

Объединенный институт ядерных исследований

дубна

+

11/8-80 P1-80-341

Б.Словинский, В.Чай*

ПРОСТРАНСТВЕННОЕ РАЗВИТИЕ ЭЛЕКТРОННО-ФОТОННЫХ ЛИВНЕЙ, ОБРАЗОВАННЫХ ГАММА-КВАНТАМИ С ЭНЕРГИЕЙ Е_у = (75-500) МэВ

Направлено в ЯФ

* Варшавский технический университет

1. ВВЕДЕНИЕ

Экспериментальное исследование структуры электронно-фотонных ливней /ЭФЛ/, создаваемых гамма-квантами /или электронами/ высоких энергий в достаточно плотных однородных средах,является весьма актуальной методической задачей. Это связано со значительным интересом к изучению электромагнитной компоненты, сопровождающей столкновения частиц больших энергий. Тем не менее, проблема ЭФЛ не получила к настоящему времени удовлетворительного решения. Существующая теория ЭФЛ, основанная на интегро-дифференциальных уравнениях типа диффузии /1/, описывает лишь одномерное развитие процесса - в проекции на так называемую ось развития ливня, т.е. в направлении импульса частицы /фотона или электрона/, инициирующей ливень. С точки зрения постоянно растущих методических требований современного эксперимента такое описание явно неудовлетворительно, особенно если иметь в виду поглощающие вещества с большим атомным номером. которые применяются для детектирования электронов, позитронов и гамма-квантов высоких энергий, так как в этом случае нельзя пренебречь поперечными размерами ЭФЛ. Развитый впоследствии метод Монте-Карло /ММК/ численного моделирования процесса развития ЭФЛ на ЭВМ /см., напр., ^{/2/} / лишен названных недостатков и дает возможность получить с точностью не хуже 10% практически всю информацию об ЭФЛ, представляющую методический интерес. Однако применение ММК связано с необходимостью использования весьма громоздких программ на ЭВМ и требует значительного машинного времени. Поэтому одиим из авторов /3/ развивался феноменологический подход к проблеме ЭФЛ. Суть этого подхода состоит в получении, на основании экспериментальных данных, достаточно простых аппроксимирующих соотношений, позволяющих быстро и надежно оценить полную энергию гамма-кванта по суммарным энергетическим потерям ливневых электронов и позитронов /далее: электронов/ в заданном объеме поглотителя. Такая задача относительно легко решается, если имеется достаточно простая параметризация функции пространственного распределения плотности знергии ЭФЛ, выделяемой в виде ионизационных потерь ливневых электронов, $\Delta E(E_v, E_0, t, p)/\Delta t \cdot \Delta p$, где Еу-Е - так энергия первичного гамма-кванта, создающего ливень; называемая энергия обрезания для ливневых электронов; t - длина развития ливня, отсчитываемая от точки конверсии гамма-

кванта, вдоль оси развития лавины; р - ширина развития ливня, отсчитываемая от оси его развития в направлении, перпендикулярном к ней *.

В настоящей работе выполнены измерения дифференциальных ионизационных потерь ливневых электронов в 3ФЛ, созданных гамма-квантами с энергией E_{γ} = /75 ±500/ МэВ в жидком ксеноне. Этот энергетический интервал представляет наибольший интерес в ряде задач, посвященных исследованию нейтральных бозонов, образованных в ядерных взаимодействиях при больших энергиях. На основании экспериментальных данных получены удобные для практического применения формулы, аппроксимирующие функцию плотности пространственного распределения ионизационных потерь ливневых электронов. Эксперимент выполнен на снимках с 26-литровой ксеноновой пузырьковой камеры 0ИЯИ /КПК/, облученной в пучке π^{\pm} -мезонов с импульсом 2,34 ГаВ/с.

2. ЭКСПЕРИМЕНТ

В результате просмотра около 30 тыс. стереофотографий с КПК было отобрано и проанализировано 500 случаев ЭФЛ,удовлетворяющих соответствующим критериям ^{/4/}.Значения энергии гаммаквантов,создавших эти ливни,содержались в интервале $E_y =$ = /75÷500/ МэВ. Энергии ЭФЛ определялись по суммарным пробегам ливневых электронов ^{/5/}.

