

Объединенный институт ядерных исследований дубна

4520/2-80

22/9-80 P1-80-405

Н.О.Ахабабян, В.Г.Гришин, Л.Симич

МНОГОНУКЛОННЫЕ ВЗАИМОДЕЙСТВИЯ АДРОНОВ С ЯДРАМИ И АДДИТИВНАЯ КВАРК-ПАРТОННАЯ МОДЕЛЬ

Направлено в ЯФ

Ахабабян Н.О., Гришин В.Г., Симич Л. Р1-80-405

Многонуклонные взаимодействия адронов с ядрами и аддитивная кварк-партонная модель

Данные по множественности вторичных заряженных пионов, образованных во взаимодействиях π^- -мезонов /с $p = 40 \ \Gamma B/c/$ и протонов /с $p = 9,9 \ \Gamma B/c/$ с несколькими протонами ядер углерода (12 С) и тантала (18 Ta), анализируются в рамках основных диаграмм аддитивной кварк-партонной модели. Показано, что для этих взаимодействий вклад перерассеяния кварков в ядрах и каскадных процессов велик и достигает 60-70%.

Работа выполнена в Лаборатории высоких энергий ОИЯИ.

Препринт Объединенного института ядерных исследований. Дубна 1980

Akhababian N.O., Grishin V.G., Simich L. P1-80-405 Multinucleon Interactions of Hadrons with

§1. ВВЕДЕНИЕ

Изучение взаимодействий частиц с ядрами позволяет исследовать

пространственно- временную картину сильных взаимодействий на малых расстояниях $^{/1-6/}$. В этом случае ядро используется как естественный анализатор развития множественных процессов с уникальным разрешением: $\Delta x \approx 10^{-13}$ см и $\Delta \tau \approx 10^{-23}$ с. Пространственное распределение нуклонов в ядрах относительно хорошо известно из опытов по рассеянию лептонов на ядрах. Поэтому при высоких энергиях $/E \geq 10$ ГэВ/, когда длина волны падающих частиц $\pi \leq 10^{-14}$ см, их взаимодействие с ядром можно рассматривать как совокупность взаимодействий с отдельными нуклонами ядра, имеющими известное распределение в пространстве. Характер и частота этих взаимодействий с ν -нуклонами ядра $(P(\nu))$ и определяют пространственно-временную картину изучаемых процессов $^{/2,3/}$.

В различных областях фазового пространства реакций более отчетливо проявляются и различные характеристики множественных процессов. В области фрагментации ядра существенно каскадное размножение относительно медленных вторичных частиц, учет которых в рамках кварк-партонной модели сильных взаимодействий обсуждается в обзорах $^{2,4,5/}$. Кроме того, в этой области большую роль играют и чисто ядерные эффекты /испарение нуклонов, возбуждение и развал ядер и т.п./, которые затрудняют анализ экспериментальных данных. В центральной области и в области фрагментации первичного адрона вторичные частицы имеют малое сечение взаимодействия ($\sigma \approx \pi \pi^2$), и поэтому они проходят ядро без поглощения. Модельные оценки показывают, что это утверждение справедливо для вторичных адронов с p > 0,5-3 ГэВ в лабораторной системе координат $^{1,3/}$.

В связи с этим можно ожидать, что характеристики вторичных частиц в этих областях будут "сохранять" информацию о кваркпартонной структуре первичных адронов.

Анализ имеющихся данных по множественности вторичных частиц в hA -взаимодействиях при $E \geq 5$ ГэВ в области фрагментации первичных адронов ($x \geq 1/3$, $x = p_{\parallel}/p_{max}$) был проведен в работах /1-8/. Было показано, что аддитивная кварковая модель /АКМ/ хорошо описывает эксперимент с учетом поглощения "составляющих" кварков в ядре по оптической модели. В центральной области ($|x| \leq 1/3$) уже необходимо рассматривать сам характер взаимодействия кварков с нуклонами ядра. В частности, важным вопросом является

