ОБЪЕДИНЕННЫЙ ИНСТИТУТ ЯДЕРНЫХ ИССЛЕДОВАНИЙ ΔΥБΗΑ

4/10- 44

P1 - 7577

0-927

865/2-74 Л.С.Охрименко, Б.Словинский, З.С.Стругальский, А.Томашевич

.....

МНОЖЕСТВЕННАЯ ЭМИССИЯ ЧАСТИЦ

В 77-Хе-ВЗАИМОДЕЙСТВИЯХ

ПРИ 3,5 ГЭВ/С

ЛАБОРАТОРИЯ ВЫСОНИХ ЭНЕРГИЙ

P1 - 7577

Л.С.Охрименко, Б.Словинский, 3.С.Стругальский, А.Томашевич

множественная эмиссия частиц

В 77-Хе-ВЗАИМОДЕЙСТВИЯХ

ПРИ 3,5 ГЭВ/С

Направлено в ЯФ

Охрименко Л.С., Словинский Б., Стругальский З.С., P1 - 7577 Томашевич А.

Множественная эмиссия частиц в *т*-Хе-взаимодействиях при 3,5 ГэВ/с

Дан анализ распределений π^--Xe_- взаимодействий при 3,5 ГэВ по числу вторичных заряженных и нейтральных частии, зарегистрированных на снимках ксеноновой пузырьковой камеры. Предложена трехпараметрическая функция, аппроксимирующая экспериментальное распределение по суммарному числу наблюдаемых вторичных частии. Приведены сведения об эмиссии π° -мезонов.

Препринт Объединенного института ядерных исследований. Дубна, 1973

Okhrimenko L.S., Słowiński B., Strugalski Z.S., Tomaszewicz A. P1 - 7577

Multiparticle Emission in π^--X_e Interactions at 3.5 GeV/c

There was made an analysis of distributions of $3.5 \text{ GeV/c } \pi^--X^e$ interactions over the number of secondary charged and neutral particles, registered on the xenon bubble chamber pictures. Three-parametric function is proposed which approximates the experimental distribution over the total number of the observed secondary particles. The data on the π° -meson emission are presented.

Preprint. Joint Institute for Nuclear Research. Dubna, 1973

🕐 1973 Объединенный институт ядерных исследований. Дубна

В настоящей работе представлены результаты исследования эмиссии нейтральных и заряженных частиц, сопровождающих $\pi^- - Xe$ - взаимодействия при 3,5 ГэВ/с. Работа выполнена на снимках 180-литровой ксенононовой пузырьковой камеры /1/.

Использованная нами экспериментальная методика дала возможность регистрировать с эффективностью, близкой 100%, π° -мезоны, образованные в изучаемых взаимодействиях, в полном диапазоне энергий и углов их эмиссии. Достаточно большие размеры камеры, приблизительно равные длине ядерного взаимодействия в жидком ксеноне, позволили с эффективностью, равной примерно 50%, регистрировать вторичные нейтроны по нейтральным звездам, сопровождающим случаи взаимодействий. Имелись также хорошие условия для регистрации протонов и π^+ -мезонов. Подробности, касающиеся методики исследований при помощи ксеноновых пузырьковых камер, даны в наших прежних работах $^{/2-4/}$.

ОПИСАНИЕ ЭКСПЕРИМЕНТА

В результате просмотра 20 тыс. стереофотографий 180-литровой ксеноновой пузырьковой камеры ИТЭФ, облученной в пучке π^- -мезонов с импульсом 3,5 ГэВ/с, было отобрано 4908 событий $\pi^- Xe$ - взаимодействий, происходящих в выделенной центральной области камеры и удовлетворяющих определенным критериям просмотра. Для каждого события были определены числа: N₂ -гамма-квантов , N₃ - вторичных заряженных

частиц, N_{V°} -V° - событий и N_H - нейтральных звезд, вызванных вторичными нейтронами. Число п° мезонов, N_o, определялось следующим образом: $N_{\pi^{o}} = \frac{N_{\gamma}}{2}$, если $N_{\gamma} - ч$ етное и $N_{\pi^{o}} = \frac{N_{\gamma} + 1}{2}$ при

N, нечётном. Минимальная длина следов вторичных заряженных частиц составляет 5 мм в камере, что соответствует импульсу заряженных пионов примерно 50 МэВ/с и протонов - 200 МэВ/с. Эффективность регистрации гамма-квантов в условиях нашего эксперимента равна ~95%.

