ОБЪЕДИНЕННЫЙ ИНСТИТУТ ЯДЕРНЫХ ИССЛЕДОВАНИЙ ДУБНА

809/2-74

5-611

11 11 11

С.И.Биленькая, Ю.М.Казаринов, Л.И.Лапидус

ГЛУБОКОНЕУПРУГОЕ ЛЕПТОН-ПРОТОННОЕ РАССЕЯНИЕ И / -е УНИВЕРСАЛЬНОСТЬ

4/18-74

P1 - 7557

ЛАБОРАТОРИЯ ЯДЕРНЫХ ПРОБЛЕМ

Направлено в "Письма в ЖЭТФ"

ایی ایک ایک میکند کرتی کا دیک و ایک میکند.

ГЛУБОКОНЕУПРУГОЕ ЛЕПТОН-ПРОТОННОЕ РАССЕЯНИЕ И µ-е УНИВЕРСАЛЬНОСТЬ

and an alex Bread

2

С.И.Биленькая, Ю.М.Казаринов, Л.И.Лапидус

P1 - 7557

Summary

In order to check the μ_{-} -e universality at high energies and the momentum transfer the statistical analysis of both μ_{-} -p and e-p deep inelastic interaction was made.

Differential cross sections for deep inelastic scattering of leptons are given in (1) with the help of the structure functions W_1 and W_2 . For vW_2 in the region of the final hadronic mass W > 2.3Geexpression (5) is suggested. The functions $2MW_1$ and vW_2 are connected by means of (2) where R is given in (4) and (2) in (3). For the ratio R in our analysis different parametrizations (6)-(9) were considered. Relation (10) corresponds very well to experimental data. By using parametrization similar to that of ref. $^{10/}$ for W, and W, we have found parameter values from the condition of the minima of functional (11). Here \mathfrak{S}_{2}^{theor} is given in (1), $\mathfrak{S}_{2,\kappa}^{exp}$ is differential cross section at the i-point measured in the k-experi ment, Δ_{iK} is the error in $S_{iK}^{oxp.}$ and N is the normalizing coefficient. In our analysis we take $N_e = 1$, and N_{μ_e} for w-p was varied. The values of parameters which determine the proton structure functions W_1 and W_2 are listed in the Table. The dependence of vW, from (2) under condition (10) is shown in Fig. 1. Our conclusions are as follows:

1. Data on $p -p^{/1/}$ and $e -p^{/2}$, 3/ are in accordance if the renormalization of p - p data is allowed.

2. The values of the coefficients a_i and c_i from μ -p and e-p data coincide within errors with the values of these parameters obtained in ref. /10/ on the basis of e-p data only.

3. The value of $N \sim does$ not depend within errors on parametrization for R.

4. Apparent difference in cross sections for p = p and e-p- deep inelastic scattering is due probably to systematic errors and does no indicate deviation from the p = p universality. Further p = p experiments are desirable.

> объесту Славное брото соново объесторо с селодовершу желото С 1973 – Объединскими институт ядерных исследований Дубна

В настоящей заметке излагаются результаты совместного анализа данных по глубоконеупругому μ - р рассеянию, полученных в работе^{/1/}, и данных группы SLAC-MIT^{/23/} по глубоконеупругому е-р рассеянию. Основная цель анализа - проверка μ -е универсальности.

Наиболее точная проверка μ -е -универсальности в области малых энергий достигнута в экспериментах по измерению $g-2^{/4/}$. Данные этих экспериментов согласуются с результатами теории с точностью до поправок шестого порядка по е. При высоких энергиях μ -е -универсальность проверялась в опытах по образованию лептонных пар γ -квантами на ядрах^{/5/}, в экспериментах на встречных е⁺е⁻ пучках^{/6/} и в опытах по упругому лептон-протонному рассеянию ^{/7,8/}, Сечения упругого μ -р рассеяния, полученные в работах^{/7,8/}, в точках. Однако, как показано в работах^{/7,9/}, эта разница может быть устранена перенормировкой сечений и связана, повидимому, с систематическими ошибками.

Наибольшие квадраты переданных импульсов q^2 достигнуты в экспериментах по глубоконеупругому μ -р и е-р рассеянию /1,2,3/. Сравнение этих данных с целью проверки μ -е универсальности представляет большой интерес.

Данные работы /1/ по μ -р -рассеянию получены при импульсе μ -мезонов 12 ГэВ/си $q^2 \le 4/ГэВ/с/2$. Сечения е-р рассеяния измерены $^{2,3/}$ при энергии электронов до 20 ГэВ и 0,25 /ГэВ/с/ $\stackrel{2}{\le} q^2 \le 19,72$ /ГэВ/с/ 2 . В работе /1/ для сравнения сечений глубоконеупругого μ -р н е-р-рассеяния проводилась экстраполяция данных /2;3/ в область μ -р-данных /1/.

