

2397/2-80

Объединенный институт ядерных исследований

дубна

2/6-80 P1-80-141

Н.С.Ангелов, В.Г.Гришин, Р.А.Кватадзе

ОБРАЗОВАНИЕ МНОГОПИОННЫХ СИСТЕМ В ПИОН-НУКЛОННЫХ СОУДАРЕНИЯХ ПРИ Р=40 ГэВ/с

Направлено в ЯФ

1. Введение

В работе обсуждаются характеристики многопионных систем $(m\pi)$, образованных в соударениях адронов. Как следует из работ $^{1-8}$, при высоких энергиях происходит обильное образование резонансов, продукты распада которых составляют (50-80)% от наблюдаемых в конечном состоянии частиц. С другой стороны, выделить резонансы при большой множественности вторичных заряженных частиц (<n $_{eh}$ >>6) трудно, что связано с сильным ростом числа случайных /фоновых/ комбинаций с увеличением n_{eh} . Обычно величина "сигнала" от резонансов над фоном не превышает 10%. Поэтому характеристики многопионных систем в основном определяются случайными комбинациями пионов и отражают общие свойства процесса множественной генерации частиц. Изучение характеристик ($m\pi$) -систем важно для проверки ряда теоретических моделей.

В последние годы появились экспериментальные работы ${}^{(4,5)'}$, в которых изучаются поведение частиц (π, K°) и резонансов $(\rho^{\circ}, \omega, f)$ в переменных $E_{\perp} = \sqrt{P_{\perp}^2 + M^2}$ и Y*, где E_{\perp} – поперечная энергия, P_{\perp} – поперечный импульс, M – масса и Y* – продольная быстрота в системе центра масс. Оказалось, что в центральной области зависимость неинвариантного дифференциального сечения образования адронов от E_{\perp} удовлетворительно описывается формулой:

$$\frac{1}{\pi E^*} - \frac{d\sigma}{dE_{\perp}^2} = A \cdot \exp[-(E_{\perp} - M)/T], \qquad (1/$$

где ${
m T}$ – параметр, слабо зависящий от типа частиц и резонансов, приблизительно равный ${
m T}$ = 120-130 МэВ.

В работах $^{6,7/}$ было показано, что такой же характер зависимости от E_{\perp} наблюдается и для (m π) -систем, образованных в пион-нуклонных взаимодействиях при P = 40 ГэВ/с, где значение параметра T слабо зависит от заряда и эффективной массы системы.

В данной работе суммируются результаты, полученные при изучении свойств многопионных систем, образованных в $\pi^{-}p - \mu$ $\pi^{-}n$ взаимодействиях при P = 40 ГэВ/с, и обсуждается вопрос о причинах появления универсальной зависимости /1/.

Экспериментальный материал был получен с помощью двухметровой пропановой пузырьковой камеры ЛВЭ ОИЯИ, облученной # -мезонами на ускорителе ИФВЭ. Основные методические особенности эксперимента изложены в работах $^{(8\cdot10)'}$. Отметим, что все вторичные заряженные частицы, за исключением протонов в интервале импульсов 0,15 ГэВ/с $\leq\!P_{\rm ABO} \leq\!0,7$ ГэВ/с, считались пионами. В этом случае примесь неидентифицированных протонов среди вторичных положительных частиц составляет = 15%, а примесь К $^\pm$ -мезонов и Σ^\pm -гиперонов не превышает $(4-5)\%^{(9,10)'}$.

Для анализа было отобрано примерно 17000 л⁻р - и 6000 л⁻п неупругих взаимодействий.

Характеристики многопионных систем, образованных в тр-и тп-взаимодействиях при P = 40 ГэВ/с

Изучалось поведение многопионных систем, образованных в инклюзивных реакциях следующих типов:

$$\pi^- p \rightarrow (m \pi) + X$$
, /2/

 $\pi^{-}n \rightarrow (m\pi) + X,$ /3/

где т - число пионов в системе (т = 1,2,3,4).

Исследовался вопрос о зависимости поперечного импульса $(m\pi)$ -систем от заряда системы (Q), эффективной массы и m, а также от типа мишени (p,n).

Для иллюстрации на рис. 1 показана зависимость среднего поперечного импульса (2π) -систем от эффективной массы при разных зарядах системы. Видно, что средний поперечный импульс растет с ростом эффективной массы системы и в пределах экспериментальных ошибок не зависит от заряда. Здесь и далее на графиках приведены только отдельные характерные статистические ошибки. Такая же картина наблюдается и для трех- и четырехпионных систем.

