СООБЩЕНИЯ ОБЪЕДИНЕННОГО ИНСТИТУТА ЯДЕРНЫХ ИССЛЕДОВАНИЙ ДУБНА

В.В.Глаголев, К.Д.Толстов

7057

ВОЗМОЖНО ЛИ ДИНАМИЧЕСКОЕ ВЛИЯНИЕ НА РАСПАД НЕЙТРОНА?

Экз. чит. зала

P1 - 7057

ЛАБОРАТОРИЯ ВЫСОНИХ ЭНЕРГИЙ

P1 - 7057

В.В.Глаголев, К.Д.Толстов

ВОЗМОЖНО ЛИ ДИНАМИЧЕСКОЕ ВЛИЯНИЕ НА РАСПАД НЕЙТРОНА?

Вопрос о возможной зависимости постоянных распада элементарных частиц от внешних условий принципиально важен. Выяснению этого вопроса могут способствовать исследования нейтрона, обладающего периодом полураспада $\tau = 10,7$ мин.

Известен электромагнитный формфактор нейтрона, связанный, очевидно, с его структурой, от которой, в сущности, и должен зависеть его распад. Выяснение этой связи и объяснение на ее основе распада нейтрона дело будущего и на этом пути большое значение должны иметь данные о внешних воздействиях, которые могут повлиять на период распада нейтрона. Очевидно, что в стабильных атомных ядрах нейтрон также стабилен и напротив - при некоторых ядерных реакциях происходит β -распад за очень короткое время.

В 1947 г. в работах Э.Сегре и Р.Даудела^{/1,2/} было сделано предположение о возможном изменении скорости распада ядра ⁷ Ве вследствие влияния химической связи атома на захват орбитальных электронов, и в ^{/3/} получено экспериментальное подтверждение этого предположения. В настоящее время известна большая совокупность данных о влиянии на радиоактивность внешних условий: молекулярного состояния атомов, электрического поля, давления /см., например, обзор ^{/4/}/. Приведем некоторые примеры. В работе ^{/5/} исследовалась зависимость периода полураспада изотопа ⁹⁹ Tc от напряженности электрического поля и было найдено, что $\frac{\Delta \lambda}{\lambda} =$ = $/12\pm2/.10^{-5}$ в поле 2.10⁴ в/см. В ^{/6/} показано, что давление 100 кбар увеличивает постоянную внутренней конверсии γ -квантов в ⁹⁹ Tc; $\frac{\Delta \lambda}{\lambda} = /2,3\pm0,5/.10^{-4}$.

3

10⁶ в/см изменение энергии $\Delta E_e \leq 5.10^{-17}$ эв. Магнитный момент нейтрона составляет 1,91 ядерного магнетона и в полях с напряженностью 10⁵ гаусс $\Delta E_m = 6.10^{-7}$ эв.

Наиболее действенным и доступным представляется динамическое воздействие, которое испытывает быстрый нейтрон в столкновениях с нуклонами и ядрами.

Наглядными и решающими в случае установления эффекта являются опыты в пузырьковых или стримерных камерах. Рассмотрим некоторые примеры.

В водородной пузырьковой камере, облучаемой нейтронами, в случае, если динамическое воздействие, например, при упругом np -рассеянии с некоторой вероятностью вызывает распад нейтрона, будет наблюдаться 2-лучевая звезда, близкая по кинематике к упругому pp -рассеянию, с электроном, вылетающим из ее центра. При облучении водородной пузырьковой камеры дейтонами /если произойдет распад нейтрона в упругих или неупругих столкновениях/ возможно наблюдать события типа $d + p \rightarrow 3p + e^- + \tilde{\nu}$; $d + p \rightarrow 3p + n\pi + e^- + \tilde{\nu}$ и т.д., т.е. отличающиеся от обычных числом лучей.

Спектр электронов при распаде нейтронов, измеренный в $^{/ \theta}$, показан на рис. 1. Используя его в предположении изотропии распада в системе нейтрона, мы приближенно рассчитали спектр электронов при распаде нейтронов с импульсом 1,5 Гэв/с. Этот спектр также показан на рис. 1. Отметим, что электрон с кинетической энергией 1 Мэв имеет пробег в водородной пузырьковой камере \approx 3,4 см, а в стримерной камере с воздушным наполнением \approx 2 м. При распаде нейтрона с импульсом 5 Гэв/с спектр электронов простирается от 0,15 до 18 Мэв.

