

3666/2-80

P1-80-331

С.В.Джмухадзе, Е.Н.Кладницкая, В.М.Попова, Г.П.Тонеева, Ю.М.Шабельский

РОЖДЕНИЕ ДВУХ Л -ГИПЕРОНОВ В л<sup>-12</sup>С -ВЗАИМОДЕЙСТВИЯХ ПРИ 40 ГЭВ/С

Направлено в ЯФ



## 1. ВВЕДЕНИЕ

Всевозможные процессы, происходящие при неупругих соударениях адронов высокой энергии с ядрами, могут быть разделены на две группы. К первой относятся квазинуклонные взанмодействия, в которых быстрая частица сталкивается как бы со свободным нуклоном ядра, присутствие же остальных нуклонов никак не сказывается. Такие события происходят преимущественно на периферии ядра. Вторая группа включает в себя взаимодействия первичной или вторичных частиц с двумя и более ядерными нуклонами.

При сравнении процессов множественного рождения на ядерной и на нуклонной мишенях события первой группы являются по сути дела фоном, уменьшающим проявление ядерных эффектов, поэтому для более внимательного изучения многонуклонных взаимодействий важно уметь экспериментально их выделять. Как указывалось в работе<sup>/1/</sup>, одним из способов выделения многонуклонных взаимодействий является отбор событий с рождением двух  $\Lambda$ -гиперонов, так как вероятность образования их на одном нуклоне при умеренно высоких энергиях практически равна нулю. В случае  $\pi^-$ -мезонного пучка  $\Lambda$ -гипероны рождаются преимущественно от фрагментации мишени, поэтому изучение генерации их на ядрах дает информацию о такого рода процессах.

В настоящей работе приводятся экспериментальные данные о многонуклонных  $n^{-12}$  С-взаимодействиях, выделенных по присутствию двух  $\Lambda$ -гиперонов. Проводится сравнение полученных результатов со средними характеристиками пион-углеродных и пион-нуклонных соударений и с предсказаниями кварковой модели.

# 2. ЭКСПЕРИМЕНТАЛЬНЫЙ МАТЕРИАЛ

Экспериментальные данные получены с помощью 2-метровой пропановой камеры, облученной *п*-мезонами с P = 40 ГэВ/с на серпуховском ускорителе. Было обработано около 33000 событий, из которых 14491 относятся к *п* р-взаимодействиям, 5107 - к *п* л и 13565 - к неквазинуклонным ядерным взаимодействиям. Последние события в дальнейшем будут обозначаться *п* С.

Среди  $\pi^-C$ -взаимодействий оказалось 17 событий с двумя  $\Lambda$ -гиперонами, 3 - с  $2\Lambda$  и  $1K_S^\circ$ , и одно событие - с  $2\Lambda$  и  $2K_S^\circ$ мезонами. После введения всех поправок эти данные соответст-

With HATE SLAUL

1

вуют 93 событиям с 2А -гиперонами. Если предположить, что все А -гипероны в событиях образовались в паре с К -мезонами, и при этом равновероятно с К° и К<sup>+</sup>, то из полного числа 93 четверок  $(\Lambda\Lambda K^{\circ}K^{\circ}, \Lambda\Lambda K^{+}K^{+}$ и AAK°K<sup>+</sup>) в нашем эксперименте должны наблюдаться 17 событий с 2А, 4 - с 2А и Ке и 0,4 событий с 2 А и 2 К°. Число экспериментально наблюдаемых событий согласуется с ожидаемым, что говорит о правильной интерпретации V°-событий.