Зависимость среднего поперечного импульса $\langle P_{\perp} \rangle$ от эффективной массы для двух-, трех- и четырехпионных систем, образованных в $\pi^- p$ -взаимодействиях при P = 40 ГэВ/с с любым зарядом, представлена на <u>рис.</u> 2. Здесь же показано значение среднего поперечного импульса для π -мезонов. В области эффективных масс меньше 2,5 ГэВ поперечный импульс (2π) -систем несколько больше, чем трех- и четырехпионных. При больших массах, возможно, ситуация меняется, но экспериментальные ошибки не позволяют сделать определенных выводов *.

Рис. 1. Зависимость среднего поперечного импульса от эффективной массы для (2*n*) -систем при разных зарядах.

Поперечный импульс (п π)-систем слабо зависит от типа мишени (p, n). На <u>рис.</u> 3 для примера показана зависимость $<P_{\perp}>$ от эффективной массы для двухпионных систем, образованных в π^-p - и π^-n -взаимодействиях.

Рис. 2. Зависимость среднего поперечного импульса от эффективной массы для $(m\pi)$ систем.

^{*}Зависимость $< P_{\perp} >$ от m исчезает при использовании переменной M $_{CB} = M_{-9 \oplus \oplus^+} m \cdot M_{\pi} / ^{6/}$,

Таким образом, средний поперечный импульс многопионных систем растет с увеличением эффективной массы, слабо зависит от числа частиц в системе и в пределах экспериментальных ошибок не зависит от заряда и типа мишени. Следует заметить, что такой же характер зависимости поперечного импульса от эффективной массы наблюдается и для $\mu^+\mu^-$ -пар при $M_{3\rm ch}\mu^+\mu^-$) ≤ 10 ГэВ, образованных в $\pi^-{\rm N}$ и рN-взаимодействиях в широком интервале

Рис. 4. Распределение л - мезонов и (2л) - систем по У*.

энергии ^{/11/}. Известно, что образование $\mu^+\mu^-$ пар происходит в основном за счет механизма Дрелла-Яна ^{/12/}. Поэтому подобное поведение $\mu^+\mu^-$ -пар и ($m\pi$) -систем в зависимости от их поперечного импульса представляет интерес и требует дополнительного анализа. Распределение многопионных систем по продольной быстроте зависит от числа пионов в системе. На <u>рис.</u> 4 представлены распределения π -мезонов и (2π)-систем по <u>Y</u>*. Спектр для пионов значительно шире ($-3,1 \le Y* \le 3,9$), чем для (2π)-систем ($-2,1 \le Y* \le 2,5$), т.е. с увеличением числа частиц в системе их распределения по продольной быстроте сужаются. Аналогичная картина наблюдается для (3π) - и (4π)-систем. Поэтому при m = = 2,3,4 большая часть ($m\pi$)-систем попадает в область |Y*|<1, что для пионов примерно соответствует центральной области.

Аналогичные результаты получены и для полуинклюзивных реакций в лгр – и л п - взаимодействиях /7/.

3. Влияние рождения резонансов на свойства (пл)-систем

Как уже отмечалось, при высоких энергиях рождается много резонансов, поэтому интересно исследовать их влияние на свойства (m л) -систем. В этом разделе мы рассмотрим, как рождение резонансов отражается на распределении двухпионных систем по поперечной энергии. С этой целью были моделированы распады резонансов:

распределение которых задавалось в следующем виде:

$$\frac{\mathrm{dN}}{\mathrm{dP}_{\perp}^{2}} = \mathbf{A} \cdot \exp\left(-\mathbf{B} \mathbf{P}_{\perp}^{2}\right) , \qquad \mathbf{P}_{\perp}^{2} \leq 1.5 \left(\Gamma_{\vartheta} \mathbf{B}/c \right)^{2} \qquad (5)$$

1

$$\frac{\mathrm{dN}}{\mathrm{dY}^*} = \mathrm{C} , \qquad |\mathbf{Y}^*| \le 1 , \qquad /6/$$

где A и C - нормировочные коэффициенты и B = 3,20+0.02/ГэВ/с/. Ошибка параметра B - статистическая и показывает точность, с которой задавалось распределение этих резонансов по P_{\perp}^2 . Эти характеристики распределений резонансов ρ° и K* примерно соот-

* Было моделировано около 10000 распадов р° /или К*/.