Числа выбранных случаев п - Хе-взаимодействий с различными значениями N_v и N представлены в табл. 1.

ЭКСПЕРИМЕНТАЛЬНЫЕ РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ

На основании полученных экспериментальных данных были построены и проанализированы распределения изучаемых п - Хе - взаимодействий по суммарному числу $N = N_3 + N_{\pi^0} + N_{V^0} + N_H$ и по числу N_3 . Отдельно был выполнен анализ частоты эмиссии " -мезонов.

А. Множественность нейтральных и заряженных частиц

Было установлено, что в неупругих столкновениях пионов с ядрами ксенона в области энергий несколько ГэВ чётко выделяется класс квазисвободных пион-нуклонных взаимодействий, составляющий ~ 30% от всех неупругих каналов реакции п-Хе/5,6/. Множественную эмиссию вторичных частиц во взаимодействиях этого типа хорощо описывает функция Пуассона /7/. В остальной части неупругих п - Хе -взаимодействий участвует более чем один нуклон. В основном это взаимодействия каскадного типа. Среди изучаемых взаимодействий имеется некоторая доля а случаев упругого рассеяния с углом рассеяния в лабораторной системе отсчета ≥ 5.

N₂ BTODETHIKX

3,5 raB/c

Распределение П-Хе-взалмодействий

TABUMIA I

38081

TROAD

TACTED IO

ŝ

Ħ

8

8

166

8

8

488 466

809

645

668

598

72 462

1.1.1.1.1

1 1 1 1 1

1 1 1

н синови и на

Таблица 🏾

распределение аппроксимирующей Z при разных -функции N OII Γ₃B/c പ്പ ູ່ສຸດ взаимодействий Значения параметров

2 °)											• • •	
p/X22	✓ 0,50	< 0'0I	~ 0,05	~ 0 . I0	~ 0 . 30	~ 0,30	~ 0,30	≰ 0,01	~ 0,05	~ 0,05	≪ 0 , 01	≮ 0,0I
22	ΙO	IO	6	4	ဖ	II	, OT	ω	~	4	~~	- OI
	5	27	17	13	7,5	IZ	IZ	37	I4,4	8,2	4I	23
1- 0	0,93	H	H	H	H	0,97	0,93	0,98	°.	0,92	0,98	 8 0
7.	7	6,9	6,8	7,4	8 . 9	7	6,9	9	2°5	വ	ഹ	ດ. ບໍ
151. 2,	6°2	ສ ໍ ສ	വ	വ	9	3,65	2, 8	ß	က	ന	ŋ	s. 7
eit cbobol	0	2-1 1	3-4	9 L	7-I0	0-10	0	1-2	3-4	0 1 0	7-IO	0-10
Л	2			919 924 53 4 10 10 10			22					

Если дополнительно предположить, что множественность вторичных частиц, эмитируемых во взаимодействиях каскадного типа, описывается функцией Пуассона, то распределение $\pi - Xe$ - взаимодействий при 3,5 ГэВ/с имеет следующий вид:

$$p(n+1) = (0.3 \frac{\lambda_1}{n!} e^{-\lambda_1} + 0.7 \frac{\lambda_2^n}{n!} e^{-\lambda_2})(1-\alpha) + \alpha \cdot \delta_{1,n}, \quad (1)$$

где $\delta_{1,n}$ - символ Кромеккера.

Функцией (1) аппроксимировались полученные экспериментально распределения изучаемых $\pi^- - Xe - взаимо-$ действий по N₃ и N . Параметрами аппроксимации по критерию χ^2 были λ_1 , λ_2 и a. В табл. 2 приведены полученные численные эначения этих параметров. Из таблицы следует, что функция (1) удовлетворительно описывает распределение изучаемых $\pi^- - Xe - взаимодействий по суммарному числу частиц при разных N_y и, кроме случая с N_y=0, значительно хуже. отображает соответствующие распределения по числу вторич-ных заряженных частиц.$

На рис. 1 представлено распределение случаев π^--Xe взаимодействий при 3,5 ГэВ/с по числу N. Здесь же приведено соответствующее аппроксимирующее распределение, полученное на основании функции (1). Структура предложенного распределения (1) и описываемого им экспериментального распределения по числу N в значительно большей степени. проявляется в случае, когда N_y =0, что показано на рис. 2. Следует отметить, что вычисленное среднее значение числа λ_1 вторичных частиц в классе квазисвободных взаимодействий не отличается в пределах экспериментальных ошибок от соответствующей величины, характеризующей пионнуклонные взаимодействия при той же энергии /⁷,8/.