Характеристики #-С -событий с двумя А-гиперонами приведены в табл.1 вместе с характеристиками л<sup>-С</sup>, л<sup>-12</sup>Си л<sup>-N</sup> взаимодействий с рождением одной А-частицы и всех неупругих взаимодействий указанных типов. Для сравнения в табл.1 приведены также множественности заряженных частиц в многонуклонных *п* (mN) взаимодействиях, полученные в работах<sup>2,37</sup> с помощью отбора по электрическому заряду релятивистских частиц. Видно, что наличие А-гиперона практически не меняет множественность вторичных частиц в " N\*) столкновениях. В " C и  $\pi^{-12}$ С взаимодействиях значения < n ch > , < n + > , < n > и < n o > в присутствии А -гиперона несколько увеличиваются. Характёристики многонуклонных взаимодействий с рождением двух А-гилеронов в пределах ошибок не отличаются от соответствующих величин для всех л С - взаимодействий и для группы л С событий с рождением одной А -частицы.

### 3. СРАВНЕНИЕ С МОДЕЛЯМИ

При интерпретации полученных данных будем исходить из представления о составной кварковой структуре адронов, согласно которому 7 -мезон состоит из двух пространственно разделенных кварков. В пион-нуклонных соударениях, как правило, взаимодействует один из кварков налетающего пиона, а второй остается спектатором. В столкновениях с ядрами с немалой вероятностью взаимодействуют оба кварка /4-9/. В работах /6,7/ показано, что такие вероятности, как функции атомного веса ядра мишени, определяют выходы вторичных частиц в области фрагментации налетающего адрона, а также отношение множественностей вторичных частиц для пионного и протонного пучков в центральной области. Однако вопрос о механизме кварк-ядерного взаимодействия остается открытым, и в настоящее время на этот счет существует два мнения  $^{/1,10/}$ . В работах  $^{/4,5,9/}$  считалось /вариант А/, что в кварк-ядерном соударении вторичные частицы рождаются

|                                                                                                                      | C JUNNIA  | 37-C      | BC6         | дт <sup>-18</sup> С<br>с Л | дг- <sup>щ</sup> С<br>Вое | N- K      | ST N<br>BOB | %~ (mN)   |   |
|----------------------------------------------------------------------------------------------------------------------|-----------|-----------|-------------|----------------------------|---------------------------|-----------|-------------|-----------|---|
| < "<+                                                                                                                | 8,66±0,6I | 9.32±0.13 | 8,82±0,07   | 8, I6±0, I0                | 7.22±0.06                 | 5,50±0,15 | 5,350,03    |           |   |
| $\langle \cdot \cdot \rangle$                                                                                        | 7,5840,60 | 8,00±0,I0 | 7,36±0,05   | 7,24±0,10                  | 6,32±0,06                 | 5,48±0,15 | 5,21±0,03   | 7,8840,08 |   |
| <"">                                                                                                                 | 3,4440,27 | 3,67±0,06 | 3,54±0,02   | 3,44±0,06                  | 3,24±0,03                 | 2,92±0,08 | 2,92+0,02   | 3.69±0,04 |   |
| ¢.∎>                                                                                                                 | 3.4 ± 0.6 | 3,51±0,18 | 3,25±0,05   | 3,2340,15                  | 2,87±0,04                 | 2,59+0,26 | 2,47±0,06   | ı         |   |
| <"">                                                                                                                 | 5         | н         | 0,II0±0,006 | I                          | 0,086±0,005               | I         | 0,059±0,006 | ı         |   |
| WAA                                                                                                                  | H         | 0,063+.   | 0,0014      | 0,0154                     | -6000°0                   | i         | ı           | 1         |   |
| $\langle P \rangle$                                                                                                  | 3,08±0,42 | 3,16±0,12 | •           | 3,2940,11                  | ı                         | 3,57±0,21 | ,           | ,         |   |
| <td></td> <td>9,613+</td> <td>0,5154</td> <td>ŗ</td> <td>0,010</td> <td>ı</td> <td>0.451+</td> <td>,</td> <td>t</td> |           | 9,613+    | 0,5154      | ŗ                          | 0,010                     | ı         | 0.451+      | ,         | t |
| < m                                                                                                                  | 3,24±0.41 | 3,26±0,12 |             | 3,38±0,II                  | '                         | 3,64±0,21 |             | ı         |   |