ветствуют данным, полученным в $\pi^+ p$ -взаимодействиях при P = 16 ГэВ/с ^{/13/}. Распределение по массам резонансов задавалось в виде релятивистской функции Брейта-Вигнера:

$$\begin{aligned} & \mathrm{BB}(M) = \frac{M^2}{q} \cdot \frac{M_0 \Gamma}{(M^2 - M_0^2)^2 + M_0^2 \Gamma^2}, \\ & \Gamma = \Gamma_0 \left(q/q_0 \right)^{2\ell+1} \left(M_0/M \right), \end{aligned} \tag{77}$$

где для ρ° -мезона $M_0 = 770$ МэВ, $\Gamma_0 = 155$ МэВ и $\ell = 1$; для $K^* - M_0 = 892$ МэВ, $\Gamma_0 = 49,5$ МэВ и $\ell = 1$, q - импульс распад $ного <math>\pi$ -мезона в системе покоя резонанса; q_0 есть q при $M = M_0$. При моделировании предполагалось, что резонансы рождаются неполяризованными.

На <u>рис. 5</u> показано распределение по квадрату поперечного импульса ρ° -мезонов, π -мезонов и (2π) -систем, образованных от распадов разных ρ° -мезонов. Как видно, распределение π -мезонов невозможно описать одним параметром наклона. Для описания этого спектра требуются две экспоненты:

где A_1 , A_2 , B_1 и B_2 - свободные параметры. Такая же картина наблюдается для K° - и π -мезонов, образованных от распадов K^* . Полученные после аппроксимации данных значения параметров B_1 и B_2 представлены в табл. 1. Распределение двухпионных систем, образованных от распадов разных ρ° , по P_{\pm}^2 , удовлетворительно описывается одним параметром наклона B, значение которого B = 2,58+0,02.

Таблица 1

Величины параметра В для резонансов (p°, K*) и их продуктов распада

Тип частицы	В _I и В ₂ (ГаВ/с) ⁻²	χ²/ст.св.
p°	3,20 <u>+</u> 0,02	25/40
.	$\int B_{I} = 24.4 \pm 2.4$	
مراك	$\begin{bmatrix} B_2 \\ = 4,67 \pm 0,04 \end{bmatrix}$	45/40
(2П) от распадов разных ро	2,58 ± 0,02	43/40
K [≮] (892)	3,20 ± 0,02	26/40
$\pi_{\mathbf{k}^{*}}$	$\begin{cases} B_{I} = II, 4 \pm 0, 9\\ B_{2} = 6, 40 \pm 0, 12 \end{cases}$	43/40
K° _κ ∗	$\begin{cases} B_{1} = 8,80 \pm 0,90 \\ B_{2} = 4,30 \pm 0,17 \end{cases}$	136/40
	•	

Далее исследовалась зависимость неинвариантного дифференциального сечения от E_{\perp} для ρ° и К*-резонансов, их продуктов распада и (2π)-систем, образованных от распадов разных ρ° /см. <u>рис. 6 и 7</u>/. Эти спектры аппроксимировались формулой /1/. Полученные значения параметра Т представлены в <u>табл. 2</u>. Видно, что распределение ρ° -мезонов удовлетворительно описывается формулой /1/ с T = 154+1 МэВ. Это означает, что рождение ρ° -мезонов должно повышать значение Т для ($\pi^+\pi^-$)-систем в области эффективной массы ρ° . Однако при высоких энергиях отношение числа ρ° -мезонов к общему числу ($\pi^+\pi^-$)-пар в этом интервале эффективных масс не превышает 10%, и поэтому эффект практически не проявляется ⁷⁶⁷. Следует отметить, что ρ° -мезоны хорошо описываются обеими формулами /1/ и /5/. Если бы доминировал процесс парного рождения ρ° -мезонов, то значение T было бы еще

Значения параметра Т для резонансов (р°, К*) и их продуктов распада

Тип частицы	T / M9B/	Х ² / ст.св.
°مر	I54 <u>+</u> I	33/20
د م آل	139 <u>+</u> I	81/20
(2П) от разных р°	179 <u>+</u> I	36/20
K*(892)	123 ± 1	99/20
JUK+	IOI <u>+</u> I	329/20
K.	112 <u>+</u> I	21/20

К*, невозможно описать одним параметром Т. Величина T = = 112+1 МэВ для К° -мезонов от распадов К* близка к значению Т $_{\rm WKGT}$ (К°) = 119+4 МэВ, полученному в $\pi^- p$ -взаимодействиях при P = 40 ГэВ/с. Поэтому возможно, что образование К°-мезонов происходит в основном за счет распадов К*-резонанса, как и предсказывается в аддитивной кварковой модели $^{(14)}$.

