

Объединенный институт ядерных исследований дубна

1 21

3742/

P1-80-314

Д. Армутлийски, Н. Ахабабян, Л. Грекова

ПОДОБИЕ РАСПРЕДЕЛЕНИЙ ПО МНОЖЕСТВЕННОСТИ ВТОРИЧНЫХ ЧАСТИЦ, ОБРАЗОВАННЫХ В рС- И рТа-СОУДАРЕНИЯХ ПРИ ИМПУЛЬСЕ 2÷10 ГэВ/с

Направлено в "Болгарский физический журнал"



## 1. ВВЕДЕНИЕ

Повышенный интерес к исследованиям взаимодействий релятивистских ядер, который намечается в настоящее время, обусловлен поиском эффектов, протекающих в экстремальных условиях. Однако эти трудно обнаруживаемые явления не исключают, а наоборот, предполагают детальное изучение основных характеристик ядроядерных взаимодействий при высоких энергиях. Шаг в этом направлении - систематический и детальный анализ процессов адрон-ядерных соудэрений при соответствующих энергиях. Хотя взаимодействия этого типа изучаются давно и при очень высоких энергиях /космические лучи/, нетодические особенности этих исследований не позволяют провести детального анализа характеристики таких процессов. Исследования на ускорителях, которые в первую очередь были направлены на изучение акта элементарного взаимодействия, только в последнее время были использованы для проведения некоторых экспериментов с целью систематического изучения процессов адрон-ядерного и ядро-ядерных столкновений.

В настоящей работе на основе методики пузырьковых камер исследовано подобие в распределениях по множественности вторичных частиц, образованных при взаимодействиях протонов с импульсом от 2 до 10 ГэВ/с с ядрами углерода и тантала.

# 2. МЕТОДИКА ПОЛУЧЕНИЯ ЭКСПЕРИМЕНТАЛЬНЫХ ДАННЫХ

Экспериментальный материал получен на основе данных визуальной идентификации треков на фотографиях, полученных на 2-метровой пропановой пузырьковой камере ЛВЭ ОИЯИ<sup>/17</sup>. В рабочем объеме камеры были размещены три пластинки из тантала толщиной 0,8 мм, и камера облучалась на синхрофазотроне Лаборатории высоких энергий в пучке протонов с импульсами 2,3; 4,2; 5,4 и 9,9 ГэВ/с. были отобраны 7821 взаимодействие в пропане и 4183 события на танталовой мишени.

Наличие магнитного поля при облучении камеры и информация об ионизационной способности частиц позволили разделить их на следующие группы:

а/ отрицательные частицы, в основном 7 - мезоны;

б/ медленные положительные частицы с повышенной ионизацией и с импульсом меньше 700 МэВ/с (Р<sub>мел</sub>);

00ъст і знавай вистичня влерных теглесовліції Беннолі кот сіта 1

в/ релятивистские положительные частицы, в основном протоны с импульсом больше 700 МзВ/с (Р<sub>рел</sub>) и

г/ идентифицированные \*\*-мезоны с импульсом меньше 700 МэВ/с.

Примесь отрицательных странных частиц и электронов не превышает 3%, а точность разделения положительных частиц на три указанных типа зависит от импульса падающего протона, но не превышает 10% при 9,9 ГзВ/с. Методические особенности, связанные с обработкой событий взаимодействия релятивистских ядер в пропановой камере, описаны в /1/.

Пропановое наполнение камеры и наличие танталовой мишени предоставляет возможность изучать и сравнивать взаимодействия протонов с легкими и тяжелыми ядрами. Однако выделение событий взаимодействия протонов с углеродом в пропане имеет свои особенности. Использованная процедура вычитания<sup>2</sup> характеристик протон-нуклонных взаимодействий, полученных с помощью другой эксперинентальной методики, пригодна только для определения множественности вторичных отрицательных частиц. Так как в настоящей работе рассматриваются все вторичные заряженные частицы, то события на углероде выделяются на основе процесса

$$p + [C_{3}H_{8}] \rightarrow p_{Meg} + p_{Meg} + a_{i} + ...,$$
 /1/

где а<sub>i</sub>= π, р<sub>рел</sub>, р<sub>мед</sub>.