> Объедине наститут адерных всскедовани БИБЛИСТЕКА

возможность их многократного перерассеяния. В работе /6/ был проведен анализ данных по множественности в hA -соударениях для центральной области и части области фрагментации мишени с учетом и без учета перерассеяния кварков. Он показал, что для выбора между этими вариантами модели необходимы дополнительные опыты по измерению выхода протонов с р > 1 ГэВ/с в hA -взаимодействиях. В этом случае использовались данные по средней множественности всех типов неупругих hA-взаимодействий. Большую долю из них, особенно для легких ядер /≈60%/, составляют hN-соударения /однонуклонные взаимодействия/, которые в этом подходе не дают новой информации о структуре сильных взаимодействий. Для этих целей лучше использовать такие соударения, в которых первичный адрон провзаимодействовал с несколькими нуклонами ядра /многонуклонные взаимодействия (hv) /см.§2/. Анализ этих данных в рамках основных диаграмм аддитивной кварк-партонной модели /АКМ/ проводится в настоящей работе /§3/.

§2. МНОГОНУКЛОННЫЕ ВЗАИМОДЕЙСТВИЯ

Неупругие взаимодействия адронов с несколькими нуклонами ядра выделялись с помощью методики

111.

пузырьковых камер^{/7/} по полному электрическому заряду вторичных частиц:

 $\mathbf{G} = \mathbf{n}_{+} - \mathbf{n}_{-},$

без учета идентифицированных протонов с р < /0,7-1,0/ГэВ/с/7.10/.

В настоящее время имеются данные по многонуклонным взаимодействиям для π^- С - столкновений при p =4,5 и 40 ГэВ/с; π^- Ne -соударений при p = 25 и 50 ГэВ/с и для pC - и pTa столкновений в интервале импульсов 2-10 ГэВ/с $^{7-12/}$. Наиболее полная информация по импульсным характеристикам вторичных частиц в этих взаимодействиях получена при p = 40 ГэВ/с $^{/13,14/}$.

Из определения /1/ видно, что однонуклонные взаимодействия могут иметь Q =0, -1,-2 для $\pi^-(p,n)$ -соударений и Q = 2,1,0,-1 для p(p,n) -столкновений в зависимости от образования протонов с $p \le /0,7-1,0/$ ГэВ/с и диссоциации нейтронов $n \to p\pi^-$. Все остальные значения Q связаны с неупругими многонуклонными взаимодействиями, в которых нуклону передается относительно большой импульс / $|t| \ge 0,5$ /ГэВ/с/² /7-10/. Здесь мы будем анализировать данные по множественности вторичных частиц в $\pi^- \nu_N^$ и $p\nu_N^-$ соударениях при $p_{\pi} = 40$ ГэВ/с и $p_p = 9,9$ ГэВ/с для π^- С-, pС- и рТа-взаимодействий /табл. 1,2,3//10/. Как видно из таблиц, статистика событий с Q ≤ -2 мала, что связано с небольшой вероятностью / $\approx 0,1/$ процесса $n \to p\pi^-$. Поэтому мы Таблица 1. Неупругие π^{-12} С-взаимодействия при p=40 ГэВ/с

Q	W(%)	<n_></n_>	<n<sub>4></n<sub>	<n<sub>p></n<sub>
- 4	0,07 <u>+</u> 0,0I	6,I <u>+</u> 0,7	2,I <u>+</u> 0,7	2,6 <u>+</u> 0,5
- 3	0,4I <u>+</u> 0,05	5,4 <u>+</u> 0,2	2,4 <u>+</u> 0,2	2,0 <u>+</u> 0,2
- 2	4,3+0,2	3,72 <u>+</u> 0,06	I,72 <u>+</u> 0,06	I,73 <u>+</u> 0,04
- I	38,I<u>+</u>0, 5	3,02 <u>+</u> 0,02	2,02 <u>+</u> 0,02	0,6I <u>+</u> 0,0I
0	38,7 <u>+</u> 0,5	3,I3 <u>+</u> 0,02	3,I3 <u>+</u> 0,02	0,75 <u>+</u> 0,0I
I	I2,5 <u>+</u> 0,3	3,61 <u>+</u> 0,04	4,6I <u>+</u> 0,04	I,02 <u>+</u> 0,03
2	4,2 <u>+</u> 0,2	3,72 <u>+</u> 0,07	5,72 <u>+</u> 0,07	I,29 <u>+</u> 0,05
3	I,3 <u>+</u> 0,I	4,0 <u>+</u> 0,I	7,0 <u>+</u> 0,I	0,9I <u>+</u> 0,07
4	0 ,40<u>+</u>0, 05	4,I <u>+</u> 0,2	8,I <u>+</u> 0,2	0,7 <u>+</u> 0,I
Все событи	an 100%	3,23 <u>+</u> 0,02	3,02 <u>+</u> 0,02	0,80 <u>+</u> 0,0I