В каждом выбранном событии ЭФЛ были измерены в плоскости проекции снимка, при помощи специально изготовленного трафарета, суммарные пробеги ливневых электронов, $\Delta \Sigma t (\mathbf{E}_{y}, \mathbf{E}_{0}, t, p) / \Delta t \cdot \Delta p$, наблюдаемые внутри прямоугольников со сторонами $\Delta t = 20$ мм вдоль оси развития лавины и $\Delta p = 10$ мм в направлении, перпентдикулярном к этой оси. При этом точка (t, p) является геометрическим центром прямоугольника. Увеличение средней плоскости камеры в репроекторе было равно 0,84. Следовательно, $\Delta t = 0,588$ и $\Delta p = 0,294$ радиационных единиц жидкого ксенона /рад.

Измерения были выполнены для двух значений энергии обрезания E_0 , представляющих практический интерес: $E_0 = 0$ и $E_0 = 3$ Мэ8, и девяти интервалов энергии E_γ . Число N_γ событий ЭФЛ, вызванных гамма-квантами с энергией E_γ , даны в табл.1.

Таблица 1

Число N_у отобранных и проанализированных случаев ЭФЛ и соответствующие им значения энергии первичных гамма-квантов

E _y	75	100	120	150	200	250	300	375	500
/MəB/	<u>+</u> 10	+10	+10	+20	+20	+25	+25	<u>+</u> 50	+75
Ny	28	45	49	95	98	70	38	45	32

ЗАВИСИМОСТЬ^{*} МЕЖДУ ПРОДОЛЬНЫМ И ПОПЕРЕЧНЫМ РАЗВИТИЕМ ЭФЛ

Весьма существенно, с точки зрения простоты феноменологического описания структуры ЭФЛ, выяснить зависимость между продольным (t) и поперечным (p) развитием лавин. С этой целью была выполнена проверка гипотезы о независимости t и p для всех исследуемых девяти энергетических интервалов по E_y , и двух значений энергии обрезания E_0 , согласно критерию:

$$\chi_{(k-1)(\ell-1)}^{2} = \sum_{t=1}^{k} \sum_{p=1}^{\ell} \frac{(n_{tp} - n \cdot r_{t} \cdot r_{p})^{2}}{n \cdot r_{t} \cdot r_{p}}, \qquad /1/$$

где

$$\begin{split} \mathbf{n}_{tp} &= \mathbf{E} \left[\Delta \Sigma \mathbf{r} \left(\mathbf{E}_{\gamma}, \mathbf{E}_{0}, t, p \right) / \Delta t \cdot \Delta p + 0.5 \right], \\ \mathbf{n} &= \sum_{t, p} \mathbf{n}_{tp}, \quad \mathbf{r}_{t} = \sum_{p} n_{tp/n}, \quad \mathbf{r}_{p} = \sum_{t} n_{tp/n}. \end{split}$$

Вычислены также коэффициенты корреляции С между переменными t и p для всех значений энергии E_y . Соответствующие результаты приведены в <u>табл.2</u>. Они относятся к энергии обрезания $E_0 \approx 0$, однако аналогичная ситуация имеет место также при $E_0 = 3$ M3B.

Можно заключить, что полученные результаты не противоречат гипотезе о независимости продольного и поперечного развития ливней. Такой вывод подтверждается также оценкой так называемого коэффициента зависимости ^{/7/}, значение которого не превышает 0,3.

Поскольку в однородной среде ЭФЛ обладают осевой симметрией, то отмеченное свойство ЭФЛ распространяется на параметры, определяющие развитие ливней в пространстве: длину развития t, отсчитываемую от точки конверсии первичного гамма-кванта, вдоль оси развития ЭФЛ /т.е. то же самое, что для проекции на плоскость снимка/ и радиус поперечного развития ЭФЛ, *p*, отсчитываемый от оси ливня в направлении, перпендикулярном к ней.