Таким образом, распределение ρ° -мезонов и (2π) -систем, образованных от распадов разных ρ° , удовлетворительно описывается обеими формулами /1/ и /5/. Увеличение значения параметра T, связанного с образованием ρ° -мезонов, в экспериментах практически не проявляется из-за малости "сигнала" от резонанса. Интересно отметить, что "разрушение" корреляции между пионами от распада ρ° -мезонов увеличивает значение T на 25 МэВ /см. табл. 2, (2π) -системы от разных ρ° -мезонов/.

4. Распределения (тл) -систем по полеречной энергии

В работах ^{76,77} было показано, что зависимость неинвариантного дифференциального сечения от поперечной энергии ($m\pi$)-систем, образованных в π^-p - и π^-n -взаимодействиях при P = 40 ГэВ/с, удовлетворительно описывается формулой /1/, где $T \approx 130$ МэВ. Мы исследовали эту зависимость для двухпионных систем в разных интервалах по эффективной массе. При этом брались только те (2π)-системы, для которых каждый π -мезон удовлетворял условиям:

$$|\Psi^{*}| \leq 2$$
 H $P_{\perp} \leq 1$ Fab/c, /9/

что для двухпионных систем примерно соответствует $|Y^*| \leq 1$.

больше, так как T = 179+1 МэВ для (2π)-систем, образованных от распадов разных ρ ° .

Распределение К*-резонанса по поперечной энергии плохо описывается формулой /1/ при ($E_{\perp}-M$) < 0,1 ГэВ, что связано с малой шириной этого резонанса. Пионы, образованные от распадов ρ° и Полученные значения Т представлены в <u>табл. 3</u>. Видно, что имеется слабая зависимость Т от заряда системы, особенно при массах $M_{-9\Phi}d_{\pm} \leq 0,65$ Гэв. Это может быть связано с влиянием резонансов $\omega \to \pi^+\pi^-\pi^-$ и $\eta \to \pi^+\pi^-\pi^0$. Однако, как уже отмечалось в разделе 3, эти эффекты малы.

Таблица 3

Значения параметра T для двухпионных систем в разных интервалах по эффективной массе

Мәфф (ГәВ)	Q	T (Mab)	Х²/ст.св.
0,28-0,45	+2	130 <u>+</u> 1	35/29
	0	118 <u>+</u> 1	62/20
	-2	128 <u>+</u> 1	33/29
0,45-0,65	+2	133 <u>+</u> 1	33/28
	0	127 <u>+</u> 1	61/32
	-2	132 <u>+</u> 1	33/27
0,65-0,90	+2	134 <u>+</u> 2	15/23
	0	130 <u>+</u> 1	40/27
	-2	131 <u>+</u> 2	28/22
0,9-I,4	+2	130 <u>+</u> 2	40/19
	0	125 <u>+</u> I	70/20
	-2	126 <u>+</u> 2	32/18
1;4-2,5	+2	125 <u>+</u> 5	10/10
	0	116 <u>+</u> 2	33/15
	-2	126+5	13/10

 $Q(\Pi^{\dagger}\Pi^{\dagger}) = +2$

 $Q(\Pi^{\dagger}\Pi) = 0$

Q(III) =-2

Интересно посмотреть, насколько универсальность описания (m π) -систем по поперечной энергии определяется корреляциями в образовании пионов. С этой целью были построены спектры двухпионных систем с пионами из разных событий.

