфакторы могут быть связаны в виде:

 $\mathbf{F}_{1}^{\mathbf{v}}=\mathbf{F}_{\pi}+\delta,$ /2/ где δ рассчитывается в соответствии с работами /7/ или ^{/8,9/}. При k²=0.054 ГэВ²/с² оба расчета дают одинаковое значение, равное 0,06. Как уже указывалось /3/ использование разности имеет некоторое преимущество по сравнению с самими формфакторами, поскольку при вычислении δ некоторые модельно зависимые члены исчезают.

Конкретный вид минимизируемого функционала приведен в работах /3/. Аппроксимация экспериментального распределения по $\cos \Theta^{\gamma}$ теоретической кривой, рассчитанной по дисперсионной мо-

Рис.2. Распределение событий по косинусу угла 🛛 между электроном и нейтроном в (e⁺e⁻)- с.ц.м. Сплошная кривая рассчитана по дисперсионной модели с формфакторами, полученными в настоящей работе.

0.6

1. rnsq

+02

-02

стоящей работе и в предыдущих экспериментах /8/ по изучению реакции /1/, а также теоретические кривые, рассчитанные по работам /7/.

Для определения среднеквадратичного радиуса пиона полученное значение F_{π} вместе с результатами предыдущих работ $^{\mathtt{R}}$ аппроксимировалось функцией:

3

2.

*Использовались 9 значений F_{π} , приведенных в табл.2, анализ III работы $^{/3/}$. Для получения удовлетворительных значений χ^2 систематические ошибки в экспериментах /2/ и /8/ были увеличены . mp + + + - в 1.5 раза.

3

$$\mathbf{F}_{\pi} = \frac{\mathbf{A}_{i}}{1 - \mathbf{B} \cdot \mathbf{k}^{2}} \cdot (4/4)$$

Нормировочные параметры вводились для данных работы $^{/3/}({\rm A_1})$ и работы $^{/2/}({\rm A_2})'$, для того, чтобы учесть ошибки абсолютных измерений. При аппроксимации использовались статистические ошибки в экспериментальных значениях формфакторов, а систематическая ошибка / $\approx 7\%/$, определяемая погрешностью в измерении сечения, приписывалась точке ${\rm F}_{\pi}(0)=1$. Результаты приведены в табл.1.

Таблица 1

r _π [Φ]	A ₁	A 2	χ ² σ _r	$\frac{\chi^2}{\sigma_{r_{\pi}}} \cdot \sqrt{\chi^2/\chi^2} [\Phi].$		
0,71 <u>+</u> 0,07	0,88 <u>+</u> 0,05	0,83 <u>+</u> 0,05	16,0	0,10	-	

Окончательно имеем:

 $< r^{2} > \frac{1}{2} = (0,71 \pm 0,10) \Phi.$

В табл.2 приведены имеющиеся данные о пионном радиусе. В настоящей работе определялись также вклады в сечение процесса /1/ состояний с продольной и поперечной поляризацией виртуального фотона.

Сечение ОЭП можно представить в виде:

$$\Delta \sigma \stackrel{\text{\tiny H}}{=} = \sum_{i=1}^{4} R_i T_i = \sum_{i=1}^{4} \Delta \sigma_i , \qquad /5/$$

где R_i - легко вычисляемые функции кинематических переменных, а величины T_i характеризуют рождение виртуального фотона с с различной поляризацией: T_1 описывает процесс $\pi N \rightarrow \gamma^* N$ с поперечными неполяризованными фотонами, T_2 соответствует процессам с поперечно-поляризованными фотонами, T_4 - с продольно-поляризованными, а T_3 описывает интерференцию продольно- и поперечно-поляризованных фотонов; $\Delta \sigma_i$ - соответствующие вклады в сечение процесса /1/.

Расчеты по дисперсионной модели и экспериментальные данные, полученные при энергии 276 МэВ $^{/17}$, показывают, что суммарный вклад в дифференциальное сечение членов, определяемых T_2 и T_3 , составляет несколько процентов.

Рис.4.Формфактор \mathbf{F}^{v} , Δ - настоящая работа, • - работа $^{3/}$, \blacktriangle - работа $^{1/2/}$, О - работа $^{/1/}$ Сплошная кривая рассчитана в соответствии с $^{/7/}$.

^{*} $\Delta \sigma$ - та часть сечения процесса /1/, которая измеряется в настоящем эксперименте.