Таблица 2. Неупругие p¹²C - взаимодействия при p = 9,9 ГэВ/с

Q	w(%)	< n_>	<n_>></n_>	< np>
- I	0,93 <u>+</u> 0,3I	I,90 <u>+</u> 0,33	0,90 <u>+</u> 0,33	3,10 <u>+</u> 0,26
0	IO,II <u>+</u> 0,96	I,I8 <u>+</u> 0,08	I,I8 <u>+</u> 0,08	2,19 <u>+</u> 0,12
I	36,60 <u>+</u> I,89	0,99 <u>+</u> 0,05	I,99 <u>+</u> 0,05	I ,33<u>+</u>0,0 5
2	34,05 <u>+</u> 1,83	0,83 <u>+</u> 0,04	2,83±0,04	0,98 <u>+</u> 0,04
З	I2,86 <u>+</u> I,I2	I,08 <u>+</u> 0,08	4,08 <u>+</u> 0,09	I,48 <u>+</u> 0,12
4	5,30 <u>+</u> 0,72	0,89 <u>+</u> 0,I6	4,89<u>+</u>0,1 6	1,29 <u>+</u> 0,20
ce co-	Q=I,64+0,06	0,97 <u>+</u> 0,02	2,60±0,03	I,33+0,03

Таблица 3.Неупругие рТа-взаимодействия при р =9,9 ГэВ/с

Q	Эксп. (%)	<n_></n_>	<n_>></n_>	<n<sub>p></n<sub>	i i i i i i i i i i i i i i i i i i i
- 2	0,42 <u>+</u> 0,10	3,25 <u>+</u> 0,55	I,25 <u>+</u> 0,55	6,50 <u>+</u> 2,02	
- I	4,17 <u>+</u> 0,69	2,18 <u>+</u> 0,16	I,I8 <u>+</u> 0,I6	4,79<u>+</u>0, 63	
0	I0,53 <u>+</u> I,04	I,65 <u>+</u> 0,10	I,65 <u>+</u> 0,10	3,64 <u>+</u> 0,33	
I	25,76 <u>+</u> I,64	I,05 <u>+</u> 0,06	2,05 <u>+</u> 0,06	2,13 <u>+</u> 0,19	
2	23,36 <u>+</u> I,56	0,95 <u>+</u> 0,06	2,95 <u>+</u> 0,06	2,30 <u>+</u> 0,19	
3	I 4,9I<u>+</u>I,2 5	I,I5 <u>+</u> 0,08	4, I5 <u>+</u> 0,08	3,78 <u>+</u> 0,29	
4	9,28 <u>+</u> 0,98	I,I8 <u>+</u> 0,I0	5,18 <u>+</u> 0,10	4,4 I <u>+</u> 0,35	
[·] 5	5, 53 <u>+</u> 0,76	I,07 <u>+</u> 0,I3	6,07 <u>+</u> 0,I3	5,89 <u>+</u> 0,45	
6	6,05 <u>+</u> 0,79	0,8I <u>+</u> 0,II	6,8I <u>+</u> 0,II	5,90 <u>+</u> 0,44	
Q	=2,I3 <u>+</u> 0,09	I,I6 <u>+</u> 0,03	3,29 <u>+</u> 0,06	3,35 <u>+</u> 0,II	

рассмотрим только характеристики событий с Q $\geq 1 / \pi^- C$ -взаимодействия/ и Q $\geq 3 / pC - и pTa$ -соударения/, в которых произошло взаимодействие первичных адронов с несколькими протонами ядра / $\nu_p \geq 2/$.