вероятности рождения \_\_\_\_/в ГзВ/с/,

Jau D

< P\_ >

Â

<Vu>

~ <sup>4</sup>

n\_>, <n\_no

Таблица

Jab

ĥ

Множественности вторичных частиц, <  $n_{ch}>$  , <  $n_{+}>$  , gby  $\Lambda$  ,  $W_{A,A}$  , и средние импульсы  $\Lambda$  -гиперонбв,

двух А. <sup>W</sup> <sub>AA</sub>, и средние импульсы в различных группах соблит.

импульсом υ без протонов заряженных частиц, частиц заряженных BCex число C.DO Ě ch 

<700 MaB/c

3

<sup>\*)</sup> Данные для "N-взаимодействий получены путем статистического усреднения значений для л ри л л -столкновений.

так же, как в кварк-нуклонном; некоторое различие возможно только за счет вклада сравнительно медленных вторичных частиц, перерассеивающихся на ядерных нуклонах, т.е. за счет процессов внутриядерного каскада. Среднее число кварков, неупруго взаимодействующих с ядром в случае налетающего пиона, определяется выражением

$$\langle N_q \rangle \approx 2\sigma_{qA}^{prod} / \sigma_{\pi A}^{prod}$$
, /1/

где  $\sigma^{\text{prod}}$  - сечение с рождением хотя бы одной вторичной частицы, а коэффициент 2 учитывает, что *п* -мезон состоит именно из двух кварков.

Другая точка эрения /вариант В/<sup>/10/</sup> заключается в возможности взаимодействия кварка одновременно с несколькими отдельными нуклонами /например, путем обмена несколькими реджеонами/. Среднее число нуклонов, с которыми неупруго взаимодействует кварк внутри ядра, при этом равно<sup>/10/</sup>

$$\langle v \rangle_{qA} = A \cdot \sigma_{qN}^{in} / \sigma_{qA}^{prod}$$
. /2/

Умножая < $\nu$ > на среднее число взаимодействующих кварков <N<sub>q</sub>>, получаем среднее число ядерных нуклонов, на которых происходит рождение вторичных частиц, в виде

$$\langle N_q \rangle \rightarrow \langle \nu \rangle_{qA} = \frac{A \sigma_{\pi N}^{\text{in}}}{\sigma_{\pi A}^{\text{prod}}} = \langle \nu \rangle_{\pi A}$$
 /3/

Точно такое же значение величины < $\nu >_{\pi A}$  получается при суммировании сечений взаимодействия с данным числом  $\nu$  ядерных нуклонов, которые могут быть вычислены по формулам оптической модели

$$\sigma^{(\nu)} = \frac{1}{\nu!} \int d^2 b [\sigma^{in}_{\pi N} \cdot T(b)]^{\nu} e^{-\sigma^{in}_{\pi N} \cdot T(b)}$$
(4/

$$T(b) = \int \rho(b, Z) dZ, \qquad (5)$$

где  $\rho$  (b,Z) - распределение плотности ядерной материи. Влияние возможных каскадных перерассеяний на характеристики вторичных релятивистских частиц при этом считается пренебрежимо малым. В результате вариант В только несущественными для наших целей деталями отличается от модели многократного рассеяния <sup>(11,12)</sup>.

Как показано в работе<sup>/10/</sup>, совокупность данных по средним множественностям вторичных частиц на ядрах хотя и свидетельствует в пользу варианта B, но не позволяет безусловно отвергнуть первую гипотезу. Основная трудность заключается в том, что неизвестно, сколько вторичных частиц и какие именно рождаются в низкоэнергетическом внутриядерном каскаде. В связи с этим изучение рождения  $\Lambda$ -гиперонов представляет большой интерес, так как, в отличие от  $\pi$ -мезонов, рождение двух  $\Lambda$ на одном нуклоне исключительно маловероятно, и, в отличие от протонов,  $\Lambda$  не вылетают из ядра в качестве слектаторов за счет ферми-движения. Поэтому событие с двумя  $\Lambda$ -гиперонами является заведомо многонуклонным.