^{*}В однородной среде ЭФЛ обладает осевой симметрией.

Таблица 2

Значения χ_{n}^{2} , определенные формулой /1/, с $n = (k-1)(\ell-1)$ степенями свободы и соответствующие им значения вероятности P, а также значения коэффициента корреляции C между параметрами, описывающими продольное и поперечное развитие ливней, вызванных гамма-квантами с энергией E_{1} .

Е _у /МэВ/	χ_n^2/n	P/%/	$C \pm \Delta C *$
75 100	9,1/9 12,7/12	60 60	0,023+0,3 0,231+0,2
120	30,6/24	85	0,218+0,2
150	18, 4/21	57	Q,244+0,2
200	24,4/21	72	0,118+0,1
250	19,9/21	45	0,069+0,1
300	31, 1/30	42	0,260+0,2
375	34, 3/33	41	0,023+0,2
500	41,9%6	77	0,021 <u>+</u> 0,3

* Доверительный интервал AC определен приблизительно. Он соответствует доверительной вероятности 0,95 ^{/0/}.

Обнаруженное свойство независимости продольного и поперечного развития ЭФЛ дает возможность записать функцию плотности суммарных ионизационных потерь ливневых электронов в виде произведения двух функций, каждая из которых описывает соответствующее одномерное ЭФЛ - продольное и поперечное:

$$f(E_{\gamma}, E_{0}, t, p) = \frac{\Delta E(E_{\gamma}, E_{0}, t, p)}{\Delta t \cdot \Delta p} =$$

= f₁(E_{\gamma}, E₀, t) · f₂(E_{\gamma}, E₀, p), /2/

где f , и f , - соответствующие маргинальные распределения:

$$f_{1}(\mathbf{E}_{\gamma}, \mathbf{E}_{0}, t) = \sum_{\mathbf{p}} \left(\frac{\Delta \mathbf{E}(\mathbf{E}_{\gamma}, \mathbf{E}_{0}, t, \mathbf{p})}{\Delta t \cdot \Delta \mathbf{p}} \right) \Delta \mathbf{p}, \qquad /3/$$

$$\mathbf{f}_{g}\left(\mathbf{E}_{\gamma}, \mathbf{E}_{0}, t\right) = \sum_{t} \left(\frac{\Delta \mathbf{E}\left(\mathbf{E}_{\gamma}, \mathbf{E}_{0}, t, \mathbf{p}\right)}{\Delta t \cdot \Delta \mathbf{p}}\right) \Delta t, \qquad /4/$$

Здесь

$$\frac{\Delta E(E_{\gamma}, E_{0}, t, p)}{\Delta t \cdot \Delta p} = \alpha \frac{\Delta \Sigma r(E_{\gamma}, E_{0}, t, p)}{\Delta t \cdot \Delta p},$$

$$\alpha = (0, 6/0.84) \text{ MaB/mm}^{/5/}.$$

4. ПРОДОЛЬНОЕ РАЗВИТИЕ ЭФЛ

Задача нахождения простейшего вида функции /3/, удовлетворительно описывающей экспериментальные данные, решалась в ряде более ранних работ ^{/8/}. В результате выполненного нами статистического анализа экспериментальных данных найдено, что

$$f_{1}(E_{\gamma}, E_{0}, t) = \alpha(E_{\gamma}, E_{0}) \cdot t^{\gamma(E_{\gamma}, E_{0})} e^{-\beta(E_{\gamma}, E_{0}) \cdot t^{2}} .$$
 (5)

Значения козффициентов $\alpha(E_{\gamma}, E_0)$, $\beta(E_{\gamma}, E_0)$ и $\gamma(E_{\gamma}, E_0)$, соответствующие различным энергиям первичных гамма-квантов, E_{γ} , и энергиям обрезания ливневых электронов, E_0 , приведены в табл.3. Там же даны значения тестовой статистики χ_k^2/k , по которой проводилось фитирование экспериментальных данных формулой /5/ и вероятности Р статистической подгонки. Принято при этом, что длина t развития ливня выражена в единицах, равных 23,8 мм жидкого ксенона, или же 0,6 рад.ед. данного вещества:

Коэффициент $a(E_{\nu}, E_{n})$ определен таким образом, чтобы

$$\int_{0}^{\infty} \mathbf{f}_{1}(\mathbf{E}_{y}, \mathbf{E}_{0}, t) dt = \mathbf{E}_{y} / M_{3}B/.$$
 (7/

Полезно иметь в виду, что, по крайней мере, для приблизительных оценок, можно воспользоваться следующими формулами, аппроксимирующими зависимость коэффициентов $\alpha(E_{\gamma}, E_{0}), \beta(E_{\gamma}, E_{0})$ и $\gamma(E_{\gamma}, E_{0})$ от E_{γ} и E_{0} :

$$\alpha(E_{\gamma}, E_0) = 43.2 \pm 3.7$$
, (8/

$$\beta(E_{\gamma}, E_{0}) = 11.44 E_{\gamma}^{-0.96}$$

$$y(E_{\gamma}, E_{0}) = 0.72 \pm 0.13$$
 (10)

4

(n
	e T
	ž
1	õ
4	

электронов, экспери ЭФЛ. /5/, описывающей продольное развитие ЭФЛ. Е $_0$ - энергия обрезания ливневых энергия обрезания ливневых при подгонке функции /5/ к фитирования вероятность тестовой статистики, полученные К - число стеленей свободы: Р -CBOCODH: формулы энергия гамма-квантов, образующих стеленей Y N α, β Значения козффициентов \mathbb{E}_{γ}^{2} - энергия гамм, $\chi_{\mathbf{k}}^{2}/\mathbf{K}$ - значения ментальным данным; \mathbb{I} значения

down-		କ ଅ			-		10 10 10 10	MaB		
	8	Þ	2	7 k/K	(x)d	q	Ø	2	Xx/K	P(%
OIT	45+I,9	0,303±0,036 I.	28+0,26	I,I,I	40	47, 3±2, I 0	.3I3±0,040	I,27±0,27	2,2/I	15
0I+IO	38,94I,6	0, I35±0,0I5 0,	51±0,14	2,0/3	64	40,6±1,8 0	,148±0,012	0,56±0,I3	I,9/3	65
OI+	45,4±1,5	0, II2±0,010 0,	60±0,I0	4,4/4	42	46, I±2, 2 0	,142±0,015	0,6640,15	4,0/4	4.1
1+20	40,8±I,I	0,088±0,005 0,	66±0,07	5,2/5	45	41,5+1,0 0	,094±0,005	0,56±0,07	3,9/5	19
1+20	40, I±0,6	0,085±0,003 0.	90*0*0E	11,7/6	6	40, I±0, S 0	,089±0,004	0.83±0.06	6,8/6	39
125	41,4t1,6	0,070±0,003 0,	10°07E6	25,2/6	I	44,3±1,8 0	,073±0,003	0.7840.07	26,0/6	П
125	43,7±2,I	0,048±0,003 0,	74±0,07	6,7/8	60	42,842,4 0	.048±0.003	0,62±0,08	8,8/8	41
1720 F	4I.4+I.4	0,032±0,002 0,	72±0,05	I3,2/I0	22	40 241,4 0	,039±0,002	0,73±0,06	I4,4/8	8
1475	54,842,2	0,029±0,001 0,	75±0,05	I5.4/I0	IZ	43,542,0 0	,031±0,000	0,7840,06	5,0/I0	66

для двух значений E_0 . Формулы /9/ и /10/ относятся к интервалу $E_\gamma = /100.5500$ / МэВ. Ошибки в /8/ и /10/ определены как оценки дисперсии соответствующих выборок /табл.3/, что более адекватно действительности, чем ошибки фитирования.