Для сравнения взаимодействий на легком и тяжелом ядрах события на тантале выбирались при аналогичном условии:

$$p + Ta \rightarrow p_{Med} + p_{Med} + a_i + \dots$$
 /2/

Это условие выделяет неупругие соударения с относительно малым прицельным параметром, уменьшая вклад периферических соударений. Как было указано в  $^{/3/}$ , зависимость средних множественностей вторичных частиц от числа недленных протонов почти не меняется при вриед  $\geq 3$ . В настоящей работе анализ данных всегда проводился раздельно для реакций /1/ и /2/. В случае статистической неразличимости рассматриваемых характеристик данные приводятся совместно.

Как известно, установление подобия в распределении по множественности сводится к установлению независимости топологических сечений в -частичных инклюзивных процессов от энергии, предсказанной Коба, Нильсеном и Оласеном <sup>/4/</sup> в форме соотношения

$$< n > \frac{\sigma_n(s)}{\sigma_{in}(s)} \xrightarrow[s \to \infty]{} \Psi(\frac{n}{< n}).$$
 (3/

Анализ данных по множественности всех заряженных вторичных частиц, образованных в адрон-адронных взаимодействиях, подтвердил выполнение этой зависимости для энергии свыше 50 ГаВ/с<sup>/5/</sup>.Бюрас и др.<sup>6/</sup> установили, что введение переменной

$$z' = \frac{n - \alpha}{\langle p - \alpha \rangle}$$
 /4/

приводит /3/ к представлению

$$\langle n-\alpha \rangle \frac{\sigma_n}{\sigma_{in}} = \Psi'\left(\frac{n-\alpha}{\langle n-\alpha \rangle}\right), \qquad (5/$$

которое проявляет тоже скейлинговые свойства. Величина α является параметром, не зависящим от энергии первичной частицы, но имеющим разные значения для разных сортов вторичных частиц. Такая модификация КНО-скейлинга хорошо описывает данные по множественности всех заряженных частиц, образованных в адрон-адронных взаимодействиях при энергии Е ≥ 4 ГэВ и в протон-ядерных реакциях при больших энергиях <sup>77</sup>.

Эквивалентное КНО-скейлингу выражение

$$\frac{D_{q}}{\langle n \rangle} = C_{q} = \text{const.} \quad (q=2,3,...), \qquad /6/$$

где

$$D_q = \sqrt[q]{(n - \langle n \rangle)^q}$$
, /7/

при введении параметра а преобразуется в

$$\frac{D_q}{\langle n-a_q \rangle} = A_q = \text{const}.$$
 /8/

Параметр а определяется из аппроксимации экспериментальных данных линейной зависимостью:

$$D_{q} = A_{q} (\langle n \rangle - a_{q}).$$
 /9/

Такин способом в работе<sup>/8/</sup> было показано подобие в распределении по множественности вторичных отрицательных частиц, образованных при взаимодействиях р, d, Не и С с ядрами углерода и р, d и Не с ядрами тантала при импульсе налетающего ядра 4,2 ГэВ/с.нукл.

В настоящей работе этот подход применяется для изучения подобия в распределениях разных видов вторичных частиц, образованных в протон-ядерных взаимодействиях при импульсе от 2 до 10 ГзВ/с.



<u>Рис.1.</u> Зависимость  $D_q$  от <n> для отрицательных  $\pi$  -мезонов, образованных в реакциях /1/ и /2/: — - аппроксимация линейной зависимости.

3. ПОДОБИЕ В РАСПРЕДЕЛЕНИИ ВТОРИЧНЫХ ОТРИЦАТЕЛЬНЫХ ПИОНОВ

На рис.1 показаны зависимости  $\overline{D}_2$ ,  $\overline{D}_3$  и  $\overline{D}_4$  от средних значений множественности вторичных  $\pi$  -мезонов, образованных в реакциях /1/ и /2/. Видна хорошая линейная аппроксимация для всех вышеуказанных  $\overline{D}_q$  и для двух рассматриваемых реакций. В табл.1 представлены величины /6/ и /8/ для этих