Как уже отмечалось, квазинуклонные взаимодействия в группе  $\pi^{-12}$  С -событий являются фоном к многонуклонным, поэтому мы будем рассматривать непосредственно  $\pi^-$ С-взаимодействия. Для этого при расчете следует отбросить 478  $\pi^{-12}$ С -взаимодейсттвий с одним взаимодействующим кварком /вариант А/ или с  $\nu=1$ /вариант В/. Теоретические значения среднего числа взаимодейстетия кварков,  $<\mathrm{N}_q>^{\pi\mathrm{A}}$  и вероятностей неупругого взаимодействия с данным числом  $\nu$ -нуклонов ядра углерода, V( $\nu$ ) =  $=\sigma(\nu)/\sigma_{\pi\mathrm{A}}^{\mathrm{prod}}$  приведены в табл.2. В частности, видно, что при переходе от  $\pi^{-12}\mathrm{C}$  к  $\pi^-\mathrm{C}$ -взаимодействиям, величины  $<\mathrm{N}_q>^{\pi\mathrm{A}}$  и < $\nu>$  существенно увеличиваются, приближаясь к значениям, характерным для соударения пиона с ядром железа.

# Таблица 2

Расчетные значения среднего числа взаимодействующих кварков,  $<N_q>$ , вероятностей неупругого взаимодействия с  $\nu$  нуклонами,  $V(\nu)$ . в  $\pi^{-12}$ С и  $\pi^{-12}$ С событиях

|                                          | 11 <sup>-12</sup> c | 1°C (53≸ 1° <sup>12</sup> C) |
|------------------------------------------|---------------------|------------------------------|
| < nq>                                    | I,16                | 1,30                         |
| ¥(1)                                     | 0,70                | 0,44                         |
| ¥ (2)                                    | 0,20                | 0,38                         |
| ¥(3)                                     | 0,07                | 0,13                         |
| V (4)                                    | 0,02                | 0,04                         |
| v (5)                                    | 0,01                | 0,01                         |
| <>>>                                     | I,44                | I,80                         |
| $\sum C_{\nu}^{*} \cdot \mathbf{V}(\nu)$ | 0,59                | 1,13                         |
|                                          |                     |                              |

Перейдем к сравнению данных опыта с двумя вариантами теории.

#### Вариант А

В случае варианта A множественность A -гиперонов в  $\pi^- C$  столкновениях содержит неизвестный вклад каскадных процессов. Однако величину этого вклада можно определить из опыта. Вероятность рождения A -гиперона в кварк-нуклонном соударении, согласно <u>табл.1</u>, равна  $< n_A >_{\pi^- N} = 0,059\pm0,006$ . Следовательно, множественность A -частиц, образующихся в  $\pi^- C$  -событиях за счет вклада внутриядерного каскада, должна быть равна

$$< n >_{\pi^- C}^{c_{BBC}} = < n_A >_{\pi^- C} - < N_q > + < n_A >_{\pi^- N} = 0.033 \pm 0.009,$$
 /6/

что составляет около 30% всех А-гиперонов, рождающихся в л<sup>-</sup>С -взаимодействиях. Одновременно, согласно <sup>/10/</sup> /с учетом отброшенных квазинуклонных событий/ за счет каскадных процессов рождается 0,9±0,4 релятивистских заряженных частиц /в это число не входят протоны с импульсом ≤700 МэВ/с/.

Из /6/ нетрудно получить среднюю множественность A-гиперонов, рождающихся за счет каскадных перерассеяний вторичных частиц, при взаимодействии одного кварка с ядром углерода:

$$< n_{A_{QC}}^{casc} = < n_{A_{\pi^{-}C}}^{casc} / < N_{Q}^{\pi^{-}C} = 0.025 \pm 0.007.$$
 (7/

Вероятность взаимодействия одного и двух кварков внутри ядра равна соответственно  $2 \sim < N_0 > \pi^{-C} \mu < N_0 > \pi^{-C} - 1$ .