5. ПОПЕРЕЧНОЕ РАЗВИТИЕ ЭФЛ

1

Были изучены две гипотезы аппроксимации функции $f_g(E_y, E_0, p)$, описывающей поперечное развитие ЭФЛ в плоскости проекции: нормальное распределение и однопараметрическая функция

$$f_{2}(E_{\gamma}, E_{0}, p) = \lambda \cdot ch^{-2} [\lambda \cdot p], \qquad /11/$$

которая оказалась более вероятной. Из /11/ вытекает, что

$$f_2(E_{\gamma}, E_0, p) dp = 1.$$
 /12/

Следовательно, из /2/, /7/ и /12/ получается, что

$$\int_{0}^{\infty} \int_{0}^{\infty} f(\mathbf{E}_{\gamma}, \mathbf{E}_{0}, \mathbf{t}, \mathbf{p}) d\mathbf{t} d\mathbf{p} = \mathbf{E}_{\gamma}.$$
 (13/

Значения тестовой статистики χ_k^2/k , полученные при аппроксимации функцией /11/ экспериментальных данных, соответствующих ионизационным потерям ливневых электронов вдоль координаты р на различных длинах развития t, при разных энергиях E_{χ} и E_0 , равны $\chi_k^2/k \simeq 1$. Число степеней свободы не превышало 5. Следует также подчеркнуть, что параметр λ в /11/ однозначно определяет дисперсию σ_p поперечного распределения ионизационных потерь в ЭФЛ, так как

$$\sigma_{p}^{2} = \lambda \int_{-\infty}^{\infty} p^{2} \operatorname{ch}^{-2}(\lambda p) \, \mathrm{d}p = \frac{\pi^{2}}{6\lambda^{2}}.$$
 /14/

Поскольку по мере развития ЭФЛ, вдоль оси t, происходит увеличение его поперечных размеров вследствие, в основном, многократного рассеяния ливневых электронов, то, следовательно, параметр λ должен уменьшаться с ростом t. Оказалось возможным найти удовлетворительную аппроксимацию зависимости λ от t при различных E_{ν} и E_{0} , а именно:

$$\lambda = \lambda(E_{\gamma}, E_{0}, t) = A(E_{\gamma}, E_{0})e^{-B(E_{\gamma}, E_{0})t} + C(E_{\gamma}, E_{0}).$$
 /15/

Значения параметров А, В и С, соответствующие различным энергиям E_y и E_0 , приведены в табл.4. Там же даны значения тестовой статистики χ_k^2/k / k - число степеней свободы/. Следует

6

Таблица 4

вероятность фитирования полученные Еу и энергии статистики, , ПФЕ /15/ при разных энергиях 1 значения тестовой свободы, Р и формуле /15/ им. . Е₀ . X²/ k = значения * ^k = число степеней с · · · * Значения параметров А, В и С в (обрезания ливневых электронов, Е при аппроксимации формулой /15/.

E ment		E_0 = 0					E = 3 h	feb		
(crew)	A	B	o	T'x/K	P(%)	A	B	U	Tx/x	(%)d
75	2,3+0,4	0,6±0,4	0,2±0,6	0,2/I	8	3,342,6	0,3+0.4	-0,9±2,9	0,03/1	98
100	2,0+0,4	I.2±0.4	0,8±0,I	I,8/2	51	2, I±0,6	I,3±0,5	0,9±0,I	7,8/2	\$
I20	I,6±0,3	0.640,2	0,5±0,I	3, 8/3	S	2,0±0,5	0,8+0.4	0,5±0,2	E/1,1	69
150	2,240,3	0,940.I	0,5±0,I	4,3/4	43	2,2+0,2	1,0+0,0	0, 5±0, I	I4,5/4	H
200	2,6±0,3	0,8±0,I	0,5±0,I	2,7/6	20	2,9±0,1	1,0±0,0	0,5±0,I	2,5/6	87
250	I,5±0,2	0,6+0,I	0,6±0,I	5,7/5	39	I,5±0,2	0,6±0,I	0,6±0,I	2,9/5	2
300	I,6±0,2	0,5±0,I	0,6±0,I	2,2/6	8	I,640,2	0,4+0,I	0,5±0,I	3,7/5	5
375	I,540,I	0,3±0,I	0,4+0,I	I8,8/8	2	2,040.2	0,5±0,I	0,6±0,1	I4,0/8	6
200	2, I±0,3	0,6±0,I	0,7±0,I	24.7/8	1'0	2, I±0,3	0,6±0,I	0,7±0,I	I6,I/8	4