Таблица 2

Источник информации	$< r_{\pi}^{2} > \frac{1/2}{2} [\Phi]$	Ссылка
Анализ данных по реакции π ⁻ р → e ⁺ e ⁻ π	0,71 <u>+</u> 0,10	Настоящая работа
Эксперимент по (π¯е)- рассеянию	0,56+0,04 0,78+0,10	/10/ /11/
Анализ данных по электро- ● рождению пиона	0,711 <u>+</u> 0,009 /стат/ _+0,016 /сист/	/12/
Аппроксимация типа Гунариса- Сакураи данных по реакции е ⁺ е ⁻ → π ⁺ π	0,63	/9/
Дисперсионный анализ данных по F _л	0,68 <u>+</u> 0,01	/14/
Дисперсионный анализ данных по F _π с учетом πω- состояния	0, 66 ÷0,69	/7/
Анализ данных по ө ⁺ е ⁻ эл ⁺ л, полученных в Орсэ	0,678+0,004 /стат/ <u>+</u> 0,008 /модель/	/15/
Теоретический расчет с использованием суперпропагаторного метода	0,65	/13/
Теоретический расчет на основе геометрической модели адрон-адронных столкновений	0,61 <u>+</u> 0,03	/16/

В настоящей работе эти величины полагались равными их теоретическим значениям, так что в качестве свободных параметров оставались лишь T_{1} и $T_{4}.$ Подробная процедура определения T_{i} на основе двумерных угловых распределений описана в $^{/17/}$

Результаты настоящего анализа приведены в табл.3. Для сравнения в нижней строке таблицы приведены теоретические значения, рассчитанные по дисперсионной модели /с использованием полученных в настоящей работе значений $\mathbf{F_1^y}$ и $\mathbf{F_\pi}$.

Таблица 3

	Δ <i>σ</i> ₁ нб	∆æ _ġ нб	$\Delta \sigma_{3}^{}$ нб	Δσ ₄ нб	χ^{2}/χ^{2}
Эксперимент	3,4 +0,7			0,41 +0,5	6,8/7 52
Теория	3,05	-0,21	-0,05	0,73	

Авторы признательны Л.И.Лапидусу и Б.М.Понтекорво за постоянный интерес к работе, В.М.Будневу и Г.В.Федотовичу за полезные обсуждения и предоставление данных по F_{π} , полученных новосибирской группой.

Авторы выражают большую благодарность Н.А.Владимировой, С.Г.Пластининой и В.Ф.Чуркиной за помощь при оформлении работы.

ЛИТЕРАТУРА

- 1. Акимов Ю.К. и др. ЯФ, 1971, 13, с.748.
- 2. Бережнев С.Ф. и др. ЯФ, 1973, 17, с.85; ЯФ, 1973, 18, с.102.
- 3. Бережнев С.Ф. и др. ЯФ., 1977, 26, с.547; ЯФ, 1976, 24, с.1127.
- 4. Блохинцева Т.Д., Суровцев Ю.С., Ткебучава Ф.Г. ЯФ, 1975, 21, с.850.
- 5. Ализаде В.В. и др. ЯФ, 1979, 30, с.142.
- 6. Суровцев Ю.С., Ткебучава Ф.Г. ЯФ, 1972, 16, с.1204.
- Budnev N.M., Budnev V.M., Serebryakov V.V. Phys.Lett., 1976, 64B, p.307; ИМ СОАН, 1976, TФ-92.
- 8. Hohler G. et al. Preprint TKP 76/1, 1976, Karlsruhe.
- 9. Hohler G., Pietarinen E. Nucl. Phys., 1975, B95, p.210.
- 10. Dally E. et al. Phys.Rev.Lett., 1977, 39, p. 1176.
- 11. Adylov G. et al. Nucl.Phys., 1977, B128, p.461.
- 12. Bebec C.S. et al. Phys.Rev., 1978, D17, p.1693.
- 13. Волков М.К., Первушин В.Н. ЯФ, 1974, 19, с.652.
- 14. Dubnicka S., Meshcheryakov V.A. Nucl.Phys., 1974, B83, p.311.
- 15. Quenzer A. et al. Phys.Lett., 1978, 76B, p.512.
- 16. Chou T.T. Phys.Rev., 1979, D19, p.3327.
- 17. Бережнев С.Ф., Блохинцева Т.Д., Неменов Л.Л. ЯФ, 1977, 25, с.1240.
- 18. Вассерман И.Б. и др. ЯФ, 1979, 30, с.999.
- 19. Вассерман И.Б. и др. яФ, 1978, 28, с.968.

Рукопись поступила в издательский отдел 4 июля 1980 года.

7

ТЕМАТИЧЕСКИЕ КАТЕГОРИИ ПУБЛИКАЦИЙ ОБЪЕДИНЕННОГО ИНСТИТУТА ЯДЕРНЫХ ИССЛЕДОВАНИЙ

Индек	с Тематика
1.	Экспериментальная физика высоких энергий
2.	Теоретическая физика высоких энергий
3.	Экспериментальная нейтронная физика
4.	Теоретическая физика низких энергий
5.	Математика
6.	Ядерная спектроскопия и радиохимия
7.	Физика тяжелых ионов
8.	Криогеника
9.	Ускорители
10.	Автоматизация обработки экспериментальных данных
-11.	Вычислительная математика и техника
12.	Химия
13.	Техника физического эксперимента
14.	Исследования твердых тел и жидкостей ядерными методами
15.	Экспериментальная физика ядерных реакций при низких энергиях
16.	Дозиметрия и физика защиты
17.	Теория конденсированного состояния
18.	Использование результатов и методов Фундаментальных физических исследований в смежных областях науки и техники