События с двумя A - гиперонами могут происходить либо за счет каскадного вклада при взаимодействии одного кварка с ядром с вероятностью

$$W_1 = (2 - \langle N_q \rangle^{\pi^- C}) \langle n_A \rangle_{\pi^- N} \cdot \langle n_A \rangle_{qC}^{casc} = 0.0010 \pm 0.0003, /8/$$

либо при взаимодействии обоих кварков, вероятность чего равна

$$W_{g} = (\langle N_{q} \rangle^{\pi^{-}C} - 1) [\langle n_{A} \rangle_{\pi^{-}N} + \langle n_{A} \rangle_{qC}^{caso}] = 0,0021 \pm 0,0005, \qquad /9/$$

В результате долю  $\pi^- C$  событий с двумя  $\Lambda$ -гиперонами получаем равной

$$W_{AA}^{A} = W_{1} + W_{2} = 0.0031 \pm 0.0006$$
, /10/

в то время как экспериментальное значение  ${W}_{\Lambda\Lambda}$  равно 0,0069+0,0014.

Среднее число взаимодействующих кварков в событиях с двумя А -гиперонами оказывается равным

$$< N_q > = \frac{W_1 + 2W_2}{W_1 + W_2} = 1,7,$$
 /11/

т.е. в ~1/3 случаев взаимодействует один кварк, и в ~2/3 случаев – оба кварка. Поэтому отношение множественностей фрагментационных частиц с  $\mathbf{x} = 1/2$  в  $\pi^- \mathbf{C}$ -взаимодействиях с рождением  $2\Lambda$  и в  $\pi^- \mathbf{N}$  соударениях должно быть ~ $1/3^{-/6/2}$ . К сожалению, бедность статистики не позволяет проверить это предсказание.

В рассматриваемом варианте А кварковой модели можно также вычислить средние множественности вторичных частиц сопровождения, например, <n\_>, в событиях с одним и с двумя A -гиперонами. Следуя работе<sup>/10</sup>. будем считать, что множественность отрицательно заряженных вторичных частиц в центральной области и в области фрагментации мишени пропорциональна среднему числу взаимодействующих кварков. Учтем, что в нашем случае множественность отрицательно заряженных частиц в области фрагментации налетающего пиона <nf >  $\approx 1,2^{/10,18/}$ , тогда для различных групп событий значения <n\_ > оказываются равными

$$< n_{-} >_{\pi^{-} 12_{C}} = < n_{-}^{f} > + < N_{q} > [< n_{-} >_{\pi^{-}N} - < n_{-}^{f} >]_{\pi^{-}} 3,20$$
 /12/

$$_{\pi^{-}C} =  + ^{\pi^{-}C} [_{\pi^{-}N} - ] = 3,44$$
 /13/

$$< n_{-} > \frac{\Lambda}{n-12} = < n_{-}^{f} > + (2 < N_{q} > -1)[< n_{-} > \frac{\Lambda}{n-N} - < n_{-}^{f} > ] = 8,47$$
 /14/

$$< n > A = < n f > + (\ell < N_q > -1)[< n > A = < n f > ] = 3.95$$
 /15/

Из сравнения с данными <u>табл.1</u> видно, что величины  $<n_{-}>_{\pi} - 12_{C}$ и  $<n_{-}>_{\pi} - 12_{C}$ согласуются с опытом, однако значительного увеличения  $<n_{-}>$  в  $\pi^{-}C$  событиях с наличием  $\Lambda$  -гиперонов по сравнению со всеми  $\pi^{-}C$  соударениями в эксперименте при 40 ГэВ/с не наблюдается. В оценках /12/-/16/ считалось, что каскадные перерассеяния дают пренебрежимо малый вклад в <n\_>. Если принять, что каскадное рождение А-гиперонов связано с поглощением  $\pi^-$ мезонов, например, в процессах типа  $\pi^-$ + p  $\rightarrow$  A+K°, то значения <n  $\geq \pi^-$ с и <n $\geq \Lambda A$  уменьшатся, однако одновременно уменьшится и величина <n $\geq \pi^-$ с /13/, которая и без того меньше, чем на опыте.