Таблица 1

| Pp<br>'9B/c           | At | <n<sub>n&gt;</n<sub> | D <sub>2</sub> / <n></n> | D2/ <n-a2></n-a2> | D3/ <n-a></n-a> | $D_{4/$    |
|-----------------------|----|----------------------|--------------------------|-------------------|-----------------|------------|
| 2,3                   | C  | 0,15±0,02            | 2,42±0,25                | 0,54±0,04         | 0,28±0,04       | 0,85±0,08  |
|                       | Te | 0,16±0,02            | 2,43±0,31                | 0,54±0,04         | 0,27±0,04       | 0,64±0,06  |
| 4,2                   | C  | 0,46±0,03            | 1,35±0,08                | 0,61±0,03         | 0,29±0,03       | 0,65±0,05  |
|                       | Ta | 0,52±0,03            | 1,24±0,07                | 0,60±0,03         | 0,29±0,03       | 0,65±0,05  |
| 5,4                   | C  | 0,69±0,03            | 1,05±0,05                | 0,56±0,03         | 0,33±0,05       | 0,63±0,04  |
|                       | Ta | 0,77±0,03            | 1,02±0,05                | 0,60±0,03         | 0,30±0,03       | 0,66±0,04  |
| 9,9                   | C  | I,21±0,07            | 0,82±0,06                | 0,56±0,04         | 0,31±0,03       | 0,67±0,06  |
|                       | Ta | I,46±0,05            | 0,76±0,04                | 0,55±0,03         | 0,31±0,03       | 0,65±0,04  |
| aq                    |    |                      |                          | -0,58±0,02        | -1,48±0,22      | -0,82±0,07 |
| X <sup>2</sup><br>NDF |    |                      |                          | 2,23              | 2,55            | 1,19       |

процессов. Тогда как отношение  $D_q/<n> значи$ тельно уменьшается, отно $шение <math>D_q/<n-\alpha>$  для рассмотренных q = 2,3,4 остается постоянным в пределах статистических ошибок, что указывает на подобие в распределениях вторичных  $\pi^-$ -мезонов в представлении /8/ в интервале импульсов налетающих протонов от 2 до 10 Гэ8/с, независимо от типа ядра мишени.



На <u>рис.2</u> представлена зависимость /5/ для вторичных отрицательных частиц, образованных в рассматриваемых столкновениях, с параметром a = -0.7, полученным на основе усреднения со статистическим весом трех полученных  $a_q$ . Сплошной линией показана аппроксимация функций  $\Psi'(z')$  в виде предложенной в работе <sup>(8/</sup>):

$$P'(z') = a(z'+b)exp(-cz'-dz'^2).$$
 (10/

Полученные значения для параметров a = 4,15±0,34; b = 0,18±0,02; c = 0,83±0,09 и d = 0,41±0,03 при  $\chi^2$ /NDF = 1,94 сравнимы с полученными в <sup>/8/</sup> при аппроксимации распределения вторичных отрицательных пионов, образованных в ядро-ядерных соударениях при 4,2 Гэв/с. Небольшую разницу значений:  $a_{\rm S,S}$ =-0,6, полученное при этом рассмотрении,  $a_{\rm pp}$  = -0,5, следующее из зависимости Врублевского <sup>/9/</sup> для pp -взаимодействия в очень широком энергетическом интервале, и  $a_{\rm a,S}$ =-0,7, полученное в настоящей работе, можно рассматривать как вклад образования  $\pi^-$ -мезонов на нейтронах ядра-мишени. Это указывает на единый, в основном независимый нуклон-нуклонный процесс образования отрицательных пионов в рассматриваемых протон-ядерных соударениях в интервале импульсов 2÷10 Гэв/с.

### 4. ПОДОБИЕ В РАСПРЕДЕЛЕНИЯХ ВТОРИЧНЫХ ПРОТОНОВ

Физические основания поиска подобия в распределениях различных типов вторичных частиц связаны с механизмом их образования. Основная часть медленных протонов, образованных в рассматриваемых процессах, - результат развала ядра и "хвоста" ферми-импульсов нуклонов-мишени и других процессов. Релятивистские протоны выбиты в актах неупругих столкновений падающего адрона с нуклонами ядра-мишени. Конечно, четкое разграничение вторичных частиц по механизму их образования тесно связано с методическими особенностями эксперимента, и разделение вторичных протонов на "медленные" и "релятивистские", как и принятая граница 700 МзВ/с, является условным. Поэтому все дальнейшие рассмотрения подобия в распределениях этих частиц имеют предварительный и иллюстративных характер.