3

В настоящей работе применяется другой метод сравнения сечений глубоконеупругого µ-рие-р рассеяния. Сечение рассеяния лептонов протонами в случае, если массой лептонов можно пренебречь, имеет вид/л.с./

$$\frac{d^2\sigma}{d\Omega dE} = \frac{a^2}{4E^2 \sin^4 \theta/2} \cos^2 \theta/2 [W_2 + 2W_1 tg^2 \theta/2]. /1/$$

Здесь Е и Е' - начальная и конечная энергии лептона, θ - угол рассеяния лептона, величины W_1 и W_2 характеризуют адронную часть процесса и зависят в общем случае от скаляров q² и ν =E-E'. Функции 2M W_1 и νW_2 связаны следующим общим соотношением

$$2MW_{1} = \omega \nu W_{2} \frac{1 + q^{2}/\nu^{2}}{1 + R} .$$
 /2/

Здесь

$$\omega = \frac{2M\nu}{q^2} /3/$$

$$R = \frac{\sigma_S}{\sigma_m}, /4/$$

/5/

где σ_S и σ_T - полные сечения поглощения виртуального фотона с продольной и поперечной поляризациями протоном.

В работе $^{/10/}$ мы проанализировали все имеющиеся данные по глубоконсупругому е-р рассеянию. Было показано, что в области $W \ge 2,3 \ \Gamma_{3}B / W$ - масса конечной адронной системы/ данные хорошо описываются, если для νW , принять выражение

 $\nu \Psi_2 = \sum_{i=0}^{\infty} a_i \left(1 - \frac{1}{\omega}\right)^{i+3}.$

Данные могут быть описаны при различных параметриза-

циях R. Были рассмотрены следующие, отвечающие разным моделям, выражения:

$$R = c_{1} q^{2}/M^{2}$$

$$R = c_{2} q^{2}/W^{2}$$

$$R = c_{3} q^{2}/2M \nu$$

$$R = c_{3} t^{2}/2M \nu$$

$$/8/$$

$$R = const.$$

$$/9/$$

Результаты экспериментов по е-р рассеянию хорошо описываются также, если предположить, что имеет место соотношение

$$2MW_{1} = \omega \nu W_{2} (1 + c_{4}/\omega)^{-1}, /10/$$

совпадающее при достаточно большом ω ссоотношением Коллана-Гросса ^{/11}/ Было показано, что в случаях /6/, /7/, /8/, /10/ достаточно считать отличными от нуля a_0 и a_2 , а при $R = const - a_{d}a_1$, a_2 .

Совместный анализ данных по μ -ри е-р рассеянию проводился при тех же, что и в $^{/10/}$, параметризациях структурных функций. Параметры находились из условия минимума функционала

$$\chi^{2} = \sum_{k} \sum_{i} \frac{1}{\Delta_{ik}^{2}} \left(\sigma_{i,k}^{\Im KC\Pi_{\bullet}} - N_{k} \sigma_{i}^{\Im C\Pi_{\bullet}} \right), \qquad /11/$$

где $\sigma_{i,k} \stackrel{3 \text{ ксп.}}{}$ - дифференциальное сечение в і -ойточке, измеренное в k -том эксперименте, $\Delta_{i,k}$ - ошибка $\sigma_{i,k}^{3 \text{ ксп.}}$, $\sigma_i^{\text{ теор.}}$ - сечение, даваемое выражением /1/, а N_k нормы. Мы будем считать, что N_e =1, а N_µ - варьируемый параметр. Значения полученных нами параметров приведены в *табл. 1.* На *рис. 1* представлена зависимость функции νW_2 от ω в случае, когда структурные функции связаны соотношением /10/.

В результате совместного анализа данных работ^{/1-3/} мы приходим к следующим заключениям:

1. Данные по глубоконеупругому μ – р – рассеянию, полученные в работе /1/, совместимы с данными по глубоконеупругому, е-р рассеянию $2^{2,3/}$, если произвести перенормировку μ – р данных.

2. Значение нормы N_µ не зависит /в пределах ошибок/ от параметризации R*.

3. Значения коэффициентов a_i и c_i , полученные в результате совместного анализа $\mu - p$ и e - p данных, совпадают в пределах ошибок со значениями соответствующих коэффициентов, полученных в работе $^{/10/}$ при анализе данных по e - p рассеянию /в последней строке таблицы приведены значения параметров, полученные из анализа c_{-p} данных/.