#### ВАРИАНТ В

В случае варианта В величины  $< n_A >_{\pi^-C}$ ,  $\Psi_{AA}$  и средние множественности частиц сопровождения могут быть вычислены. Среднее число A -гиперонов в  $\pi^-C$ -событиях предсказывается равным

$$< n_{\Lambda} >_{\pi = C} = < \nu >_{\pi = C} \rightarrow < n_{\Lambda} >_{\pi = N} = 0.106 \pm 0.011$$
, /17/

в хорошем согласии с экспериментальным результатом, равным 0,110+0,06. При вычислении доли событий с двумя A-гиперонами необходимо учитывать комбинаторный множитель. Например, в случае неупругого взаимодействия с тремя нуклонами, A-частицы могут родиться на любой их паре, т.е. тремя способами. В результате

$$W_{\Lambda\Lambda}^{(B)} = \left[ < n_{\Lambda} > - \frac{1}{N} \int_{\nu=2}^{2} C_{\nu}^{A} \cdot V(\nu) = 0.0039 \pm 0.0008, \quad (18)$$

что несколько выше, чем в случае варианта А /10/.

Средние множественности вторичных частиц во взаимодействиях с рождением двух  $\Lambda$ -гиперонов в варианте В также ожидаются большими, чем в среднем  $\pi^-C$  событии. Например, расчет по модели многократного рассеяния  $^{/11,12/}$  дает  $< n_{-\pi^-12}C = 3,28$ ,  $< n_{-\pi^-C} = 3,62, < n_{-\pi^-12}C = 3,61, < n_{-\pi^-C} = 3,96, < n_{-\pi^-C} = 4,53.$  Здесь, так же как и в случае варианта A, /12-/16/, ожидается значительное увеличение  $< n_{-} >$  в событиях с присутствием  $\Lambda$ -гиперонов, которое на опыте не наблюдается.

Другой интересной величиной является значение среднего импульса А-гиперона в различных группах событий. В случае варианта А, согласно /6/, около 30% А-гиперонов в π<sup>-</sup> С взаимодействиях должны рождаться в каскадных процессах. С другой стороны, вся совокупность имеющихся данных показывает/1,14/ что в каскадных процессах могут принимать участие лишь сравнительно медленные вторичные частицы - с импульсами ≤ 3-4 ГэВ/с, а возможно, и еще меньше. Тогда средний продольный импульс  $\Lambda$ -гиперонов, образующихся в таких процессах, будет не более 1-1,5 ГэВ/с, и тридцатипроцентный вклад их в  ${}^{n}\Lambda{}^{>}_{\pi}$  по сравнению с  ${}^{n}N$ -соударениями. В случае варианта В, в котором увеличение множественности  $\Lambda$ -гиперонов происходит за счет многонуклонных взаимодействий, напротив, заметного изменения  ${}^{e}P_{II}^{A}$  ожидать не следует, так как каждый нуклон мишени может фрагментировать в  $\Lambda$ -частицу независимо от взаимодействий с другими нуклонами. Экспериментальные данные по  ${}^{e}P_{II}^{A}$ , приведенные в табл.1, по-видимому, не позволяют сделать выбор между этими двумя вариантами.