В первом приближении можно считать, что для *п*⁻С -взаимодействий

$$\nu_{\rm p}^{(n)} \approx {\rm Q} + 1$$
 /2/

и для pA -соударений

$$\nu_{\rm p}^{\rm (p)} \approx Q - 1$$
. /3/

Анализ данных по $\pi^- C$ -соударениям показывает, что примесь дополнительных взаимодействий с образованием протонов с $p \le 0.7$ ГэВ/с и нейтронов, которые не учитываются в /1/, не превышает – $\Delta \nu \le 0.3^{77-107}$. Кроме того, эта примесь приводит лишь к увеличению $<n_>$, что, как мы увидим в дальнейшем /§3/, только усиливает расхождение эксперимента с предсказаниями АКМ без учета перерассеяния кварков^ж. Данные по $<n_i > для pTa-и pC$ - -взаимодействий получены при относительно низких энергиях / E $_{\rm p}$ = 10 ГэВ/^{/10/}. Однако они имеются как для легких (12 С), так и для тяжелых(18 Та)ядер / табл.2,3/. Сравнение значений $<{\rm n}_{-}>$ для Q =3 в рС– и рТа-взаимодействиях показывает, что вклад в события с $\nu_{\rm p}$ =2 / Q =3/ дополнительных соударений, который должен расти с увеличением атомного веса ядра мишени, практически не меняет значения $<{\rm n}_{-}>(\Delta < {\rm n}_{-}>=0.07\pm0.11)$.

Таким образом, при анализе экспериментальных данных мы будем полагать, что соотношения /2/ и /3/ выполняются, а вклад дополнительных взаимодействий / \leq 30% / приводит лишь к небольшому увеличению <n> / \leq 0,2/. Сначала мы обсудим данные по <n_i> в $\pi^- \nu_p$ -взаимодействиях при p =40 ГэВ/с. Для этого случая уже измерены характеристики импульсных одночастичных спектров пионов, что позволяет определить значения <n_i> в центральной и фрагментационных областях ^{/13,14/}. Для p ν_p -взаимодействий при p =9,9 ГэВ/с мы будем рассматривать данные по полной множественности <n_> при ν_p = 2 и 3 /§3/.

§3. АДДИТИВНАЯ КВАРК-ПАРТОННАЯ МОДЕЛЬ И ЭКСПЕРИМЕНТ

Мы рассмотрим три основные диаграммы АКМ, которые используются для описания процессов множественного рождения частиц /<u>рис.1</u>,

2/ ^{/1-6/}. На рис.1а приведена схема образования частиц в $\pi(\nu_p=2)$ соударениях, когда оба кварка провзаимодействовали ^{/1,6/}. Учет их возможного перерассеяния приводит к появлению диаграмм типа 16 ^{/6/}. Наконец, третий тип диаграмм /рис.1в/ учитывает возможность взаимодействия относительно медленных партонов в одной лесенке ^{*} с несколькими протонами ядра /каскадные процессы/ ^{/2,4,5/}. Аналогичные типы диаграмм для $\pi(\nu_p=3)$ изображены на рис.2.

В скобках на рисунках указаны импульсы /ГэВ/с/ первичных π -мезонов, для которых множественность частиц в πp -взаимодействиях равна соответствующей диаграмме. Мы полагали, что при перерассеянии кварков их энергия в среднем делится поровну ^{/12}. В каскадных процессах деление энергии достаточно произвольно. Для оценок <n_i > в этих реакциях мы будем использовать значения p_i , приведенные на рис. 1в,2в.

Совокупность этих диаграмм в принципе описывает имеющиеся данные по множественному рождению частиц в hA -взаимодействиях. При этом, как правило, характеристики частиц в одной ле-

^{*} Оценки показывают., что $\Delta n_{\sim} < 0,2$ за счет дополнительных взаимодействий $^{/10/}$.

⁸ В данном случае под лесенкой мы подразумеваем всю совокупность диаграмм, описывающих hN -взаимодействия.

Рис.1. Кварк-партонные диаграммы взаимодействия *т*-мезонов с двумя протонами ядра: а/ взаимодействие обоих кварков; б/ перерассеяние кварка; в/ каскадные процессы. В скобках указаны энергии *т*-р-соударений, которые соответствуют приведенным диаграммам.

сенке берутся из экспериментальных данных по hN-взаимодействиям при соответствующих энергиях /см. <u>рис.1,2</u>/ и анализируется их изменение в hA-соударениях. Тем самым значительно уменьшается неопределенность, связанная с кинематикой процессов, рождением и распадом резонансов и т.п. $^{/1,2/}$.

Соотношение между вкладами приведенных диаграмм в hA -взаимодействия неизвестно и определяется из сравнения моделей с экспериментом. Такой анализ данных по множественности в hA соударениях показал, что для определения роли диаграмм с перерассеянием кварков /<u>рис.16,26</u>/ необходимы дополнительные эксперименты ^{/6/}. Аналогичный анализ многонуклонных взаимодействий позволяет получить более определенные заключения.