подчеркнуть, что зависимость параметра λ , определяющего поперечные размеры ЭФЛ, от длины t развития ливня отнюдь не противоречит сделанному ранее выводу о независимости продольного и поперечного развития ЭФЛ /2/, так как здесь речь идет лишь о зависимости <u>дисперсии</u> $a_{\rm p}$ одного параметра (p) от другого параметра (t).

Из табл.4 можно сделать вывод, что при достигнутой точности эксперимента не наблюдается зависимости коэффициентов A, B и C от энергий E_y и E_0 . Поэтому целесообразно воспользоваться усредненными значениями этих коэффициентов:

 $A = 2,1 \pm 0,5$, $B = 0,7 \pm 0,3$, $C = 0,5 \pm 0,4$. /16/

6. ПРОСТРАНСТВЕННАЯ СТРУКТУРА ЭФЛ

Если через $F(E_{\gamma}, E_{0}, t, \rho)$ обозначить функцию плотности суммарных ионизационных потерь ливневых электронов в пространстве, то из условий наблюдения ее проекции $f(E_{\gamma}, E_{0}, t, p)$ на плоскость снимка вытекает следующая зависимость:

$$f(E_{\gamma}, E_0, t, p) = 2 \int_0^{\infty} F(E_{\gamma}, E_0, t, p) dy$$
, /17/

где интегрирование производится вдоль прямой 0У, перпендикулярной плоскости проекции и пересекающей ее в точке 0 \equiv (t, p). Переходя к полярной системе координат, которая более естественна для рассматриваемой задачи, получаем:

$$f(E_{y}, E_{0}, t, p) = 2 \int_{p}^{\infty} F(E_{y}, E_{0}, t, p) \frac{d\rho}{\sqrt{1 - p^{2}/\rho^{2}}}$$
 (18)

Согласно свойству независимости поперечного и продольного развития ЭФЛ /2/, уравнение /18/ можно представить следующим образом:

$$f_{2}(E_{\gamma}, E_{0}, p) = 2 \int_{p}^{\infty} F_{2}(E_{\gamma}, E_{0}, \rho) \frac{d\rho}{\sqrt{1 - p^{2}/\rho^{2}}}, \qquad (19)$$

где функция $F_{2}(E_{\gamma}, E_{0}, \rho)$ удовлетворяет условию:

$$F(E_{\gamma}, E_{0}, t, \rho) = F_{1}(E_{\gamma}, E_{0}, t) \cdot F_{2}(E_{\gamma}, E_{0}, \rho), \qquad /20/$$

а функция $\mathbf{F}_{1}(\mathbf{E}_{y}, \mathbf{E}_{0}, t)$ - естественному условию:

$$F_{1}(E_{\gamma}, E_{0}, t) = f_{1}(E_{\gamma}, E_{0}, t)$$
 (21/

8

Уравнение /19/ является интегральным уравнением Вольтерра первого рода, в котором неизвестной является функция $F_2(E_{\gamma}, E_{0}, \rho)$, в то время как функция $f_2(E_{\gamma}, E_{0}, p)$ определяется феномено-логически из эксперимента, как это показано в пункте 5.