Представляет интерес также возрастание  $< P_{\perp}^{\Lambda} >$  при переходе от  $\pi$  N к  $\pi^{-12}$ С, и затем к  $\pi$  С -взаимодействиям, что может быть связано с ферми-движением ядерных нуклонов. Менее понятно увеличение  $< P_{\perp}^{\Lambda} >$  в  $\pi^-$ С -событиях с двумя  $\Lambda$  по сравнению с  $\pi^-$ С -взаимодействиями с одним  $\Lambda$ -гипероном. В частности, это может указывать на упругие перерассеяния родившихся  $\Lambda$ -частиц внутри ядра.

### 4. ЗАКЛЮЧЕНИЕ

Таким образом, оба варианта кварковой модели дают меньшее значение WAA , чем наблюдается на опыте, причем вариант В несколько ближе к экспериментальному значению. При этом в варианте А необходимо считать, что около 30% всех А -гиперонов в "С столкновениях рождаются за счет каскадных перерассеяний вторичных частиц. Вероятность неупругого взаимодействия вторичных незонов в л С -соударениях может быть оценена по оптической модели и оказывается ~0.5. Множественность А -гиперонов в пион-нуклонных столкновениях при энергии в несколько ГэВ примерно вдвое меньше, чем при 40 ГэВ/с/15/ Тогда оказывается, что в каскадных перерассеяниях должны участвовать. в среднем, два вторичных мезона. Это число представляется весьма большим, если принять во внимание, что основная доля вторичных частиц, по-видимому, рождается при распаде резонансов. Было бы интересно провести здесь более детальные расчеты.

Оба варианта предсказывают значительное увеличение <n\_> в случае рождения одного и, тем более, двух A -гиперонов. С ростом атомного веса ядра мишени этот эффект должен возрастать. Так, для взаимодействий  $\pi^-$  -мезонов с ядрами свинца при 40 ГэВ/с в рамках варианта В ожидается <n\_>  $\pi^-$  - Pb =4,24, <n\_>  $\pi^-$  Pb =5,02, <n>  $\pi^-$  Pb =5,78. На опыте в  $\pi^-$  С -соударениях при 40 ГэВ/с такого увеличения в пределах ошибок не наблюдается. Это может означать либо то, что энергия 40 ГэВ недостаточно высока и учет законов сохранения является более существенным, чем предполагалось в расчетах, либо то, что механизм многонуклонных соударений более сложен.

Авторы благодарят М.И.Стрикмана и В.М.Шехтера за полезные обсуждения.

## ЛИТЕРАТУРА

- Шабельский Ю.М. Физика элементарных частиц. Материалы XIII Зимней школы ЛИЯФ. Л., 1978, с.90.
- 2. Ангелов Н.С. и др. ЯФ, 1977, 26, с.811.
- 3. Ангелов Н.С. и др. ЯФ, 1978, 28, с.999.
- 4. Anisovich V.V. Phys.Lett., 1975, 57B, p.87.
- 5. Bialas A., Czyz W., Furmanski W. Acta Physica Polonica, 1977, B8, p.585.
- Anisovich V.V., Shabelski Yu.M., Shekhter V.M. Nucl.Phys., 1978, B133, p.477.
- 7. Nikolaev N.N. Phys.Lett., 1977, B70, p.95.
- Анисович В.В., Лепехин Ф.Г., Шабельский Ю.М. ЯФ, 1978, 27, с.1639.
- Nikolaev N.N., Ostapchuk A.Yu. Preprint TH.2575, CERN, Geneva, 1978.
- Shabelski Yu.M., Shekhter V.M. Preprint LNPT, No.524, 1979.
- 11. Shabelski Yu.M. Nucl. Phys., 1978, B132, p.491.
- 12. Бацкович С. и др. ЯФ, 1977, 26, с.1034.
- 13. Шехтер В.М., Щеглова Л.М. ЯФ, 1978, 27, с.1070.
- 14. Aliev F.K. et al. Lett. Nuovo Cim., 1978, 23, p.212.
- 15. Джмухадзе С.В. и др. ОИЯИ, Р1-10704, Дубна, 1977.

Рукопись поступила в издательский отдел 5 мая 1980 года.