Вначале остановимся на данных по множественности в области фрагментации π^- -мезонов для π^-/ν_p =2,3/- и π^-p -взаимодействий при p =40 ГэВ/с. Для определения нижней границы этой области по быстроте у в лабораторной системе координат мы использовали данные по относительным множественностям π^{\pm} -мезонов в этих взаимодействиях в зависимости от у^{/13/}:

$$\mathbf{R}(\mathbf{y}) = \frac{\mathrm{dN}(\pi^{-}\nu_{\mathbf{p}})}{\mathrm{dy}} / \frac{\mathrm{dN}(\pi^{-}\mathbf{p})}{\mathrm{dy}}.$$
 (4/

В этом случае ожидается, что $R^{f}(y_{\Gamma p}) \leq 1^{/6,13/}$ Оказалось, что $R_{\pi^{-}}^{f}(y_{\Gamma p}^{f}=3,4) = 1,00\pm 0,03$ для $\nu_{p} = 2$ и $R_{\pi^{-}}^{f}(y_{\Gamma p}^{f}=3,2) =$ = 0,95±0,05 для $\nu_{p} = 3$. При больших значениях у величина

 $R_{\pi}^{f}(y)$ уменьшается до 0,3-0,4 для $y_{max} \approx 5.6^{/13}$ Отсюда положим, что область фрагментации $\pi \to \pi^{-}$ начинается при $y_{\Gamma p} \ge 3.6$, где R(y) < 1/ $\Delta y f(\pi^{-}) = y_{max} - y_{\Gamma p}^{f} \approx 2/.$ Для фрагментации $\pi^{-} \to \pi^{+} -$

 $R_{\pi}^{f} + (y_{\Gamma p}^{f} = 3.8) = 1.01 \pm 0.03$

и $y_{\Gamma p}^{I} \geq 3,8$. Неопределенность в оценке нижней границы $y_{\Gamma p}^{f}(\pm 0,2\div 0,3)$ в пределах ошибок эксперимента не меняет значения полных относительных множественностей:

$$R_{i}^{f} = \frac{\langle n_{i}^{f}(\pi^{-}\nu_{p}) \rangle}{\langle n_{i}^{f}(\pi^{-}p) \rangle}, \qquad \gamma$$

по которым и определяется вклад различных диаграмм /рис.1,2/. Полученные значения < n_i^{f} > и R_i^{f} для $y_{\Gamma p}(\pi^-) =$ =3,6 и $y_{\Gamma p}^{f}(\pi^+) =$ 3,8 приведены в таблице 4. Здесь же для иллюстрации приведены зна-

Рис.2. Кварк-партонные диаграммы взаимодействия *п*-мезонов с тремя протонами ядра.

чения $\langle n_i^f \rangle$ для $\pi^- n$ -взаимодействий при тех же значениях $y_{\Gamma p}^f (\pi^{\pm})$. Интересно отметить, что полученные значения $\langle n_-^f \rangle u \langle n_i^f \rangle$ для $\pi^- p$ -взаимодействий совпадают с $\langle n_i^f \rangle$, рассчитанными по АКМ с учетом образования легких и тяжелых резонансов $\langle n_i^f \rangle = 0,95$ и $\langle n_i^f \rangle = 0,45/\sqrt{15}$. Значения R_i^f равны вероятности V_1^{π} прохождения одного кварка через ядро без взаимодействия /рис.16, в, 26, в/. Они оказались равными $81\pm 3\%$ для $\nu_p = 2$ Таблица 4. Значения $< n_i^f > и R_i^f$ в области фрагментации мезонов

Тип взан- модействия	<n_+></n_+>	$R_{-}^{f}(V_{\underline{J}}^{Ji})$	< n ^f _{+>}	$\mathcal{R}^{\mathcal{F}}_{+}(V^{\mathcal{I}}_{\perp})$
$\pi p \rightarrow \pi^{\mp} X$	0,95 <u>+</u> 0,0I	I	0,46 <u>+</u> 0,0I	I
<i></i> ボール・プチメ	1.31 <u>+</u> 0,02	I	0,49 <u>+</u> 0,0I	I
JT ⁻ (\$ρ)→Ji∓X	0,77 <u>+</u> 0,02	0,8I <u>+</u> 0,03	0,42 <u>+</u> 0,02	0,9I <u>+</u> 0,05
(Q=1) J ⁻ (3P)→J ⁷ ^{+X} (Q=2)	0,69 <u>+</u> 0,04	0,73 <u>+</u> 0,03	0,47 <u>+</u> 0,03	I,02 <u>+</u> 0,07