В табл.2 представлены как отношения /6/ и /8/ для вторичных релятивистских положительных частиц, образованных в реакциях /1/ и /2/, так и сами значения  $a_q$ ,  $\chi^2$ /NDF, полученные при линейной аппроксимации зависимостью /9/. И для этого вида вторичных частиц, вопреки значительному изменению отношения  $D_q/<n>, отношение <math>D_q/<n-a_q > (q=2,3,4)$  в пределе статистических ошибок остается постоянным. На рис.3 представлена зависимость /5/ с a=-1,0 и аппроксимация этого распределения с функцией вида /10/. Полученные при этом параметры имеют значения: a=3,40+0,28; b=0,21+0,02; c=0,31+0,05 и d== 0,88+0,04 при  $\chi^2/NDF=3,43$ .

Выполнение условия /1/ для выделения событий на углероде не позволяет рассматривать подобие для вторичных медленных протонов р<sub>мед</sub>, образованных при соударениях первичного протона с ядрами углерода. Для этого мы рассматриваем зависимости моментов распределения этих частиц только в реакции /2/.

В табл.3 представлены те же отношения /6/ и /8/, а также параметры линейной аппроксимации зависимостью /9/. Постоянство отношения /8/ получается при положительных значениях параметра  $a_q$ . Для усредненного значения  $a = \pm 1.3$  построена зависимость /5/, показанная на рис. 4. Аппроксимация с помощью функции /10/ показана штриховой кривой; лучшая аппроксимация по-лучается зависимостью типа

$$\Psi''(z') = g \exp(-f z' - h z'^2),$$
 (11/

показанная сплошной кривой на <u>рис.4</u>. При этом получаются значения параметров: g = 0,66+0,05; f = 0,12+0,04 и h = 0,29+0,05 при  $\chi^{2}/\text{NDF}$ =1,59.

Таблица 2

| P <sub>p</sub><br>FaB/c | A. | <n<sup>+<sub>рел</sub> &gt;</n<sup> | Dg/ <n></n>        | D <sub>2/</sub> <n-a<sub>2&gt;</n-a<sub> | D <sub>3/</sub> <n-a<sub>3&gt;</n-a<sub> | D4/ <n-a4></n-a4> |
|-------------------------|----|-------------------------------------|--------------------|------------------------------------------|------------------------------------------|-------------------|
| 2,3                     | C  | 0,36 <u>+</u> 0,02                  | 1,69 <u>+</u> 0,13 | 0,53 <u>+</u> 0,03                       | 0,38±0,05                                | 0,64±0,08         |
|                         | Te | 0,40±0,03                           | 1,38±0,10          | 0,47 <u>+</u> 0,03                       | 0,31±0,04                                | 0,58±0,06         |
| 4,2                     | C  | 0,91±0,03                           | 0,98±0,05          | 0,52±0,03                                | 0,35±0,04                                | 0,66±0,05         |
|                         | Ta | 1,20±0,04                           | 0,79±0,06          | 0,45±0,02                                | 0,30±0,03                                | 0,56±0,04         |
| 5,4                     | C  | 1,22±0,04                           | 0,88±0,05          | 0,53±0,03                                | 0,38±0,05                                | 0,63±0,07         |
|                         | Ta | 1,34±0,04                           | 0,77±0,05          | 0,55±0,04                                | 0,36±0,04                                | 0,66±0,05         |
| 9,9                     | C  | 2,16±0,11                           | 0,75±0,05          | 0,55±0,04                                | 0,37±0,05                                | 0,68±0,04         |
|                         | Te | 3,07±0,08                           | 0,62±0,03          | 0,48±0,03                                | 0,37±0,04                                | 0,65±0,10         |
| a q                     |    |                                     |                    | -0,80±0,05                               | -1,52±0,01                               | -0,94±0,10        |
| x <sup>2</sup> /NDF     |    |                                     |                    | 2,32                                     | 2,51                                     | 2,73              |

#### 5. ЗАКЛЮЧЕНИЕ

Таким образон, анализ распределений по множественности различных типов вторичных частиц, образованных при столкновениях протонов с импульсами от 2 до 10 ГэВ/с с ядрами углерода и тантала,дает возможность установить некоторые общие закономерности, не зависящие от атомного веса ядра-мишени и энергии взаимодействия /в рассматриваемом интервале импульсов/:

- имеется линейная зависимость между моментами распределений  $D_{\alpha}$  и средней множественности частиц <n > (q=2,3,4);

- увеличение энергии столкновения приводит к увеличению средней множественности различных видов вторичных частиц, и значение отношения  $D_q/<a> уменьшается. Введение параметра а приводит к постоянству отношения <math>D_q/<a>, что указывает на подобие в распределениях по множественности в использованном представлении;$ 



<u>Рис.3</u>. Распределение /5/ с а<sub>рел</sub> = -1,0 для вторичных релятивистских протонов, образованных в реакциях /1/ и /2/: — - аппроксимация функцией вида /10/.