При этом брались пионы из области /9/, чтобы влияние законов сохранения энергии-импульса было не очень существенным. Очевидно, что при такой процедуре динамические корреляции между частицами системы существенно разрушаются, что должно привести к увеличению Т /см. раздел 3/. Значения параметра Т для таких систем представлены в табл. 4. Как следует из этой таблицы, величина Т слабо зависит от заряда и эффективной массы системы. Значение этого параметра меньше для реальных (2₇)-систем, чем для

Таблица 4

Значения параметра Т для (2*π*) -систем, полученных с помощью моделирования

Мафф (ГэВ)	Q	т (МэВ)	X2/ст.св
0,28-0,45	+2	137 <u>+</u> 1	31/33
	0	136 <u>+</u> 1	54/40
	-2	134 <u>+</u> 1	35/35
0,45-0,65	+2	140 <u>+</u> 1	42/32
	0	136 <u>+</u> 1	20/20
	-2	136 <u>+</u> 1	60/32
0,65-0,90	+2	140 <u>+</u> 1	45/29
	0	140 <u>+</u> 1	31/20
	-2	135 <u>+</u> 1	51/29
0,9-1,4	+2	I36 <u>+</u> 2	42/23
	0	137 <u>+</u> 2	73/20
	-2	135 <u>+</u> 2	46/20
1,4-2,5	+2	134 <u>+</u> 2	43/15
	0	128 <u>+</u> 2	68/20
	-2	132 <u>+</u> 2	40/14

моделированных, т.е. нарушение корреляции между частицами системы приводит к увеличению параметра Т /см. табл. <u>3</u> и <u>4</u>/. Такая же картина наблюдается и для трехпионных систем.

Таким образом, зависимость неинвариантного дифференциального сечения от поперечной энергии как для реальных, так и для моделированных ($m\pi$) -систем удовлетворительно описывается простой экспоненциальной зависимостью /1/. Это свойство многопионных систем в основном обусловлено характером одночастичных инклюзивных спектров π -мезонов.

Интересным является вопрос - как же значение T зависит от энергии взаимодействующих частиц. Данные, представленные в этой работе и полученные в $\pi^+ p$ -взаимодействии при P = 16 ГэВ/с, не позволяют сделать определенных выводов относительно этой зависимости. Поэтому важно посмотреть поведение параметра T при других энергиях.

5. Заключение

В результате изучения характеристик многопионных систем, образованных в пион-нуклонных соударениях при P = 40 Гэв/с, получены следующие результаты:

1. Поперечный импульс $(m\pi)$ -систем растет с увеличением эффективной массы, слабо зависит от числа частиц в системе и в пределах ошибок не зависит от заряда и типа мишени (p,n).

2. Распределения ρ° -мезонов и (2π) -систем, образованных от распадов разных ρ° , удовлетворительно описываются обеими формулами /1/ и /5/. Увеличение значения параметра Т для всех $(\pi^+\pi^-)$ -систем в области $\mathbf{M}(\rho^{\circ})$, связанное с рождением этого резонанса, в экспериментах практически не проявляется, так как отношение "сигнала" от ρ° к фону не превышает 10%.

3. Зависимость неинвариантного дифференциального сечения от поперечной энергии как для реальных, так и для моделированных (m π)-систем удовлетворительно описывается $exp[-(E_\perp-M)/T]$. Поэтому это свойство многопионных систем в основном обусловлено характером одночастичных инклюзивных спектров пионов. Нарушение корреляции между частицами системы приводит к увеличению значения T.

Авторы признательны В.М.Шехтеру за полезные обсуждения.

Литература

- 1. Böchman K. et al. Nucl.Phys., 1978, B140, p.235.
- 2. Jancso G. et al. Nucl. Phys., 1977, B124, p.1.
- 3. Ангелов Н. и др. ЯФ., 1977, 25, с.117.
- 4. Deutzchman M. et al. Nucl.Phys., 1974, B70, p.189.

- 5. Bartke J. et al. Nucl. Phys., 1977, B120, p.14.
- 6. Ангелов Н. и др. ЯФ, 1979, 30, с.1527.
- 7. Ангелов Н. и др. ОИЯИ, Р1-12619, Дубна, 1979; ЯФ, 1980, 31, с.640.
- 8. Абдурахимов А.У. и др. ОИЯИ, 1-6967, Дубна, 1973.
- 9. Абдурахимов А.У. и др. ЯФ, 1973, 18, с.545.
- 10. Абдурахимов А.У. и др. ЯФ, 1971, 18, с.1251.
- 11. Zederman L.M. Proc. of the 19th International Conf. on High Energy Phys., Tokyo, 1978, p.706.
- 12. Drel S., Yan T.M. Phys.Lett., 1970, 25, p.319.
- 13. Böchman K. Report BONN-HE-76-25.

14. Anisovich V.V. et al. Nucl. Phys., 1973, B55, p.455.

Рукопись поступила в издательский отдел 21 февраля 1980 года.