и 73±3 % для $\nu_{\rm p}$ =3[#]. Отсюда получим, что вклад диаграмм, в которых оба кварка провзаимодействовали /<u>рис.1a,2a</u>/, невелик и составляет ν_2^{π} = 19±3 % и 27±3 % для $\nu_{\rm p}$ =2 и 3 соответственно (ν_2^{π} = 1 - ν_1^{π}). Увеличение значения у $_{\Gamma p}^{f}(\pi^{-})$ до 4,0, где $R(y_{\Gamma p}^{f})$ = =0,77±0,03, приводит к значениям $V_1^{\pi}(\nu_p$ =2) =(71±3)% и $V_1^{\pi}(\nu_p$ = =3) =(61±4)%. Это означает, что если пренебречь каскадными процессами /см.^{6/}/, то вклад диаграмм с перерассеянием кварков /<u>рис.16,26/</u> является доминирующим / V_4^{π} > 60-70 %/. В рамках простой модели многократного рассеяния \tilde{V}_1^{π} / ν_p =2/=50%, что меньше, чем получено в эксперименте ^{/3,6/}. Поэтому, по-видимому, в этих процессах, кроме перерассеяния кварков, имеют место и каскадные процессы /рис.18,2в/.

В области фрагментации мишени (y < 1,0) все типы диаграмм дают примерно одинаковую зависимость R_M^f от $\nu_p(R_M^f \approx \nu_p)$, которая не противоречит эксперименту /табл.5/. Для центральной области / y $_{\rm II}$ =1,0÷3,4/ значения $R_{\rm II}(\pi^-)=1,46\pm0,03$ для $\nu_p=2$, в то время как $R_{\rm II}$ /рис.1а/=2, $R_{\rm II}$ /рис.16/ \approx 1,6 и $R_{\rm II}$ /рис.1в/ $\approx 0,8$, если учесть, что сечения образования пионов в центральной области уменьшаются с уменьшением энергии в процессах типа рис.16, в. Таким образом, и в этом случае $V_2^{\pi} \leq 70\%$. Если

* Данные по $R_{\pi^+}^{f}$ получены с бо́льшими ошибками, чем $R_{\pi^+}^{f}$. Кроме того, в них возможна небольшая "примесь" протонов, которая увеличивает значения R_{+}^{f} .

<u>Таблица 5</u>. Значения $< n_i > и R_i$ в центральной области и в области фрагментации мишени

Тип взаимо- действия	<nf()></nf()>	$R_{M}^{f}(\pi^{-})$	<ny(jt)></ny(jt)>	Ry (57 ⁻)
$\pi p \rightarrow \pi^- X$	0,1 <u>6+</u> 0,01	I	I,53 <u>+</u> 0,0I	I
πī2ρ)→πX	0,40 <u>+</u> 0,02	2,5<u>+</u>0,2	2,24 <u>+</u> 0,04	I,46 <u>+</u> 0,03
(α=1) <i>J</i> π [−] (3 <i>p</i>)→ <i>J</i> [−] X (α=2)	0,53 <u>+</u> 0,03	3,3 <u>+</u> 0,03	2,4I <u>+</u> 0,07	I,58 <u>+</u> 0,04

учесть, что из данных по R_1^f вклад диаграмм 1а составляет $\approx 20\%$, то вклад диаграмм 1б,в соответствует $R_{II}(\pi^-) = 1,06 \pm 0,03$. Это значение $R_{II}(\pi^-)$ можно получить, если вклады диаграмм 1б,в примерно одинаковы. Аналогичный результат следует и из данных для π^- (3p) -взаимодействий / <u>табл.5</u>/. Более точные заключения о вкладах различных диаграмм можно получить при моделировании обсуждаемых процессов в рамках АКМ с учетом законов сохранения.