- распределения "модифицированного КНО-скейлинга"  $\leq n-\alpha > \frac{\sigma_n}{\sigma_n} = \Psi'(\frac{n-\alpha}{\sigma_n})$ для

σ<sub>in</sub> <n-α> рожденных отрицательных пионов и вторичных релятивистских протонов аппроксимируются четырехпараметрической функцией /10/; медленные протоны, образованные в pTaстолкновениях, тоже хорошо описываются зависимостями вида /11/.

Таблица 3

| and the second s | 1   |                         |                        |                   |                   |                                           |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-------------------------|------------------------|-------------------|-------------------|-------------------------------------------|
| ₽ <sub>p</sub><br>Г∋B/с                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | A ; | <п <sup>+</sup><br>мед> | D <sub>2/<n></n></sub> | $D_{2/(n-a_{2})}$ | D3/ <n-a3></n-a3> | D <sub>4/<n-a4< sub="">&gt;</n-a4<></sub> |
| 2,3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Ta  | 3,09±0,06               | 0,38 <b>±9</b> ,02     | 0,82±0,10         | 0,68±0,12         | 0,96±0,15                                 |
| 4,2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Та  | 4,10±0,08               | 0, <b>47±</b> 0,02     | 0,79±0,08         | 0,64±0,10         | 0,91±0,12                                 |
| 5,4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Та  | 4,9640,10               | 0,54±0,02              | 0,82±0,06         | 0,69±0,08         | 0,98±0,10                                 |
| 9,9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Te  | 5,58±0,13               | 0,58±0,02              | 0,62±0,06         | 0,69±0,08         | 0,98±0,10                                 |
| αq                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |     |                         |                        | 1,68±0,22         | 1,19+0,45         | 1,24±0,37                                 |
| x <sup>ź</sup> / <sub>NDF</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |                         |                        | 0,70              | 1,28              | 1,51                                      |

Рис.4. Распределение /5/ с а мед =+1,3 для вторичных медленных протонов, образованных в реакции /2/: - - - подгонка под функцию вида /10/; --- аппроксимация функцией вида /11/.

Пока трудно интерпретировать вводимый параметра, как и его различные значения, получаемые для разных видов вторичных частиц. Близкие значения параметров а для вторичных п<sup>-</sup> мезонов, образованных в адрон-адронных, протонядерных и ядро-ядерных взаимодействиях, указывают на единую природу их рождения, в основном в актах независимых однонуклонных взаимодействий.



Авторы выражают свою глубокую благодарность В.Г.Гришину за интерес и поддержку в работе и участникам сотрудничества по изучению множественных процессов за полезные обсуждения.

#### ЛИТЕРАТУРА

- 1. Ангелов Н. и др. ОИЯИ, 1-12424, Дубна, 1979.
- 2. Ангелов Н. и др. ОИЯИ, Р1-12281, Дубна, 1979; ЯФ, 1979, 30, с.1590.
- 3. Ангелов Н. и др. ОИЯИ, Р1-10779, Дубна, 1977; ЯФ, 1978, 27, с.1020.
- 4. Koba Z., Nielsen H., Olessen P. Nucl.Phys., 1972, B40,p.317.
- Slattery P. Phys.Rev.Lett., 1972, 29, p.1624; Phys.Rev., 1973, D7, p.2073.
- Buras A., Dias de Deus J., Moller R. Phys.Lett., 1973, 77B, p.251.
- 7. Kaur M. et al. Nuovo Cim., 1978, 45A, p.161.
- 8. Ахабабян Н., Грекова Л. ОИЯИ, Р1-12566, Дубна, 1979; Болгарский физический журнал, 1980,7, вып.1, с.39.
- Wroblewski A. In: Proc. of the 8th Int.Symp. on Multiparticle Dynamics. Kaysserberg, France, 1977.

# Рукопись поступила в издательский отдел 24 апреля 1980 года.

8