Путем замены переменных в уравнении /19/, x = 1/p и z = 1/p, можно его привести к виду:

$$f_{2}(E_{\gamma}, E_{0}, x^{-1}) = \int_{0}^{x} \frac{2}{z^{2}} F_{2}(E_{\gamma}, E_{0}, z^{-1}) \frac{dz}{\sqrt{1 - z^{2}/x^{2}}} .$$
 /22/

Вводя для краткости обозначения:

$$\eta(\mathbf{x}) = f_{g}(\mathbf{E}_{y}, \mathbf{E}_{0}, \mathbf{x}^{-1})$$
 /23/

и

$$u(z) = \frac{2}{z^2} F_2(E_\gamma, E_0, z^{-1}),$$
 (24/

получаем из /22/:

$$\eta(\mathbf{x}) = \int_{0}^{\mathbf{x}} u(z) dz / \sqrt{1 - z^{2} / x^{2}} .$$
 (25)

Было показано ^{/9/}, что уравнение /25/ имеет единственное суммируемое решение, которое записывается в виде:

$$u(z) = \frac{2}{\pi} [tga_0 + z \int_0^z \frac{d}{dx} [\frac{\eta(x)}{x}] \frac{dx}{\sqrt{z^2 - x^2}}], \qquad /26/$$

где

 $tga_0 = \left[\frac{\eta(\mathbf{x})}{\mathbf{x}}\right]_0$

Таким образом, конкретный вид функции $F(E_{\gamma}, E_0, t, \rho)$ пространственного распределения ионизационных потерь ливневых электронов в ЭФЛ получается из соотношений: /20/, /21/, /23/ и /26/.

7. ВЫВОДЫ

Результаты выполненного в настоящей работе анализа $3\PhiЛ$, создаваемых гамма-квантами с энергией $E_{\gamma} = /75 \div 500/$ МэВ в жидком ксеноне, можно свести к следующим заключениям:

1/ Установлено с достаточно большой вероятностью, что поперечное развитие электронно-фотонного ливневого процесса не зависит от продольного /табл.2/. Существует лишь зависимость между дисперсией поперечного развития ЭФЛ /т.е. "шириной" ливня/ и длиной его развития /формулы /14/ и /15//. 2/ Продольное развитие ЭФЛ описывается простой формулой /21/ и /5/.

3/ Для определения поперечных размеров ЭФЛ можно воспользоваться аппроксимирующей функцией /11/.

4/ Не наблюдается, при достигнутой точности эксперимента, зависимости изученных характеристик ЭФЛ от энергии обрезания Е₀ ливневых электронов в области пороговых эначений энергии для реальных детекторов электромагнитного излучения высокой энергии. Это свойство некритичности структуры ЭФЛ к пороговым значениям дискриминации электронов по энергии следует считать благоприятным, с методической точки зрения, обстоятельством.

5/ Предложенное феноменологическое описание ЭФЛ применимо, в пределах изученного интервала энергии E_{γ} , к любой однородной среде, если длины /т.е. параметры t, p, ρ / выражать через радиационные единицы данной среды. Оно также сохраняет свою силу в том случае, когда ЭФЛ детектируются по суммарному световому выходу.

В заключение авторы выражают благодарность Л.С.Охрименко, выполнившей фитирование на ЭВМ по формуле /5/ и поделившейся своими замечаниями после прочтения рукописи настоящего текста.

ЛИТЕРАТУРА

- 51. Биленький С.З., Иваненко И.П. УФН, 1959, 69, с.591.
- 2. Volkel V. DESY 67/16, Hamburg, 1967; Станев Г., Ванков Х. "Болгарский физический журнал", 1978, 5, №5, с.433.
- УЗ. Словинский Б. Автореферат диссертации. ОИЯИ, 1~10932, Дубна, 1977.
- 4. Словинский Б. и др. ЯФ, 1969, 9, с.120.
- 5. Коновалова Л.П. и др. ПТЗ, 1961, 6, с.261.
- 6. Герасимович А.И., Матвеева Я.И. Математическая статистика, "Вышэйшая школа", Минск, 1978.
- 7. Хеллвиг З. Элементы теории вероятности и математическая статистика /на польском языке/. Варшава, 1977, с.142.
- 8. Словинский Б. и др. ОИЯИ, Е1-9210, Дубна, 1975.
- Schmeidler W.Integralgleichungenmit Anwendungen in Physik und Technik. I. Lineare Integralgleichungen. Leipzig, 1955. Akademische Verglasgessellschaft, Greest und Portig K-G., p.214.

Рукопись поступила в издательский отдел 8 мая 1980 года.