Рассмотрим фоновые условия, которые могут иметь место при поиске интересующих событий.

а/ Если естественный распад нейтрона происходит на расстояниях ≥ 2 мм от места упругого или неупругого столкновения с протоном в водородной пузырьковой камере, то этот распад надежно отделяется от распада в центре звезды при столкновении. Следовательно, вероятность случайного совпадения с центром звезды w есть : $w \leq 2$ мм/с· $\tau \approx 10^{-14}$

6/ Более существенным источником фона могут явиться случайные наложения взаимодействий с δ -электронами, образуемыми протонами. Дистанция, на которой они образуются, имитируя вылет из звезды, ≤ 2 мм, и вероятность образования протоном δ -электрона с энергией > 0,5 Мэв в жидком водороде на этом расстоянии составит w = 0,004. Распад нейтрона в результате столкновения, т.е. событне с четным числом лучей в np -столкновениях и иечетным - в dp -столкновениях /помимо электрона/, может быть имитирован фоном, если вблизи δ -электрона, т.е. на расстояниях ≤ 2 мм, произойдет вторичное взаимодействие, вероятность которого в случае дейтонного пучка $w_d = 0,0007$.

Результирующая вероятность $w = w_e \cdot w_d = 3.10^{-6}$. Фоновые события будут отличаться и по кинематическим признакам, т.к. в случае n_P -взаимодействий не будет быстрого протона как при распаде иейтрона, а в случае

5

dp -взаимодействий в фоновых событиях будет один быстрый протон /входивший в состав дейтона/ и два быстрых протона при распаде нейтрона.

в/ Случайное наложение δ -электрона и упругой *пр* - перезарядки будет иметь вероятность $\leq 10^{-5}$ при импульсе нейтрона ≈ 1 Гэв и меньшую вероятность при больших импульсах, но это будет только однолучевая звезда с электроном, а не двухлучевая, как в случае $n + p \rightarrow 2p + e^{-} + \tilde{\nu}$.

Оценим среднюю силу F, действующую на нейтрон при упругом np - рассеянии. Примем, что $< p_{\perp} > =0,3\Gamma$ эв/с; $v \approx c$; область действия силы $\Lambda r \approx 2.10^{-1.3}$ см. Тогда имеем $F \approx 2,4.10^{9}$ дин н время действия $t \approx 2/3.10^{-2.3}$ сек.

Целесообразно обсуждать усиление возможного эффекта при использовании многократных столкновений нейтронов с ядрами тяжелых элементов. Средняя логарифмическая потеря энергии нейтроном при упругом столкновении с тяжелым ядром с атомным весом "А" равна: ξ ≈ 2/А. Энергия нейтрона E, после n столкновений равна E_n = E_n e^{- E n}. Следовательно, для замедления нейтрона от 14 до 1 Мэв при столкновениях с ядром 208 Pb нужно = 550 столкновений. Однако реализация опыта в таких условиях затруднена сложностью детектирования сравнительно малоэнергетичных протона и электрона. Необходимо чередование тяжелого материала с газовой средой, т.е. нужно иметь устройство, включающее пропорциональную или стримерную камеры с тонкими проволоками из тяжелого материала. Для получения значительного числа столкновений это устройство должно иметь большие размеры.

В опытах с водородными пузырьковыми камерами при облучении их нейтронами, когда общее число взаимодействий $\approx 10^6$, можно рассчитывать на обнаружение распада нейтрона, если сечение этого процесса $\approx 10^{-32}$ см². Обнаружение таких событий связало бы сильные взаимодействия со слабыми.

Литература

- I. E.Segre. Phys.Rev., 71, 274 (1947).
- 2. R.Daudel. Rev.Sci. Paris 85, 162 (1947). R.Daudel. J.Phys.Radium 8, 336 (1947).
- 3. E.Segre, C.E.Wiegand. Phys.Rev., 75, 39 (1949).
- 4. S. de Benedetti, F.S.Barros, G.R.Hoy. Annal. Rev. of Nucl.Sci., 16, 31 (1966).
- 5. K.Lenenberger et al. Helv. Phys.Acta, 43, 411 (1970).
- 6. H.Mazaki, T.Nagatomo, S.Shimizi. Phys.Rev., C5, 1718 (1972).
- 7. J.K.Baird et al. Phys.Rev., 179, 1285 (1969).

8. J.M.Robson. Phys.Rev., 83, 349 (1951).

Рукопись поступила в издательский отдел 5 апреля 1973 года.