 4. Имеющаяся разница в сечениях глубоконеупругого μ-рін е-р рассеяния, по-видимому, связана с систематическими ошибками и не указывает на отклонение от μ-е универсальности.

Отметим, что найденное нами значение нормы N_µ отличается от соответствующей величины, полученной в работе |/¹/! методом экстраполяции.

0,016 0,0I6 0,017 0,017 0,017 0,840 + (+1 +1 +1 +1 N 0,838 0,850 0,827 0,838 I62/150 204/152 223/IBI 222/182 I88/I82 204/182 x²/x² 0,004 D,08 0,05 0,09 0,03 60,0 +1 +1 +1 +1 +1 +1 0,038 0,46 06,0 0,69 0,63 0,23 tI 11 рассеянию 0,02 0,02 0,10 0,02 0,02 0,02 2.3 +1 +1 +1 -I,48 -1,50 16-2,07 -I,SI -I.53 -I.50 1 ō +1 1041 66.0 0,02 8.0 0,02 0,02 0,02 0.02 I,65 ± "I.666 ± +1 +1 I,22 ± 2 5+1 1,62 I,64 I.64 2MT = u v V (1 + c, / u) $2MV_1 = \omega V T_2 (1 + c_1 / \omega)$ VW2 -c₁q²/M² -c24²/#2 8-c.q 7

7

совиестного енализа дамных по глубокомсупругому и-р

Результаты

В заключение авторы выражают благодарность С.М.Биленькому за полезные обсуждения рассмотренных здесь вопросов.

Литература

- 1. T.J.Braunstein, W.L.Lakin, F.Martin, M.L.Perl, W.T.Toner, T.F.Zipf. Phys.Rev., D6, 106, 1972.
- E.D.Bloom, D.H.Coward, H.Destaebler, J.Drees, G.Miller, L.W.Mo, R.E.Taylor, M.Breidenbach, J.I.Friedman, G.C.Hartmann, H.W.Kendall. Phys.Rev., Lett., 23, 930 (1969).
- 3. G.Miller, E.D.Bloom, G.Buschhorn, D.H.Coward, H.Destaebler, J.Drees, C.L.Jordan, L.W.Mo, R.E.Taylor, J.I.Friedman G.C.Hartmann, H.W.Kendall, R.Verdier. Phys.Rev., D5, 528 (1972).
- J.Badley, W.Bartl, G.Von Bochmann, R.C.A.Brown, F.J.M.Farley, M.Giesch, H.Jostlein, S. Van der Meer, E.Pikasso, R.W.Williams. Nuovo Cim., vol. 9A, 369 (1972).
- 5. S.Hayes, R.Imlay, P.M.Joseph, A.S.Keizer, J.Knowles, P.C.Stein, Phys.Rev. Lett., 22, 1134 (1969).
- V.Alles-Borelli, M.Bernardini, D.Bollini, P.L.Brunini, E.Fiorentino, T.Massam, L.Monari, F.Palmonari, A.Zichichi. Nuovo Cim., vol. 7A, 330 (1972).
- 7. L.Camilleri, J.H.Christenson, M.Cramer, L.M.Lederman, Y.Nagashima, T.Yamanouchi. Phys.Rev.Lett., 23, 153 (1969).
- 8. R.W.Ellsworth, A.C.Melissinos, J.H.Tinlot, H. von Briesen, T.Yamanouchi, L.M.Lederman, M.J.Tannenbaum, R.L.Cool, A.Maschke. Phys.Rev., 165, 1449 (1968).
- 9. С.И.Биленькая, Ю.М.Казаринов, Л.И.Лапидус. ЖЭТФ, 61, 2225, 1971.
- S.I.Bilenkaya, S.M.Bilenky, Yu.M.Kazarinov, L.I.Lapidus. JINR, E1-7275, Dubna, 1973.
- 11. C.G.Gallan, D.J.Gross. Phys.Rev.Lett., 22, 156 (1969).

Рукопись поступила в издательский отдел 16 ноября 1973 года.

Биленькая С.И., Казаринов Ю.М., Лапидус Л.И. Глубоконеупругое лептон-протонное рассеяние и µ-е -универсальность

С целью проверки µ-е универсальности проведен совместный анализ данных по глубоконеупругому е-р и µ-р рассеянию. Показано, что эти данные совместимы, если произвести перенормировку сечений µ-р рассеяния.

P1 - 7557

Препринт Объединенного института ядерных исследований. Дубна, 1973

Bilenkaya S.I., Kazarinov Yu.M., Lapidus L.I. P1 - 7557

Deep Inelastic Lepton-Proton Scattering and $\mu-e$ Universality See the Summary on the reverse side of the title-page.

Preprint. Joint Institute for Nuclear Research. Dubna, 1973