Данные по взаимодействиям протонов с ядрами углерода и тантала при p=9,9 ГэВ/с получены лишь для полных множественностей вторичных заряженных частиц /табл.2,3/. В этом случае удобно рассматривать множественности π^- -мезонов, которые образуются в неупругих взаимодействиях и хорошо идентифицируются в пузырьковых камерах. Диаграммы АКМ для $p\nu_p$ -взаимодействий полностью аналогичны приведенным на рис.1,2, при этом необходимо учесть, что протон состоит из трех кварков. В случае перерассеяния кварков мы будем предполагать, как и для $\pi^-\nu_p$ -взаимодействий, что их энергия в среднем делится поровну. В <u>табл.6</u> приведены значения <n_>диаграмм с взаимодействием двух (ν_p =2) и трех (ν_p =3) кварков (<n_(1)>), а также для перерассеяния одного кварка (<n_(2)>). Они были получены из данных гю

<u>Таблица 6.</u> Значения $< n_>$ для $p\nu_p$ -взаимодействий при p = 9,9 ГэВ/с

Q	v_{P}	$\langle n_{(T_{a})} \rangle_{_{\operatorname{PKC}}} \langle$	$n_{(C)}$	<n_(1)></n_(1)>	<n_(2)></n_(2)>
3	2	I,I5 <u>+</u> 0,08	I,08 ±0 ,08	I,22 <u>+</u> 0,06	0,7I <u>+</u> 0,0I
4	3	I,18 <u>+</u> 0,10	0,89 <u>+</u> 0,16	I,8 <u>+</u> 0,I	0,60 <u>+</u> 0,06

8

этом случае по модели многократного рассеяния для $\nu_{\rm p}{=}2$ соотношение между вкладами диаграмм с перерассеянием кварков и без него составляет 1:2 $^{/3/}$ и <n_>=1,04 ±0,04, что хорошо согласуется с <n_>_{9KC} =1,08 ± 0,08 для pC-взаимодействий и не противоречит <n_>_{9KC} =1,15±0,08 для pTa-соударений /табл.6/. Аналогичный результат получается и для $\nu_{\rm p}=3$.

Таким образом, анализ данных по средней множественности вторичных пионов в многонуклонных взаимодействиях при $E \leq 40$ ГэВ в рамках основных диаграмм АКМ показывает, что их невозможно описать без учета перерассеяния кварков и каскадных процессов ^{/2,3,6/}. Вклад этих процессов велик и достигает /60-70/%. При обсуждаемых энергиях еще велики поправки, связанные с законами сохранения энергии-импульса. Поэтому представляет интерес получение аналогичных данных при более высоких энергиях, где разделение на центральную и фрагментационные области рождения частиц становится более однозначным. Дополнительную информацию о роли тех или иных диаграмм АКМ можно получить и из анализа корреляций /14/.

Нам приятно поблагодарить Е.М.Левина, Ю.М.Шабельского и В.М.Шехтера за многочисленные полезные обсуждения.

ЛИТЕРАТУРА

- 1. Анисович В.В., Шабельский Ю.М., Шехтер В.М. ЯФ, 1978, 28, с.1063.
- 2. Золлер В.Р., Николаев Н.Н., Остапчук А.Я. В кн: Шестая школа физики ИТЭФ, вып. 3, с.3. Атомиздат, М., 1979.
- Шабельский Ю.М. В кн: Шестая школа физики ИТЭФ, вып.3, с.50. Атомиздат, М., 1979.
- 4. Левин Е.М., Рыскин М.Г. ЯФ, 1980, 31, с.429.
- Levin E.M., Ryskin M.G., Nikolaev N.N. Preprint CERN, TH-2780, 1979.
- 6. Шабельский Ю.М., Шехтер В.М. Препринт ЛИЯФ, № 524, Л., 1979.
- 7. Ангелов Н.С. и др. ЯФ, 1977, 26, с.811.
- 8. Бацкович С. и др. ЯФ, 1977, 26, с.1034.
- 9. Ангелов Н.С. и др. ЯФ, 1978, 28, с.999.
- 10. Гришин В.Г. и др. ОИЯИ, Р1-12909, Дубна, 1979; Ахабабян Н.О. и др. ОИЯИ, Р1-80-108, Дубна, 1980.
- 11. Абдинов О.А. и др. ОИЯИ, Р1-11034, Дубна, 1977.
- 12. Шабельский Ю.М., Юлдашев Б.С. ЛИЯФ, № 487, Л., 1979.
- 13. Ангелов Н.С. и др. ЯФ, 1979, 30, с.715.
- 14. Бацкович С. и др. ОИЯИ, Р1-12777, Дубна, 1979.
- 15. Шехтер В.М.,Щеглова Л.М. ЯФ, 1978, 27, с.1070.