В. Множественность ^{π°}-мезонов

В табл. З приведены средние числа п_ло ло -мезонов, образованных в разных по числу N_з группах

Þ вторичных ф п° -мезонов, образованных п числами N з разными числами N з Таблица III при 3,5 Средние числа <mark>п</mark>_по взаимодействиях с заряженных частиц

BCe	0,51 <u>+</u> 0,02	0,88 <u>+</u> 0,03
2	0,39 <u>+</u> 0,03	0,66 <u>+</u> 0,06
4÷6	0,63 <u>+0</u> ,04	0 , 94 <u>+</u> 0,06
N ₃ ≤3	0,50 <u>+</u> 0,31	1,12 <u>+</u> 0,07
Импульс (ГэВ/с)	2,34	3°2
Реакция	<i>п</i> +-Хе	<i>n</i> [–] Xe

1

80

9

N

100

500

400

300

Рис. 2. Распределение $\pi - Xe - взаимодействий при$ 3,5 ГэВ/с с N_y =0 по суммарному числу N зарегистрированных частиц. Обозначения как на рис. 1.

10

 π -Xe - взаимодействий при 3,5 ГэВ/с. Предполагалось, что единственным источником наблюдаемых гамма-квантов являются π° -мезоны ^{/3/}. Там же, для сравнения, представлены аналогичные результаты, относящиеся к π^+ - Xe - взаимодействиям при 2,34 ГэВ/с ^{/3/}. Следует отметить, что при возрастании N₃ средние числа $\bar{n}_{\pi^{\circ}}$ уменьшаются как в случае реакции π^- Xe при 3,5 ГэВ/с, так и π^+ -Xe при 2,34 ГэВ/с. Представляется интересным обратить внимание на то, что в случае π^- - Xe - взаимодействий при 5 и 9 ГэВ/с, а также реакции π^+ р при 10,5 ГэВ/с ^{/9/} наблюдалось постоянство $\bar{n}_{\pi^{\circ}}$ во всем исследованном диапазоне изменения числа вторичных заряженных частиц.

Литература

 Е.В.Кузнецов, А.Н.Розанов, Ю.В.Бардюков, И.Н.Виноградов, В.В.Бармин, В.М.Голубчиков, А.Г.Долголенко, И.С.Коноплин, А.Г.Мешковский, В.А.Шабанов. ПТЭ, №2, 56 (1970).

- Z.S.Strugalski, I.V.Chuvilo, T.Gemesy, I.A.Ivanovskaya, Z.Jablonski, T.Kanarek, S.Krasnovsky, L.S.Okhrimienko, G.Pinter, B.Słowiński. Report JINR, E1-5349, Dubna, 1970.
- 3. Б.Словинский, З.С.Стругальский. Препринт ОИЯИ, P1-5592, Дубна, 1971.
- 4. Б.Словинский, З.С.Стругальский. Сообщение ОИЯИ, Р1-6188, Дубна, 1971.
- 5. Б.Словинский, З.Стругальский. Сообщение ОИЯИ, P1-6557, Дубна, 1972.
- 6. Б.Словинский. Препринт ОИЯИ, Р2-7436, Дубна, 1973.
- 7. O.Czyzewski, K.Rybicki. Nucl.Phys., <u>B47</u>, N2, 633 (1972).

- 8. В.С.Барашенков, В.М.Мальцев, И.Патера. Препринт ОИЯИ, Р-1577, Дубна, 1964.
 - 9. M.E.Binkley, J.R.Elliot, L.R.Fortney, J.S.Loos, W.R.Robertson, C.M.Rose, W.D.Walker, W.M.Yeager, G.M.Meisner, R.B.Muir. Phys.Lett., <u>B45</u>, N3, 295 (1973).

Рукопись поступила в издательский отдел 28 ноября 1973 года.