Рукопись поступила в издательский отдел 11 июня 1980 года.

Нет ли пробелов в Вашей библиотеке?

Вы можете получить по почте перечисленные ниже книги,

если они не были заказаны ранее.

Д1,2-8405	Труды IV Международного сямпозну- ма по физике высоких знергий и эле- ментарных частец. Варна, 1974.	2 p. O5 ĸ.
P1,2-8529	Труды Международной школы-семи- нара молодых ученых. Актуальные проблемы физики элементарных час- тиц. Сочи, 1974.	2 p. 60 r.
Д6-8846	XIV совещание по ядерной спектро- скопци и теорни ядра. Дубна, 1975.	l р. 90 к.
Д13-9164	Международное совещание по мето- дике проволочных камер.Дубна,1975.	4 р. 20 к.
Д1,2-9224	IV Международный семянар по про- блемам фязики высоких энергий.Дуб- на, 1975.	3 р. 60 к.
Д- 992 О	Труды Международной конференции по взбранным вопросам структуры ядра. Дубна, 1976.	3 р. 50 к.
Д9-10500	Труды 11 Симпозиума по колектив- ным методам ускорения.Дубна, 1976.	2 р. 50 к.
Д2-10533	Труды Х. Международной школы молодых ученых по физике высоких энергий. Баку, 1976.	3 р. 50 к.
Д13-11182	Труды IX Международного симпо- зиума по ядерной электроннке. Вар- на, 1977.	5 p. OO k.
Д17-11490	Труды Междукародного симпозиума по избранным проблемам статисти- ческой механики. Дубна, 1977.	6 р. ОО к.
Д6-11574	Сборнык аннотаций XV совещания по ядерной спектроскопия и теорыя яд- ра. Дубна, 1978.	2 р. 50 к.
ДЗ-11787	Труды III Международной школы по нейтронной фезике. Алушта, 1978-	Зр. ОО к.
Д13-11807	Труды III Международного сове- щания по пропорциональным и дрей- фовым камерам. Дубна, 1978.	· 6 p. OO x.
	Труды УІ Всесоюзного совеща- ния по ускорятелям заряженных частиц. Дубна 1978. /2 тома/	7 р. 40 к.
Д1,2-12036 `	Труды V Международного семи- цара по проблемам физнки высо- кях энергий. Дубна 1978.	5 p. OO ĸ.
P18-12147	Труды III совещания по исполь- зованию ядерно-физических ме- тодов для решения каучно-тех- нических и наропногозвостреи-	
	ных задач.	2 р.2О к.

10

.

Д1,2-12450	Труды XII Международной шко- лы молодых ученых по фязике высоких энергий. Приморско,	1 - 00 -
	HP5, 1978.	3 p. OU k.
P2-12462	Труды V Международного сове- щания по нелокальным теориям	
	поля. Алушта, 1979.	2 р. 25 к.
Д-12831	Труды Международного симпознума по фундаментальным проблемам тео- ретической и математической физи-	
		4 p. 00 K.
	ка. дубац, 1777.	. p. 00 m
Д-12965	Труды Международной школы моло-	
	телей заряженных частиц. Минск,	
	1979.	3 р. ОО к.
Д11-80-13	Труды рабочего совещания по сис-	
	темам и методам аналитических вы-	
	числений на ЭВМ и их применению	
	в теоретической физике. Дубна,	2 - 50 -
	1979.	3 p. 30 k.
II4-80-271	Тоулы Межлунаролной конференции	
AT 00 211	по проблемам нескольких тел в ялер-	
	ной физике. Дубна, 1979.	3 р. ОО к.
Д4-80-385	Труды Международной школы по	
	структуре ядра. Алушта, 1980.	5 p. OO ĸ.

Заказы на упомянутые книги могут быть направлены по адресу:

101000 Москва, Главпочтамт, п/я 79,

3

издательский отдел Объединенного института ядерных исследований